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1. Introduction

Comput er scientis ts are concer ned wit h finding solutions to
issues such as market design, whereas —

Social scientists in gener al and economists in particular have
been concerned with explaining and predicting social
phenomena. (Marks 2012)

(This is also true of other scientists, such as ALIFE researcher s
(Bentley 2013) and this year ’s Chemis try Nobel laureat es, who
use simulations to model real-world phenomena.)

Both of these approaches demand sufficiency, but scientists (or
at any rat e economis ts) also want necessity (its impor tance is
moot):

No t jus t: “This is a solution”

but also: “This is the set of all possible solutions.”
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Tr aditional Economic Methods

A cer tain logic:

• obser ve a real-world phenomenon

• identify a need to explain and underst and it

• build a methematical, closed-for m model, with simplifying
assumptions to allow its solution

• manipulat e the model to obt ain suf ficient and necessary
conditions for the observed phenomenon

• perhaps relax a simplifying assumption or two and ask
how the model changes

This has focussed on equilibr ia or steady-s tat es, precluding
study of out-of-equiibr ium or dynamic phenomena.

Simulation can overcome these res trictions, but at a cost.
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Judd’s ideas (2006)

“Far better an approximat e answer to the right ques tion ... than
an exact answer to the wrong ques tion.”

— John Tukey, 1962.

That is, economists face a tradeof f between:

the numer ical er ror s of comput ational work
and

the specification errors of anal yticall y tr act able models.

And perhaps also between: sufficiency and necessity.
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2. Suf ficiency and Necessity

Simulations demonstr ate: exis tence and suf ficiency,

but only in cer tain circums tances necessity.

Simulations can demonstr ate the untrut h of a proposition,

but not provide proofs or theorems,

simulations cannot provide gener ality.

What, never?

Does this matter?
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Formal Simulation

Mat hematical “model A” compr ises the conjunction
(a1∧ a2∧ a3

. . .∧ an), where ∧ means “AND”, and the a i denote
the elements (equations, paramet ers, initial conditions, etc)
that constitut e the model.

Suf ficiency: If model A exhibits the desired target behaviour B,
then model A is sufficient to obt ain exhibit ed behaviour B:
A ⇒ B

Thus, any model that exhibits the desired behaviour is
suf ficient, and demonstr ates one conjunction of conditions (or
model, or solution) under which the behaviour can be
simulat ed.

But if there are several such models, how can we choose among
them? And what is the necessary set N of all such conjunctions
(models)?
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Necessity

Necessity : Onl y those models A belonging to the set of
necessar y models N exhibit target behaviour B.

That is, (A ∈ N ) ⇒ B, and (D ∉ N ) ⇒ ⁄ B.

A hard challenge: to det ermine the set of necessary models, N.

Since each model is not simple: A = (a1∧ a2∧ a3
. . .∧ an), searching

for the set N of necessary models means searching in a high-
dimensional space, with no guar antee of continuity, and a
possible large number of non-linear inter actions among
elements.

Explanation could be aided from examination of what the
models in the necessary set N have in common.
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Lac k of Necessity Means ...

For ins tance, if D ⇒ ⁄ B, it does not mean that all elements a i of
model D are inv alid or wrong, only their conjunction, that is,
model D.

It might be only a sing le element ak that precludes model D
exhibiting behaviour B.

But deter mining whet her this is so and which is the offending
element ak is a costl y exercise, in gener al, for the simulator.

Without clear knowledge of the boundaries of the set N of
necessar y models, it is difficult to gener alise from simulations.
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Simulation Can Sometimes Demonstr ate Necessity . . .

Onl y when the set N of necessary models is known to be small
(such as in the case of DNA str ucture in 1953 when Watson &
Cr ick were searching for it) is it relativel y easy to use simulation
to der ive necessity.

Watson & Cric k had much infor mation about the proper ties of
DNA (from other s):

when they hit on the simulation we know as the “double
helix”, they knew it was right.

But still “A structure ...”, not “The structure” in the title of
their 1953 Nature paper.

(And Kepler ’s 1605 ellipses v. Ptolomy’s epicycles?)

< >



ESHIA Wint er Work shop R.E. Marks 2013 Page 12

Verification & Validation — “Assur ance”

Verification (or inter nal validity): is the simulation working as
you want it to:

— is it “doing the thing right?”

Validation: is the model used in the simulation correct?

— is it “doing the right thing?”

To Ver ify: use a suite of tes ts, and run them every time you
change the simulation code — to ver ify the changes have not
introduced extr a bugs.

See: D.F. Midg ley, Mark s R.E., and Kunchamwar D. (2007)
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3. Validation

For whom?

With reg ard to what?

