IEEE SSCI 2013 R.E. Marks 2013

Page 1

Validation and Model Selection

Robert Marks,
Economics, UNSVW, Sydney, and
the University of Melbourne

robert.marks@gmail.com




IEEE SSCI 2013 R.E. Marks 2013 Page 2

Outline
I. Validation and Model Selection

2. One Issue: Heterogeneous Agents, Sets of Time-series
of Prices, Defining the States of the Market

3. A Measure of the Distance Between Sets of Time-
Series:
The State Similarity Measure (SSM)

4. The Results

5. Conclusions
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Two Kinds of ABM

We can think of two kinds of ABM:

demonstrative ABM models

These models demonstrate principles, rather than
tracking historical phenomena. A demonstrative ABM
is an existence proof.

Examples: Schelling’s Segregation Game, my Boys and
Girls NetLogo model, my Emergence of Risk
Neutrality, and others

descriptive ABM models.

These models attempt to derive sufficient conditions
to match historical phenomena, as reflected in
historical data. This requires validation (model
choice).

Examples: Midgley et al. modelling brand rivalry, alife
models, etc
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2. Validation and Model Selection
"All models are wrong, but some are useful” — Box (1976).

Previously, validation (as the name suggests): validating a
model as "close"” to historical reality, in some way — models
are approximations, so the comparison dimension must be a
function of the model’s purpose.

But Anderson & Burnham (2002) make a strong case for
validation as model selection: for the researcher generating a
selection of models, and choosing the model which loses the
least information compared to reality (the Historical data).

How to select a "best approximating model" from the set?
Anderson & Burnham review and use Akaike’s information
criterion (AIC).
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Akaike’s Information Criterion (AIC)

Considering AIC to be an extension of R. A. Fisher’s
likelihood theory, Akaike (1973) found a simple relationship
between Kullback-Leibler "distance” or "information” and
Fisher’s maximized log-likelihood function.

This leads to very general methodology for selecting a
parsimonious approximating model.

Can think of modelling as being directed towards finding a
good approximating model of the information encoded in the
empirical, historical data.

Information about the process under study exists in the data.
Want to express this information in a model: more compact,
and understandable.

The role of a good model is to filter the historical data so as
to separate information from noise.
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A new technique: SSM

We outline a new technique, the State Similarity Measure,
for tackling the fourth core issue of Fagiolo et al. (2007):
validating agent-based models using historical data.

Compared to their three methods (indirect calibration, the
Werker-Brenner approach, and the history-friendly
approach), SMM focusses on:

— the micro-level output

— an empirical comparison of model output v. history

— leading to a choice of model that best fits, to resolve
any identification (or under-determination) issues.

The SSM includes here a Monte Carlo simulation to eliminate
random observations.




IEEE SSCI 2013 R.E. Marks 2013 Page 7

3. One Issue: Heterogenous Agents, Time-series Price,
Defining the States of the Market

Two reasons to compare such model output against history:

I. To choose better parameter values, to "calibrate” or
(more formally) "estimate” the model against the
historical record.

2. To choose the "best” model from a selection of
possible models (different structures, parameter
values, etc)

We are interested in the second, having used machine
learning (the GA) to derive the model parameters in order to
improve each agent’s weekly profits (instead of fitting to
history) in our agent-based model.

Figure | shows Historical data from a U.S. supermarket
chain’s sales of (heterogeneous) brands of sealed, ground
coffee, by week in one city (Midgley et al. 1997).
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Historical Data: Prices and Volumes in Chain I
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Figure I1: Weekly Sales and Prices (Source: Midgley et al. 1997)
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Stylised facts of the Historical data:

I. Much movement in the prices and volumes of four
strategic brands,

2. For these four (coloured) brands, high prices (and low
volumes) are punctuated by a low price (and a high
volume).

3. Another five (non-strategic) brands exhibit stable
(high) prices and (low) volumes.

In addition, the competition is not open slather: the
supermarket chain imposes some restrictions on the timing
and identity of the discounting brands.
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A Model of Strategic Interaction

