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Abstract: This chapter discusses the issue of choosing the best computer model for simu-

lating a real-world phenomenon through the process of validating the model’s output against

the historical, real-world data. Four families of techniques are discussed that are used in the

context of validation. One is based on the comparison of statistical summaries of the historical

data and the model output. The second is used where the models and data are stochastic, and

distributions of variables must be compared, and a metric used to measure their closeness.

After exploring the desirable properties of such a measure, the paper compares the third and

fourth methods (from information theory) of measuring closeness of patterns, using an exam-

ple from strategic market competition. The techniques can, however, be used for validating

computer models in any domain.⋆

Keywords: model validation, State Similarity Measure, Area Validation Metric, Generalized

Hartley metric.

1. Introduction

Validation of a computer model broadly means determining whether the model is

behaving as expected, given the modeller’s knowledge of the real-world phenomenon

being modelled; validating can aid in the choice of the best model, as discussed below.

This chapter uses the example of agent-based models. Agent-based computer simula-

tions (or multi-agent systems) are a special case of computer simulations which model

autonomous or semi-autonomous rule-based agents dynamically interacting out of equi-

librium, for the purpose of observing the emergence of patterns of behaviour at the micro

(agent) level or at a higher, macro (group) level which might not otherwise be predicted.1

For agent-based models, validation poses special issues since the emergent behaviour of

such models might be previously unobserved or unexpected. This chapter explains tech-

⋆ To appear in Beisbart, Claus, and Nicole J. Saam (eds.), Computer Simulation Validation. Fundamental

Concepts, Methodological Frameworks, Philosophical Perspectives Cham: Springer International Pub-

lishing.
1 For an overview of types of computer simulation modelling, see Gilbert & Troitzsch (2005).
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niques of validation for such models, in particular the choice of a validation metric.2

But the metrics to be discussed below are applicable in principle to validation of com-

puter models against observed data — time series or cross-sectional — of applications

in many fields in engineering, science, computer science, or the social sciences. Indeed,

any phenomenon in which one set of multivariate variables is compared against another,

time-series or cross section.3

Chapter 30 by Fagiolo et al. in this volume presents a clear overview of validation

of agent-based simulation models.4 They remark that there are many kinds of valida-

tion or validity: e.g. output validation, structural validation, theoretical validity, model

validity, and operational validity. The simulation model is an attempt to include the rele-

vant variables in a mechanism to reflect the behaviour and hopefully to explain the phe-

nomenon being examined. The phenomenon exhibits a certain (historical) behaviour; the

simulation model can generate simulated behaviour. How closely the simulation model’s

behaviour reflects the observed behaviour is one measure of how well the simulation

model reflects the phenomenon being modelled (output validation). Another is to iden-

tify the causal structures underlying the real-world phenomenon, as revealed in the his-

torical data, and to compare them with the causal structures of the simulation model or

models. This chapter focuses on output validation, asking how well do the model data

track existing real-world data, possibly micro (at the agent level), possibly macro (at the

aggregate level).5

In this chapter, four broad families of measures that can be used in this respect will

be explained: what might be called empirical likelihood measures, so-called stochastic

area measures, so-called information-theoretic measures, and pattern-based or strategic

state measures. There are trade-offs associated with these families of measures, and

several metrics, so far, have been devised for each.6

In the fourth family, we describe in detail two metrics (the State Similarity Mea-

sure, SSM, and the Generalized Hartley Measure, GHM) which are applicable to valida-

tion of models the output of which is multivariate patterns, unlike other methods which

assume univariate variables. The two measures can be thought of alternate methods of

measuring the row-wise distance between any two matrices of equal dimension, X and

Y.

2 We distinguish between broader measure and narrower metric — a metric is a measure, but a measure is

not necessarily a metric — as discussed in Section 2.1.
3 See Marks (2007), Midgley et al. (2007), Oberkampf & Roy (2010), and Liu et al. (2010) for further

general discussions of validation.
4 As Guerini & Moneta (2017) observe, the appearance of many measures to validate agent-based simula-

tion models is an indication of “the vitality of the agent-based community.”
5 This chapter, in effect, focuses on techniques of output validation (Fagiolo et al.’s sections 4.2, 5.1 and

5.2), going into greater detail about three of the six measures they discuss.
6 This chapter puts the work of Marks (2013) into a wider context.
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2. Validation metrics

As an example from the social sciences, consider the interactions over time among

several brands, where each brand’s market decisions (prices, promotions, etc.) in any pe-

riod affect the other brands’ volumes sold and profits, and the other brands respond with

their own market decisions in the following period. (See Section 5 below.) This “rival-

rous dance,” as I have called it, generates a complex dynamical pattern of prices, profits,

volumes sold, etc. The problem is not specific to simulation models and phenomena in

the social sciences: researchers in the biological sciences face the same issue and have

made some seminal advances in our understanding of the issues (Mankin et al. 1977).