A good simulation is one that achieves its goals:

• to explore

• to predict

• to explain
Or

• what is?

• what could be?

• what should be?
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Validation

To the ext ent that the social sciences are concer ned wit h real-
world, historical phenomena,

any simulations must be ver ified (no bugs) and validat ed (does
the model provide behaviour which matches the sty lised facts
of the historical phenomenon?)

Midg ley et al: ver ification + validation = assurance

Bac k-predictions.

Doc king.
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Agent-Based Models → Gener ative Explanation:

Gener ative explanation (Epstein 2006):

“If you haven’ t grown it, you haven’ t explained its
emergence.”
(But does growt h ⇒ explanation?)

To answer : how could the autonomous, local inter actions of
het erogeneous boundedly rational agents gener ate the observed
regular ity (t hat emerges)?

— Gener ative suf ficiency is a necessary but not suf ficient
condition for explanation. Each realisation is a str ict deduction.

Grüne-Yanof f (2006) argues to dis tinguish functional
explanations (easier for simulator s) from causal explanations
(much less achievable for social scientists).
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Prediction

Prediction only requires sufficiency, not necessity.

Two recent examples of using simulation models to predict :

1. Katie Bentley and associates built an AB model of
angiogenesis, which turned out to predict behaviour in
silico never before seen in vivo, but later observed
(Bentley et al. 2009, 2013).

2. The 2013 Nobel Prize for Chemistr y was awarded for
work in the simulation of chemical reactions, using both
classical and quantum mechanisms, which has made it
possible to “optimize catal ysts, drugs, and solar cells.”
(R oyal Academy 2013).

Cor rect prediction ⇒ validity, but may be too str ict.
See Troitzsch (2004) and Hassan et al. (2013).
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Validation

Moss & Edmonds (2005): for AB models at least two stages of
empir ical validation.

1. the micro-v alidation of the behaviour of the individual
agents in the model, by reference to dat a on individual
behaviour.

2. macrov alidation of the model’s agg reg ate or emergent
behaviour when individual agents inter act, by reference
to agg reg ate time series.

wit h the emergence of novel behaviour, possible surpr ise
and possible highly non-s tandard behaviour, dif ficult to
verify using standard statis tical met hods.

∴ onl y qualit ative validation judgments might be
possible.
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Formalisation of Validation , Outputs Graphicall y ...

(a)

H

M

(b)

H Q M

(e)

H M Q

(c)

H M Q

(d)

M H Q

Figure 2: Validity relationships (from Marks 2007).

a. useless
b. useful, but incomplet e and inaccurat e
c. accurat e but incomplet e
d. complet e but inaccurat e ← possibl y the bes t to aim for
e. complet e and accurat e
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Modelling Goals

One goal: to cons truct and calibrat e the model so that Case e:

M ≈ Q ≈ H : there are ver y few his t oricall y obser ved behaviour s
that the model does not exhibit,

and there are ver y few exhibit ed behaviour s that do not occur
his t oricall y.

The model is close to being both complet e and accurat e.

In practice, a modeller might be happier to achieve Case d.,
where the model is complet e (and hence provides sufficiency
for all observed his t orical phenomena), but not accur ate.

No t leas t to accommodat e lat er real-world observations.
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Fagiolo et al. (2007) on Validation of AB Models

AB models can be charact erized as:

• bott om-up models (unlike e.g. Systems Dynamics
simulation models, or closed-for m models)

• het erogeneous agents (endowments, proper ties, memor y,
rationality, etc.)

• boundedl y rational, usually wit h adaptive expect ations

• networked direct inter actions.

Closer to dynamic, decentralized markets and economies than
tr aditional models.
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Fagiolo 2

And yet marked reluct ance to use AB models. Why? Four key
problems:

1. no common set of the heterogeneous AB models
previousl y developed

2. (hence) lac k of compar ability across these models
wit h high degrees of freedom, hence a wide range of
outputs, toget her wit h lac k of necessity.

3. lack of standard techniques for constr ucting and
anal yzing AB models, but see Grimm et al. (2010),

4. the “problematic” relationship between AB models and
empir ical dat a ← this is validation.

And see Waldher r and Wijer mans (2013) for further on this.
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Fagiolo 3 — Issues with Empir ical Validation

Compar ing his t orical data wit h gener ated outputs.

1. The world is comple x: a trade-of f between comple xity in
modelling (“concretization”) and reductionism
(“isolation”): where to draw the line in modelling?
Realism v. tract ability.

2. Friedman (1953) argued that realism was not necessar y
so long as the output allowed accur ate prediction
(“ins trument alism”), but other s seek realism in the
model and its assumptions as well as accuracy.

3. How wedded should the modeller be to a prior i
assumptions (about the goals of agents, say)? Or should
all aspects of the model be available (“pluralism”)?

