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Two Kinds of ABM

We can think of two kinds of ABM:

1. demons trative ABM models

These models demonstr ate principles, rat her than
tr acking historical phenomena. A demons trative ABM
is an exis t ence proof.
Examples: Schelling’s Seg reg ation Game, my Boy s and
Girls NetLogo model, my Emergence of Risk
Neutr ality, and other s

2. descriptive ABM models.

These models attempt to der ive suf ficient conditions
to match historical phenomena, as reflect ed in
his t orical data. This requires validation (model
choice).
Examples: Midgley et al. modelling brand riv alry, alife
models, etc
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2. Validation and Model Selection

"All models are wrong, but some are useful" — Box (19 76).

Previousl y, validation (as the name sugges ts): validating a
model as "close" to his t orical reality, in some way — models
are approximations, so the compar ison dimension must be a
function of the model’s pur pose.

But Anderson & Burnham (2002) make a strong case for
validation as model selection: for the researcher gener ating a
selection of models, and choosing the model which loses the
leas t infor mation compared to reality (the Historical data).

How to select a "best approximating model" from the set?
Ander son & Bur nham review and use Akaike’s infor mation
cr iter ion (AIC).
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Ak aike’s Infor mation Cr iter ion (AIC)

Consider ing AIC to be an ext ension of R. A. Fisher ’s
likelihood theor y, Akaike (19 73) found a simple relationship
between Kullbac k-Leibler "distance" or "infor mation" and
Fisher ’s maximized log-likelihood function.

This leads to ver y gener al met hodology for selecting a
par simonious approximating model.

Can think of modelling as being direct ed towards finding a
good approximating model of the infor mation encoded in the
empir ical, his t orical data.

Infor mation about the process under study exis ts in the data.
Want to express this infor mation in a model: more compact,
and underst andable.

The role of a good model is to filt er the his t orical data so as
to separ ate infor mation from noise.
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A new technique: SSM

We outline a new technique, the State Similar ity Measure,
for tac kling the four th core issue of Fagiolo et al. (2007):
validating agent-based models using historical data.

Compared to their three methods (indirect calibration, the
Werker-Brenner approach, and the history-fr iendly
approach), SMM focusses on:

— the micro-level output

— an empir ical compar ison of model output v. his t ory

— leading to a choice of model that best fits, to resol ve
any identification (or under-det ermination) issues.

The SSM includes here a Mont e Carlo simulation to eliminat e
random observations.
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3. One Issue: Heterogenous Agents, Time-ser ies Pr ice,
Defining the States of the Market

Two reasons to compare such model output agains t his t ory:

1. To choose better paramet er values, to "calibr ate" or
(more for mally) "estimat e" the model agains t the
his t orical record.

2. To choose the "best" model from a selection of
possible models (different str uctures, paramet er
values, etc)

We are int eres t ed in the second, having used machine
lear ning (t he GA) to der ive the model paramet ers in order to
improv e each agent ’s weekl y profits (instead of fitting to
his t ory) in our agent-based model.

Figure 1 shows His t orical data from a U.S. supermarket
chain’s sales of (heterogeneous) brands of sealed, ground
cof fee, by week in one city (Midgley et al. 1997).
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His t orical Data: Prices and Volumes in Chain 1
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Figure 1: Weekl y Sales and Prices (Source: Midgley et al. 1997)
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Stylised facts of the Historical data:

1. Much movement in the prices and volumes of four
strategic brands,

2. For these four (coloured) brands, high prices (and low
volumes) are punctuat ed by a low price (and a high
volume).

3. Another five (non-s trat egic) br ands exhibit stable
(high) prices and (low) volumes.

In addition, the competition is not open slather : the
super market chain imposes some res trictions on the timing
and identity of the discounting brands.
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A Model of Str ategic Inter action

We assume that the price Pbw of brand b in week w is a
function of the state of the market Mw −1 at week w − 1,
where Mw −1 in turn might be a product of the weekl y pr ices
Sw −j of all brands over several week s:

Pbw = fb (Mw −1) = fb (Sw −1 × Sw −2 × Sw −3
. . .)