2.1. Four types of measurement scales

The variables compared in Ferson et al. (2008) and Roy & Oberkampf (2011), like

almost all variables in scientific and engineering validation, share one property: they are

interval scales. That is, they measure ordered magnitudes, defined so that the intervals

of pairs of variables can be compared, or measured. (They could be ratio scales, such as

Kelvin for temperature, with absolute zero and where ratios are meaningful,7 but this is

less common.)

Almost all validation methods in finance, science, and engineering are applicable

to interval-scaled variables, but not to order-scaled variables, in which the variables

might be increasing (decreasing) in one (or the other) direction but where distances in

these directions are meaningless because order is their highest characteristic. And such

validation methods cannot be applied when the variables are nominal scales only: when

their order is arbitrary, and their highest characteristic is unique identity, with arbitrary,

separate names or numbers.

The main focus of this chapter is on methods of validation which can deal with

nominal-scaled variables, or patterns, such as those that are seen in the historical phe-

nomena (and the computer programs written to simulate them) described in Section 5

below.

Two metrics in particular — the State Similarity Measure and the Generalized Hart-

ley Measure — have been developed to deal with nominal-scaled data. These can be

thought of as generalizations of the interval-scale-based metrics of Ferson et al. (2008).

They also overcome an issue that does not arise with interval-scaled variables: the dis-

appearance of any state in one but not the other of the two sets of matrices X and Y:

interval-scaled measures do not exhibit gaps in which one state appears in X but not in

Y, or vice versa.

7 A temperature of 100K is twice as hot as 50K, but 100◦C is not twice as hot as 50◦C: K is a ratio scale,

but ◦C is only an interval scale (“by how much?”); “hotter” and “colder” is only an ordered scale.
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2.2. The desirable properties of a validation metric.

Ferson et al. (2008, p. 2415) state that “a validation metric is a formal measure of

the mismatch between predictions [of the model] and data that have not previously been

used to develop the model.” And that the closer the match between the model output

and the historical observations, the smaller the measure. Specifically, they argue that a

desirable measure should exhibit six properties:

1. it should be objective (and quantitative) so that the same predictions and the same

data will result in the same assessment, no matter who conducts it.

2. if there is a comparison between deterministic values without stochasticity, then the

metric should generalize this in a reasonable way.

3. the metric should reflect all differences in the two distributions (of the predictions

and of the history), not just the lower moments of these distributions (mean, stan-

dard deviation); it should not be too sensitive to outliers.

4. for ease of understanding, the unit of the metric should be the same as the unit of

the variables, if possible.

5. the modulus of the measure should be unbounded above.

6. the measure should be a true metric: that is, it should be non-negative and symmet-

ric, should satisfy the delta inequality:

d(x, y) + d(y, z) ≥ d(x, z)

and should satisfy the identity of indiscernables:8

d(x, y) = 0 ⇐⇒ x = y.

Property 6 defines a metric. Properties 1, 3, and 6 are, I believe, crucial to any

validation measure. Property 4 is desirable for interval-scaled variables and Property

2 is desirable for validation of stochastic models. Property 5 is not necessary, and is

inapplicable where the variables are order- or nominal-scaled.

The issue of measuring the distance between the dynamics of the output produced

by a simulation model and the historical counterpart raises the question of how to define

a metric to measure this distance. For simple phenomena (and simple models) the output

might be simple too. Measuring the distance between two time series, say, is simple.

When the phenomenon is dynamic and multivariate, with more than one interrelated

time-series output, however, the issue of defining and measuring the distance between

the pair of sets of outputs is not simple.