4. Impor tantl y: how to choose which of several models is
bes t (t he “identification” or “under-det ermination”
problem). ← our later focus
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Fagiolo 4

Three alter native approaches:

1. the indirect calibration approach

2. the Werker-Brenner approach

3. the history-fr iendly approach, and

And the four th, our

4. the State Similar ity Measure (Mark s 2013)

< >



ESHIA Wint er Work shop R.E. Marks 2013 Page 24

Two Kinds of ABM

We can think of two kinds of ABM:

1. demons trative ABM models

These models demonstr ate principles, rat her than
tr acking historical phenomena. A demons trative ABM is
an exis t ence proof.
Examples: Schelling’s Seg reg ation Game, my Boy s and
Girls NetLogo model, my Emergence of Risk Neutr ality,
and other s

2. descriptive ABM models.

These models attempt to der ive suf ficient conditions to
match historical phenomena, as reflect ed in historical
dat a. This requires validation (model choice). Ideall y,
to predict.
Examples: Midgley et al. modelling brand riv alry, ALIFE
models, etc
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4. Validation as Model Selection

“All models are wrong, but some are useful” — Box (19 76).

“Are the models wrong in way s that are centr al to the
ques tions you want to ask, or are they wrong in way s that
aren’t so centr al?” Lar s Hansen, Nobel Economics Laureat e
2013.

Ander son & Bur nham (2002) make a strong case for validation
as model selection: for the researcher gener ating a selection of
models, and choosing the model which loses the least
infor mation compared to reality (the Historical data).

How to select a “best approximating model” from the set?
Ander son & Bur nham review and use Akaike’s infor mation
cr iter ion (AIC).
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Ak aike’s Infor mation Cr iter ion (AIC)

Consider ing AIC to be an ext ension of R. A. Fisher ’s likelihood
theor y, Akaike (19 73) found a simple relationship between
Kullbac k-Leibler “distance” or “infor mation” and Fisher ’s
maximized log-likelihood function.

→ very gener al met hodology for selecting a parsimonious
approximating model.

Can think of modelling as being direct ed towards finding a good
approximating model of the infor mation encoded in the
empir ical, his t orical data.

Infor mation about the process under study exis ts in the data.
Want to express this infor mation in a model: more compact,
and underst andable.

The role of a good model is to filt er the his t orical data so as to
separ ate infor mation from noise.
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A new technique: the State Similar ity Measure

Our new technique, the State Similar ity Measure (SSM), tac kles
the four th core issue of Fagiolo et al. (2007): validating agent-
based models using historical data. (Marks 2013).

Compared to their three methods (indirect calibration, the
Werker-Brenner approach, and the history-fr iendly approach),
SSM focusses on:

— the micro-level output

— an empir ical compar ison of model output v. his t ory

— leading to a choice of model that best fits, to resol ve any
identification (or under-det ermination) issues.

The SSM can include a Monte Carlo simulation to eliminat e
random observations (Marks 2014).

< >



ESHIA Wint er Work shop R.E. Marks 2013 Page 28

One issue: heterogenous agents, time-series price, defining the
st ates of the market

Two reasons to compare such model output agains t his t ory:

1. To choose better paramet er values, to “calibr ate” or
(more for mally) “estimat e” the model agains t the
his t orical record.

2. To choose the “best” model from a selection of possible
models (different str uctures, paramet er values, etc)

We are int eres t ed in the second, having used machine learning
(t he GA) to calibr ate the model paramet ers in order to improve
each agent ’s weekl y profits (instead of fitting to his t ory) in our
agent-based model.

Figure 1 shows His t orical data from a U.S. supermarket chain’s
sales of (heterogeneous) brands of sealed, ground coffee, by
week in one city (Midgley et al. 1997).
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His t orical Data: Prices and Volumes in Chain 1
$
/l

b
lb

/w
eek

2000

4000

2.00

3.00

20 40 60 80

Figure 1: Weekl y Sales and Prices (Source: Midgley et al. 1997)
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Stylised facts of the Historical data:

1. Much movement in the inter active prices and volumes of
four str ategic brands,

2. For these four (coloured) brands, high prices (and low
volumes) are punctuat ed by a low price (and a high
volume).

3. Another five (non-s trat egic) br ands exhibit stable (high)
pr ices and (low) volumes.

In addition, the competition is not open slather : the
super market chain imposes some res trictions on the timing and
identity of the discounting brands.
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A Model of Str ategic Inter action

We assume that the price Pbw of brand b in week w is a
function of the state of the market Mw −1 at week w − 1, where
Mw −1 in turn might be a product of the weekl y pr ices Sw −j of all
br ands ov er several week s:

Pbw = fb (Mw −1) = fb (Sw −1 × Sw −2 × Sw −3
. . .)