Earlier in the research prog ram undertaken wit h David
Midg ley et al., we used the Genetic Algorit hm to search for
"bett er" (i.e. more profit able) br and-specific mappings, fb ,
from market state to pricing action.

And derived the paramet ers of the models, and derived their
simulat ed behaviour, as time-ser ies patt erns (below).
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Partitioning the Data

A cur se of dimensionality: each brand can price anywhere
between $1.50 and $3.40 per pound: 190 price points.
Consider three str agic br ands onl y.

The first coar sening:
Mark s (1998) explores partitioning while maximising
infor mation (using an entropy measure). Finds that
dichotomous partition is sufficient.

Here: use symmetric dichotomous partitioning: a brand’s
pr ice is labelled 0 if above its midpoint, else 1 below.

The second coarsening:
Consider three depths of memor y:
wit h 1-week memory, three brands, each pricing Low or
High: 23 = 8 possible states;
wit h 2-week memory: 82 = 64 possible state;
wit h 3-week memory: 642 = 512 possible states.
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Dichotomous Symmetric Price Par titioning of History
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Figure 2: Partitioned Weekl y Pr ices of the Four Chain-One Brands
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Example of a Simulated Oligopoly (Mark s et al. 1995)

Simulating riv alry between the three asymmetric brands: 1,
2, and 5, Folger s, Maxwell House, and Chock Full O Nuts.
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Figure 3: Example of a Simulated Oligopoly (Mark s et al. 1995)
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Three brands, one-week memory, 50 week s obser ved

Table 1 shows the observed dis tribution of states in the
His t orical Chain 1, and in the three models: 11, 26a, and 26b.

St ate His t ory Model 11 Model 26a Model 26b

000 32 0 30 20
001 2  18 11 10
01 0 6 15 3  7
011 1  0 0 0
100 7  16 5 12
101 0  0 0 0
11 0 2 0  1 1
111 0 1 0  0

To tal 50 50 50 50

So: how close are the three models to His t ory?

Table 1: The observed frequencies of the 8 states over 50
week s.
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4. The State Similar ity Measure (SSM)

The SSM method reduces the dimensionality of the historical
behaviour (and sometimes the model output too) by
par titioning the price line in order to der ive a measure of
similar ity or distance beween two sets.

Calculating the SSM:

1. Calculat e the weekl y st ates of the market : For each
set, partition the time-series {Pbw } of price Pbw of
br and b in week w int o {0,1}, where 0 cor responds to
"high" price and 1 corresponds to "low" price to
obt ain time-ser ies {P ′bw };

2. For the set of 3- or 4-brand time-series of brands ’
par titioned pr ices {P ′bw }, calculate the time-series of
the state of the market each week {Sw }, where
Sw = P ′1,w × P ′2,w

. . .;
For a 3-br and time series,
Sw = 4 × P ′1,w + 2 × P ′2,w + P ′3,w . Then constr uct the
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windowed states of the market. (Table 2.)

3. For each set, calculate the time-series of the state of
the 3- or 4-week moving window of par titioned pr ices
{Mw }, from the per-week states {Sw }, where
Mw = Sw × Sw −1 × Sw −2

. . .. For a 3-week window,
M3w = 64 × Sw + 8 × Sw −1 + Sw −2. (The powers of 8 are
because, with three brands, there are 8 possible states
of the market Sw each week .) For a 3-week memory,
there are 83 = 512 possible states.

4. Count the number s of each state Mw obser ved for the
set of time-series over the given time period; conve y
this by an n × 1 vect or pp, where ps ≥ 0 is the number
of observations of window state s ov er the period;
With T longitudinal observations the maximum SSM
dis tance apart of two sets of time series is
2 × (T −w + 1), where w is the number of week s
remembered. (This would happen when the two sets
are disjoint.)