We assume that the price P, of brand b in week w is a
function of the state of the market M,,_;, at weekw —1,
where M,,_, in turn might be a product of the weekly prices
S.-; of all brands over several weeks:

wa — fb(Mw—l) — fb(Sw—l X Sw—z X Sw—S o )

Earlier in the research program undertaken with David
Midgley et al., we used the Genetic Algorithm to search for
"better" (i.e. more profitable) brand-specific mappings, f, ,
from market state to pricing action.

And derived the parameters of the models, and derived their
simulated behaviour, as time-series patterns (below).
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Partitioning the Data

A curse of dimensionality: each brand can price anywhere
between $1.50 and $3.40 per pound: 190 price points.
Consider three stragic brands only.

The first coarsening:

Marks (1998) explores partitioning while maximising
information (using an entropy measure). Finds that
dichotomous partition is sufficient.

Here: use symmetric dichotomous partitioning: a brand’s
price is labelled 0 if above its midpoint, else | below.

The second coarsening:

Consider three depths of memory:

with 1-week memory, three brands, each pricing Low or
High: 2° = 8 possible states;

with 2-week memory: 8° = 64 possible state;

with 3-week memory: 64° = 512 possible states.
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Dichotomous Symmetric Price Partitioning of History
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Figure 2: Partitioned Weekly Prices of the Four Chain-One Brands
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Example of a Simulated Oligopoly (Marks et al. 1995)

Simulating rivalry between the three asymmetric brands: I,
2, and 5, Folgers, Maxwell House, and Chock Full O Nuts.

3
2.5
0 /\ 9 /\ 7 9 /\ 9
ZNWON W YW N WY
l‘s | | | |

10 20 30 40 50
Week

Figure 3: Example of a Simulated Oligopoly (Marks et al. 1995)




IEEE SSCI 2013

R.E. Marks 2013

Page 14

Three brands, one-week memory, 50 weeks observed

Table | shows the observed distribution of states in the
Historical Chain I, and in the three models: 11, 26a, and 26b.

State History Model I Model 26a  Model 26b
000 32 0 30 20
001 2 18 11 10
010 6 15 3 7
oIl I 0 0 0
100 [4 16 5 12
101 0 0 0 0
110 2 0 I I
11 0 I 0 0
Total 50 50 50 50

So: how close are the three models to History?

Table I: The observed frequencies of the 8 states over 50

weeks.
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4. The State Similarity Measure (SSM)

The SSM method reduces the dimensionality of the historical
behaviour (and sometimes the model output too) by
partitioning the price line in order to derive a measure of
similarity or distance beween two sets.

Calculating the SSM:

Calculate the weekly states of the market: For each
set, partition the time-series {P,, } of price P, of
brand b in week w into {0,1}, where 0 corresponds to
"high" price and | corresponds to "low" price to
obtain time-series {P',, };

For the set of 3- or 4-brand time-series of brands’
partitioned prices {P',, }, calculate the time-series of
the state of the market each week {S, }, where

SW - PIl,W X PIZ,W Tt

For a 3-brand time series,

Sw =4%xP'y, +2%xP',, +P';,. Then construct the
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windowed states of the market. (Table 2.)

3. For each set, calculate the time-series of the state of
the 3- or 4-week moving window of partitioned prices
{M,, }, from the per-week states {S,}, where
M, =S, XS,-1 XS, . For a 3-week window,

M,, =64XxS, +8%XS,,+S,_,. (The powers of 8 are
because, with three brands, there are 8 possible states
of the market S, each week.) For a 3-week memory,
there are 8° = 512 possible states.