If, moreover, the variables of the data and the model predictions are not interval-

scaled, but only nominal-scaled, then the units of the measure will not in general be those

of the data and predicted variables (Property 4). And it is not clear whether Properties

8 Lacking only symmetry, it is a quasi-metric; lacking only the identity of indiscernables, it is a semi-metric;

lacking only the triangle inequality, it is a pseudo-metric.
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2 and 3 will be satisfied. First, in the application of oligopolistic pricing below, the

historical data and the model predictions are deterministic. (The computer simulation is a

deterministic model, mapping from market state, determined by curtailed historical data,

to the next period’s marketing actions — here, prices). It is not clear how to generalize

this to a stochastic model, except perhaps by Monte Carlo simulations (Marks 2016).

Second, the metrics we propose below are no more sensitive to (less frequent) data than

they are to more frequent data: the tails are not too influential.

3. Four families of validation measures

We can distinguish between four families of measures that are important in the

context of validation. First, empirical likelihood measures; second, what might be called

stochastic area measures; third, information-theoretic measures; and, fourth, strategic

state measures that compare patterns of data.

3.1. Empirical likelihood measures

These measures include maximum likelihood, the generalized method of moments,

the method of simulated moments, and indirect inference (see Chen et al. 2012); to a

greater or lesser extent, these demand knowledge of the true probabilistic dynamics of

the models’ output, or require the use of assumptions about these dynamics.9 But like-

lihood measures rely on summary statistics and do not explicitly compare the similarity

of distributions or patterns between the data and the simulated data generated by the

models.

In general, such measures satisfy Ferson et al.’s Properties 1, 4, 5, and 6, but, in only

generating summary statistics, these measures ignore the information contained in the

patterns, especially relevant in strategic, dynamic models; they do not satisfy Property

3. Moreover, such methods are usually seen not as validation methods, but as methods

of calibration and estimation (see Ch. 30 by Fagiolo et al. in this volume, Section 4.1).

3.2. Stochastic area measures

These have been derived by Ferson et al. (2008) and Roy & Oberkampf (2011)

and others. Specifically, these papers address models and observations with stochastic

characteristics, and univariate response quantities. That is, the model output Y and the

observed data X are single random variables. Unfortunately, the generalization to mul-

tivariate responses is not straightforward.

Following Ferson et al. (2008), there are a variety of ways to compare univari-

ate random variables, expressed as probability density functions (p.d.f.s) or cumulative

distribution functions:

9 Guerini & Moneta (2017) present a new method of validation, based on comparing structures of vector

autoregressive models estimated from both model and historical data.
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First, the random variables are “equal” or “surely equal” if their p.d.f.s are identical.

Second (more weakly), the random variables are “equal in mean” if the expecta-

tions of the absolute values of the differences between X and Y are zero.

Third (more weakly), if not quite equal in means, the mean metric provides a mea-

sure of their discrepancy

dE(X,Y ) = E(|X − Y |) 6= |E(X)− E(Y )|,

where E is the expectation operator. This can be generalized to higher-order moments

of the distributions, where equality in the higher-order moments implies equality in all

lower-order moments.

Fourth (more weakly), if the shapes of the distributions of the two variables are

identical, then the random variables are “equal in distribution”.

Fifth (more weakly), if the distributions are not quite equal in shape, there are many

proposed measures, including the Kolmogorov-Smirnov distance:

dS(X,Y ) = sup
z

|Pr(X ≤ z)− Pr(Y ≤ z)|,

which is the vertical distance between the cumulative distributions functions of the two

random variables, where z takes on all values in the common range of historical observa-

tions X and model output Y . Other measures, such as the Kullback-Leibler divergence,

are discussed below.

The variables compared in Ferson et al. (2008) and Roy & Oberkampf (2011), like

almost all variables in finance, scientific, and engineering validation, share one property:

they are interval scales. The Area Validation Metric (AVM) introduced by Ferson et

al. (2008) can only be applied when the two variables are interval or ratio scales. The

AVM measures the area between the cumulative distribution functions of the two random

variables, that of the model predictions and of the historical data. The metric is not

defined for ordered scales, in which the variables might be increasing (decreasing) in one

(or the other) direction but where distances in these directions are meaningless because

order is their highest characteristic.

And such interval-scale measures cannot be applied when the variables are nominal

only: when their order is arbitrary, and their highest characteristic is unique identity, with

arbitrary, separate names or numbers.