< >
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Week B r a n d (P ′b ,w ) 1-Week 2-Week 3-Week
Red Pur ple Green ∴ Sw ∴ M2w ∴ M3w

18 0 0 0  0
19 0 0 0  0 0
20 0 0 0  0 0 0
21 1 0 0  4 32 256
22 0 1 0  2 20 160
23 1 0 0  4 34 276
24 1 1 0  6 52 418
25 0 0 1  1 14 116
26 0 0 0  0 1 14
27 0 0 0  0 0 1
28 0 1 0  2 16 128
29 1 0 0  4 34 272
30 1 1 0  6 52 418

Table 2: An example: three brands, 1-, 2-, and 3-week windows

5. Subtract the number of observations in set P of time-
ser ies from the number observed in set Q, across all n
possible states; DDPQ = pp − qq;
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6. Sum the absolut e values of the differences across all
possible states:

(2)d PQ
1 =Σ |p i − q i |.

This number d AB
1 is the dis tance between two time-

series sets P and Q, the SSM.
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SSM for three memory depths.

We hav e now calculat ed the six pairs of SSMs between the
three models and the Historical data (from History), using
50-week data ser ies: Table 3.

1-week 2-week 3-week
memor y memor y memor y

Pair

His t ory, Model 11 70 88 92
His t ory, Model 26a 18 36 54
His t ory, Model 26b 28 48 68
Model 11, Model 26a 62 76 88
Model 11, Model 26b 42 60 80
Model 26a, Model 26b 22 42 60

Remember : an SSM of zero means that the two sets of time
ser ies are identical; larger SSMs impl y less similarity. The
maximum SSM occurs when the inter section between the
st ates of the two sets of time series is null: here, this would
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be seen with an SSM of 100 (given that there are 50
obser vations per set of time series).

As the partitioning becomes finer (with deeper memory of
pas t actions), the SSMs increase as the two sets of time
ser ies become less similar. This should not sur pr ise us. We
also note that with these four sets of time series, the
rankings do not change wit h the depth of memor y: (from
closer to more dis tant) (History, Model 26a), (Model 26a,
Model 26b), (History, Model 26b), (Model 11, Model 26b),
(Model 11, Model 26a), and (History, Model 11).

Asking which of the three models is closest to the Historical
dat a of History, the SSM tells us that Model 26a is best,
followed by Model 26b, with Model 11 bringing up the rear.
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Results using the SSM

Having derived the distance between two sets of time-series
using the St ate Similarity Measure, by calculating the sum of
absolut e dif ferences in observed window states between the
two set, so what?

First, the great er the sum, the more dis tant the two sets of
time-ser ies.

Second, we can calculate the maximum size of the summed
dif ference: zero int ersection between the two sets (no states
in common) implies a measure of 2 × S where S is the
number of possible window states, from the data.

Third, we can derive some statis tics to show that any pair of
sets in not likel y to include random series. (In the Figure, * :
cannot reject the null at the 5% level.)
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SSM Distances Between Historical Chain 1 and Three Models

His t ory Model 11 Model 26a Model 26b

His t ory 0  92* 54 68
Model 11 92* 0 88* 80*

Model 26a 54 88* 0 60
Model 26b 68 80* 60 0

Table 5: Dis tances Between History and Three Models (with
3 Brands, 3-week memory)

Here, S, the maximum number of states = 48, so the
maximum distance apart is 96.

We see that Model 26a is closest to His t orical Chain 1, closer
than it is to Model 26b; we also see that Model 11 is ver y
dis tant from History, possibl y int o randomness.

Null Hypothesis: each of the two sets of time series is
random.
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Testing for Randomness

SSMs
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The red lines are the CMF of pairs of sets of random series (3
ser ies, 48 observations) from 100,000 Monte Carlo paramet er
boots traps.

The one-sided confidence inter val at 1% corresponds to a
SSM of 76, and at 5% 80.

Cannot reject the null hypothesis (random sets) for History
and Model 11; reject the null (random) hypothesis for all
ot her pairs.
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Conclusions — the SSM

The SSM is a true metric sufficient to allow us measure the
deg ree of similarity between two sets of time-series which
embody dynamic responses.

The SSM has been developed to allow us to measure the
extent to which a simulation model that has been chosen on
some other crit erion (e.g. weekl y profit ability) is similar to
his t orical sets of time-series.