Earlier in the research prog ram undertaken wit h Midg ley et al.,
we used the Genetic Algorit hm to search for “better” (i.e. more
profit able) br and-specific mappings, fb , from market state to
pr icing action.

And derived the paramet ers of the models, and derived their
simulat ed behaviour, as time-ser ies patt erns (below).
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Partitioning the Data

A cur se of dimensionality: each brand can price anywhere
between $1.50 and $3.40 per pound: 190 price points. Consider
three str agic br ands onl y.

The first coar sening:
Mark s (1998) explores partitioning while maximising
infor mation (using an entropy measure). Finds that
dichotomous partition is sufficient.

Here: use symmetric dichotomous partitioning: a brand’s price is
labelled 0 if above its midpoint, else 1 below.

The second coarsening:
Consider three depths of memor y:
wit h 1-week memory, three brands, each pricing Low or High:
2

3 = 8 possible states;
wit h 2-week memory: 8

2 = 64 possible state;
wit h 3-week memory: 64

2 = 512 possible states.
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Dichotomous Symmetric Price Par titioning of History

$
/l

b

2.00

3.00

20 40 60 80

Figure 2: Partitioned Historical Prices of the Four Chain-One Brands

< >



ESHIA Wint er Work shop R.E. Marks 2013 Page 34

Example of a Simulated Oligopoly (Mark s et al. 1995)

Simulating riv alry between the three asymmetric brands: 1,
2, and 5, Folger s, Maxwell House, and Chock Full O Nuts.

Week

$
/l

b

10 20 30 40 50
1.5

2

2.5

3

Figure 3: Example of a Simulated Oligopoly (Mark s et al. 1995)
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Three brands, one-week memory, 50 week s obser ved

Table 1 shows the observed dis tribution of states in the
His t orical Chain 1, and in the three models: 11, 26a, and 26b.

State History Model 11 Model 26a Model 26b

000 32 0 30 20
001 2 18 11 10
010 6 15 3 7
011 1 0 0  0
100 7 16 5 12
101 0 0 0  0
110 2 0 1  1
111 0 1 0  0

Total 50 50 50 50

So: how close are the three models to History?

Table 1: The observed frequencies of the 8 states over 50
week s.
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Results using the SSM

We der ive the distance between two sets of time-series using
the SSM by calculating the sum of absolute dif ferences (city-
bloc k metr ic) in observed window states between the two set.
(We include three brands and three-week memory.) So what?

First, the great er the sum, the more dis tant the two sets of
time-ser ies.

Second, we can calculate the maximum size of the summed
dif ference: zero int ersection between the two sets (no states in
common) implies a measure of 2 × S where S is the number of
possible window states, from the data.

Third, we can derive some statis tics to show that any pair of
sets in not likel y to include random series.
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SSM Distances Between Historical Chain 1 and Three Models

His t ory Model 11 Model 26a Model 26b

His t ory 0  92* 54 68
Model 11 92* 0 88* 80*

Model 26a 54 88* 0 60
Model 26b 68 80* 60 0

Table 5: Dis tances Between History and Three Models (with 3
Br ands, 3-week memory)

Here, S, the maximum number of states = 48, so the maximum
dis tance apart is 96.

We see that Model 26a is closest to His t orical Chain 1, closer
than it is to Model 26b; we also see that Model 11 is ver y
dis tant from History, possibl y int o randomness.

Null Hypothesis: each of the two sets of time series is random.
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Testing for Randomness

SSMs

C
M

F

40 50 60 70 80 90

0

0.25

0.5

0.75

1 H,11H,a
11 ,a

11 ,ba,b H,b

• • • • • • • • •
•

•

•

•

•

•
• •

The red lines are the CMF of pairs of sets of random series (3
ser ies, 48 observations) from 100,000 Monte Carlo paramet er
boots traps.

The one-sided confidence inter val at 1% corresponds to a SSM
of 76, and at 5% 80.

Cannot reject the null hypothesis (random sets) for History and
Model 11; reject the null (random) hypothesis for all other pairs.
(In the Figure, * : cannot reject the null at the 5% level.)
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Conclusions — the SSM

The SSM is a true metric sufficient to allow us measure the
deg ree of similarity between two se ts of time-series which
embody dynamic responses.

The SSM has been developed to allow us to measure the ext ent
to which a simulation model that has been calibrat ed on some
ot her crit erion (e.g. weekl y profit ability) is similar to his t orical
sets of time-series.

The SSM will allow us to identify which of several models ’
outputs is closest to his t ory, to det ermine which model has
captured most infor mation of the historical time series.

Validation can be used to select the best simulation model.
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