Indeed, the Smirnov distance is not applicable, even with an arbitrary ranking of the

ordering of the states. But the the applications introduced below generate nominal-scale

output, not interval-scaled.

Ferson et al.’s AVM, in measuring the divergence of the p.d.f. of the model output

from the historical data, does take satisfy Property 3, but is limited in that it requires

interval-scaled single variables of both output and observed data.

In what follows, we focus on methods that explicitly compare patterns in the data,

both observed and simulated, and do not in general require interval-scaled variables.

They are from the following two families.
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3.3. Pattern-based measures I: information-theoretic measures

Information-theoretic measures are derived from Shannon’s measure of entropy

(Shannon 1948), and include the Kullback-Leibler construct (Kullback-Leibler 1951),

and more recent measures that attempt to overcome shortcomings of Kullback-Leibler,

such as the GSL-div (Lamperti 2018a. 2018b).

Such measures satisfy Properties 1, 3, and 5, but, as we discuss in Section 5 below,

they do not in general satisfy Property 6, although that has not eliminated their use in

model validation. I argue here that there are true metrics which should be considered

instead.

3.4. Pattern-based measures II: strategic state measures

Strategic state measures include Marks’ State Similarity Measure (Marks 2013)

and Klir’s 2006 Generalized Hartley Measure, from early set-theoretic work of Hartley’s

(Hartley 1928). These two measures satisfy Ferson et al.’s Properties 1, 2, 3, and 6, but

not Property 4 (units of measurement), or Property 5 (the measures are bounded above);

I argue that these two properties are not crucial for a validation metric.

4. Measures of closeness or of information loss

Turn now to the third family of measures. The broad idea behind evaluating a dis-

tance between the model output and the real-world data in order to choose the model

“closest” to the real-world data is as follows. If the real data are information full, then

models of the underlying process capture only some of the information. Choosing the

model that loses least information compared to historical data is the criterion for choos-

ing the “best” model.

Information is often measured using Shannon entropy (1948) (SE).10 It is based on

probability and can be defined as

SE(p(x)|x ∈ X) = −
∑

p(x)log2(p(x))

where p is the probability distribution of random variable x. The function SE exhibits

some useful properties such as additivity, branching, normalization and expansibility.

Shannon entropy led to the Kullback-Leibler (1951) measure of information loss from

historical to model; it has some attractions theoretically, but is not a true metric, as we

shall see.

10 Another measure used for information is Hartley information (see Section 7). Both are special cases of

Rényi entropy (Rényi 1960). Both derive from work done at the Bell Labs.
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4.1. Kullback-Leibler information loss

The Kullback-Leibler (K-L) divergence or information loss (also known as relative

entropy) provides a measure of the information lost when model g is used to approximate

full reality f :

I(f, g) =

∫

f(x) log

(

f(x)

g(x|θ)

)

dx

in the continuous version, where the models g are indexed by θ, or

I(f, g) =
k
∑

i=1

pi × log

(

pi

πi

)

in the discrete case, with full-reality f distribution 0 < pi < 1, and model g distribution

0 < πi < 1, with
∑

pi =
∑

πi = 1. Here, there are k possible outcomes of the

underlying process; the true probability of the ith outcome is given by pi, while the

π1, . . . , πk constitute the approximating model. Hence, f and g correspond to the pi and

πi, respectively.

But the K-L information loss is not a true metric: it is not symmetric and does not

satisfy Property 6, since I(f, g) 6= I(g, f).11 Moreover, πi must be positive for every

i,12 while in data, even for a coarse, dichotomous partition, this value is likely to be zero

for some states, for either set of data (model predictions or real data).13 As mentioned

above, this is a stumbling block for the AVM technique of Ferson et al. (2008), although

AVM is suitable for validation of models with univariate random variables for output

and observations.