The SSM will allow us to identify which of several models ’
outputs is closest to his t ory, to det ermine which model has
captured most infor mation of the historical time series.

Validation can be used to select the best simulation model.
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4. Three Measures of the Distance Between Sets of Time
Ser ies 4.a. Kullbac k-Leibler (K-L) Infor mation Loss

Based on Shannon (1948) entropy:

SE (p(x ) | x ∈ X ) = −Σ p(x ) log2(p(x ))

The K-L infor mation loss provides a measure of the
infor mation los t when model g is used to approximat e full
reality f :

(1)I (f , g ) =
k

i=1
Σ p i × log2




p i

πi




wit h full-reality f dis tribution 0 < p i < 1, and model g
dis tribution 0 < πi < 1, wit h Σ p i =Σ πi = 1.

Two shor tcomings: 1. in our data often πi × p i = 0 because
one or both is zero — bot h mus t be positive for K-L.

2. the K-L measure is not a true metr ic: it is not symmetr ical
and doesn’t satisfy the triang le inequality.
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4.c. The Generalized Hartley Measure (GHM)

Ralph Hartley (1928) showed that the only meaningful way
to measure the amount of uncertainty associated with a
finit e set E of possibilities from the larger (finite) set X is to
use a functional of the for m c logb

x ∈ X
Σ |E |, where b ≠ 1.

Specificall y,

H (rE ) = log2 |E | = log2
x ∈ X
Σ rE (x )

for measurement of H in bits, where the basic possibility
function rE ∈ {0, 1}.

No tes: (1) 0 ≤ H (E ) ≤ log2 |X |, for any E ∈ the pow er set
P (X ).

(2) If a given set of possible alter natives, E , is reduced by
the outcome of an action to a smaller set E ′ ⊂ E , then the
amount of infor mation I (A:E→E ′) gener ated by the action
A: E → E ′ is measure by the difference H (E ) − H (E ′).
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The Generalized Hartley Measure

Relax the "either/or" res triction on rE : allow r : X → [0, 1].

Klir (2006) provides proofs and proper ties of the GHM, and
notes that "possibility theor y is based on similarity".

St art wit h X = {x1,x2,
. . . , xn}, where r i denotes for each i ∈

NNn the possibility of x i .

Sor t the elements of X so that the possibility profile
r = < r1,r2,

. . . , rn > is ordered so that 1 = r1 ≥ r2 ≥ . . . ≥ rn , and
rn+1 = 0 by convention.

Then the GHM is given by:

(3)GHM (r) =
n

i=2
Σ (r i − r i+1) log2 i =

n

i=2
Σ r i log2




i

i − 1


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The Results using the GHM

Fr om Table 1 (one-week memory), we can reorder the
possibilities (observed frequencies) of the three models and
the his t orical data, to get the four reordered possibility
profiles:

r = < r1,r2,
. . . , rn >

History: 32 7 6 2 2 1 0 0
Model 11: 18 16 15 1 0 0 0 0
Model 26a: 30 11 5 3 1 0 0 0
Model 26b: 20 12 10 7 1 0 0 0
Table 4: Four possibility profiles (non-normalized * )

The GHMs for the three models and History hav e been
calculat ed for the three memories of 1 week, 2 week, and 3
week .

(* Nor malization here means r1 = 1, not Σ r i = 1.)
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GHMs for History (Chain 1) and 3 Models (Table 5)

1-week 2-week 3-week
memory memory memoryProcess

History (Chain 1) 0.386 0.495 0.782
Model 11 1.399 2.179 2.787
Model 26a 0.516 0.679 1.085
Model 26b 1.054 1.657 2.542

These are true metr ics (t hey satisfy the triang le inequality,
unlike the K-L infor mation loss), and so we can compare the
dif ferences between the four measures.

We readil y see that Model 26a (0.516) is closes t to the
His t orical data of Chain 1 (0.386); next is Model 26b (1.054),
wit h Model 11 (1.399) furthes t from the historical data.

Moreover, we see that Model 26a is closer to the Historical
Chain 1 data than it is to Model 26b.
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