4. Count the numbers of each state M,, observed for the
set of time-series over the given time period; convey
this by an n x 1 vector p, where p, = 0 is the number
of observations of window state s over the period;
With T longitudinal observations the maximum SSM
distance apart of two sets of time series is
2 X (T —w +1), where w is the number of weeks
remembered. (This would happen when the two sets
are disjoint.)
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Week Brand (P,,) 1-Week 2-Week 3-Week
Red Purple s, I M, (1 Mg,

18 0 0 0 0
19 0 0 0 0 0
20 0 0 0 0 0 0
21 I 0 0 4 32 256
22 0 | 0 2 20 160
23 I 0 0 4 34 276
24 I I 0 6 52 418
25 0 0 | I 14 116
26 0 0 0 0 I 14
27 0 0 0 0 0 I
28 0 | 0 2 16 128
29 I 0 0 4 34 272
30 I I 0 6 52 418

Table 2: An example: three brands, I-, 2-, and 3-week windows

5. Subtract the number of observations in set P of time-
series from the number observed in set Q, across all n
possible states; D™ =p —q;
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6. Sum the absolute values of the differences across all
possible states:

dpo:Zlei_qil- (2)

This number d;° is the distance between two time-
series sets P and Q, the SSM.
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SSM for three memory depths.

We have now calculated the six pairs of SSMs between the
three models and the Historical data (from History), using
50-week data series: Table 3.

I-week 2-week 3-week

Pair memory memory memory
History, Model 11 70 88 92
History, Model 26a 18 36 54
History, Model 26b 28 48 68
Model 11, Model 26a 62 76 88
Model 11, Model 26b 42 60 80
Model 26a, Model 26b 22 42 60

Remember: an SSM of zero means that the two sets of time
series are identical; larger SSMs imply less similarity. The
maximum SSM occurs when the intersection between the
states of the two sets of time series is null: here, this would
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be seen with an SSM of 100 (given that there are 50
observations per set of time series).

As the partitioning becomes finer (with deeper memory of
past actions), the SSMs increase as the two sets of time
series become less similar. This should not surprise us. We
also note that with these four sets of time series, the
rankings do not change with the depth of memory: (from
closer to more distant) (History, Model 26a), (Model 26a,
Model 26b), (History, Model 26b), (Model 11, Model 26b),
(Model 11, Model 26a), and (History, Model I1).

Asking which of the three models is closest to the Historical
data of History, the SSM tells us that Model 26a is best,
followed by Model 26b, with Model 11 bringing up the rear.
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Results using the SSM

Having derived the distance between two sets of time-series
using the State Similarity Measure, by calculating the sum of

absolute differences in observed window states between the
two set, so what?

First, the greater the sum, the more distant the two sets of
time-series.

Second, we can calculate the maximum size of the summed
difference: zero intersection between the two sets (no states
in common) implies a measure of 2 XS where S is the
number of possible window states, from the data.

Third, we can derive some statistics to show that any pair of
sets in not likely to include random series. (In the Figure, * :
cannot reject the null at the 5% level.)
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SSM Distances Between Historical Chain 1 and Three Models

History Model Il Model 26a Model 26b

History 0 92* 54 68
Model 11 92* 0 88* 80*

Model 26a 54 88* 0 60

Model 26b 68 80* 60 0

Table 5: Distances Between History and Three Models (with
3 Brands, 3-week memory)

Here, S, the maximum number of states = 48, so the
maximum distance apart is 96.

We see that Model 26a is closest to Historical Chain I, closer
than it is to Model 26b; we also see that Model I1 is very
distant from History, possibly into randomness.

Null Hypothesis: each of the two sets of time series is
random.
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Testing for Randomness
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The red lines are the CMF of pairs of sets of random series (3
series, 48 observations) from 100,000 Monte Carlo parameter
bootstraps.

The one-sided confidence interval at 1% corresponds to a
SSM of 76, and at 5% 80.

Cannot reject the null hypothesis (random sets) for History
and Model 11; reject the null (random) hypothesis for all
other pairs.
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Conclusions — the SSM

The SSM is a true metric sufficient to allow us measure the
degree of similarity between two sets of time-series which
embody dynamic responses.

The SSM has been developed to allow us to measure the
extent to which a simulation model that has been chosen on
some other criterion (e.g. weekly profitability) is similar to
historical sets of time-series.

The SSM will allow us to identify which of several models’
outputs is closest to history, to determine which model has
captured most information of the historical time series.

Validation can be used to select the best simulation model.
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4. Three Measures of the Distance Between Sets of Time
Series 4.a. Kullback-Leibler (K-L) Information Loss

Based on Shannon (1948) entropy:
SE (p(x) | x LX) = =3 p(x)log,(p(x))

The K-L information loss provides a measure of the
information lost when model g is used to approximate full

reality f: k i O
IF,g)= X p; x|
(f.9) é‘{ P; #1049, D‘L’ B

with full-reality f distribution 0 < p; < I, and model g
distribution 0 < 77, < I, with }'p, = ¥ 7, = 1.

(1)

Two shortcomings: 1. in our data often 77, X p, = 0 because
one or both is zero — both must be positive for K-L.

2. the K-L measure is not a true metric: it is not symmetrical
and doesn’t satisfy the triangle inequality.
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4.c. The Generalized Hartley Measure (GHM)

Ralph Hartley (1928) showed that the only meaningful way
to measure the amount of uncertainty associated with a
finite set E of possibilities from the larger (finite) set X is to
use a functional of the form c log, Y |[E|, where b # 1.
Specifically, x LX

H(rg) =log, [E| =logy, Y re(x)

x X

for measurement of H in bits, where the basic possibility
function r [1{0, 1}.

Notes: (1) 0 < H(E) <log, |X|, for any E []the power set
P(X).

(2) If a given set of possible alternatives, E, is reduced by
the outcome of an action to a smaller set E' L1 E, then the
amount of information | , - . generated by the action
A:E - E'is measure by the difference H(E) —H(E").
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The Generalized Hartley Measure

Relax the "either/or"” restriction on r.: allowr : X - [0, 1].

Klir (2006) provides proofs and properties of the GHM, and
notes that "possibility theory is based on similarity" .

Start with X ={x,x, ---,x,}, where r; denotes for each i [
N, the possibility of x;.
Sort the elements of X so that the possibility profile

r=<rqr, -, r, >is ordered so that 1 =r, 2r, >--->r,, and
r,+; = 0 by convention.

Then the GHM is given by:

O O

GHM(r) = Z(I’ —ri+1) 1001 —Er |092D 10 (3)
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The Results using the GHM

From Table | (one-week memory), we can reorder the
possibilities (observed frequencies) of the three models and
the historical data, to get the four reordered possibility
profiles:

F=<ryfy---,r, >

History: 32 7 6 2
Model 11: 18 16 15 1
Model 26a: 30 11 5 3
Model 26b: 20 12 10 7

Table 4: Four possibility profiles (non-normalized *

The GHMs for the three models and History have been
calculated for the three memories of 1 week, 2 week, and 3
week.

PR ON
OO
eYoloNe

ol loooo

(* Normalization here meansr, =1, not ¥'r; = 1.)
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GHMs for History (Chain 1) and 3 Models (Table 5)

1-week 2-week 3-week
memory memory memory
History (Chain 1) 0.386 0.495 0.782

Process

Model 11 1.399 2.179 2.787
Model 26a 0.516 0.679 1.085
Model 26b 1.054 1.657 2.542

These are true metrics (they satisfy the triangle inequality,
unlike the K-L information loss), and so we can compare the
differences between the four measures.

We readily see that Model 26a (0.516) is closest to the
Historical data of Chain I (0.386); next is Model 26b (1.054),
with Model 11 (1.399) furthest from the historical data.

Moreover, we see that Model 26a is closer to the Historical
Chain | data than it is to Model 26b.