4.2. The Generalized Subtracted L-divergence (GSL-div)

To overcome shortcomings of the Kullback-Leibler divergence, the symmetric L

divergence (Lin 1991) was developed. From this the GSL-div (Lamperti 2018) has been

derived to measure the degree of similarity between real and simulated dynamics by

11 It is a semi-quasimetric.
12 The K-L measure is defined only if pi = 0 whenever πi = 0.
13 As Akaike (1973) first showed, the negative of K-L information is Boltzmann’s entropy. Hence mini-

mizing the K-L distance is equivalent to maximizing the entropy; hence the term “maximum entropy

principle.” But, as Burnham & Anderson (2002) point out, maximizing entropy is subject to a constraint–

the model of the information in the data. A good model contains the information in the historical data,

leaving only “noise.” It is the noise (or entropy or uncertainty) that is maximized under the concept of the

entropy maximizing principle. Minimizing K-L information loss then results in an approximating model

g that loses a minimum amount of information in the data f . The K-L information loss is averaged nega-

tive entropy, hence the expectation with respect to f . Fagiolo et al. (2007, p. 211) note further that “K-L

distance can be an arbitrarily bad choice from a decision-theoretic perspective ... if the set of models does

not contain the true underlying model ... then we will not want to select a model based on K-L distance.”

This is because “K-L distance looks for where models make the most different predictions–even if these

differences concern aspects of the data behaviour that are unimportant to us.”
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comparing the patterns of the time series. Lamperti discusses the procedure to obtain

the GSL-div, and then presents results to discriminate among four different classes of

stochastic processes. He also compares the GSL-div with alternative measures of fit (us-

ing several summary statistics) commonly used for calibrating ABMs, and concludes

that GSL-div provides much more satisfactory performance at this (see Ch. 30 by Fagi-

olo et al. in this volume, Table 1). But neither K-L nor Lin’s L-div (and hence GSL-div)

satisfy Property 6, and, hence, are not proper metrics, despite the interesting properties

of GSL-div (Lamperti 2018).14

Let us now turn to the fourth family of measures, the strategic state measures,

which include the author’s State Similarity Measure (Section 6) (which uses rectilinear

or Minkowski’s L1 or the cityblock distance), and Klir’s Generalized Hartley Measure

(Section 7). Both are true metrics. Before we present the measures, we describe the

models for our example.

5. The example: models and data

Return to our example of the interactions over time among several brands. We use

three models from simulations described in Marks et al. (1995). Each model has three

interacting brands, and each brand agent independently chooses its weekly price from its

own set of four possible prices in order to maximize its weekly profit, in a process of co-

evolution using the Genetic Algorithm (GA). With 1-week memory, each agent’s action

is determined by the state of the market in the previous week, which means 43 = 64
possible market states for each agent to respond to. See results for 2- and 3-week memory

below. The GA chooses the mapping from perceived state to action for each brand (with

each brand’s weekly profit as its “evolutionary fitness”). This means that the models are

not derived from historical patterns of oligopolistic behaviour, and so can be used to

predict these patterns.

Each model of the three brands’ interactions corresponds to a separate run of the

GA search for model parameters, using weekly profits of the brands as the GA “fitness”.

Given the complexity of the search space and the stochastic nature of the GA, each

run “breeds” a distinct model, with distinct mappings from state to brand price, and

hence different patterns of brand actions associated with each model.15 Figures 1 and

3 of Midgley et al. (1997) and also of Marks (2013) show, respectively, the observed

historical weekly prices and volumes sold of several brands of coffee competing in a

14 Although, as Lamperti (2018) points out, so long as the simulated data are always compared with the

historical data, and not with simulated data from other models, GSL-div might still allow model choice.
15 The three models differ in more than the frequencies of the eight states (Table 1): each model contains

three distinct mappings from state to action, and, as deterministic finite automata (Marks 1992), they

are ergodic, with emergent periodicities. Model A has a period of 13 weeks, Model B of 6 weeks, and

Model C of 8 weeks. It is not clear that the historical data exhibit ergodicity, absence of which will

make simulation initial conditions significant (Fagiolo et al. 2007). Initial conditions might determine

the periodicity of the simulation model.
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Table 1

State frequencies from History and three models.

State History Model A Model B Model C

000 32 30 20 0

001 2 11 10 18

010 6 3 7 15

011 1 0 0 0

100 7 5 12 16

101 0 0 0 0

110 2 1 1 0

111 0 0 0 1

Total 50 50 50 50

U.S. supermarket chain, and a fifty-week period of simulated interactions among three

brand agents in Model A, where each brand chooses from one of four possible prices per

week.

In order to reduce the number of degrees of freedom, we coarsen the partitioning

of the data, using a dichotomous partition into High and Low prices for both the real

data and the simulated data.

The distribution of the eight possible 1-week states in the historical chain store (H)

with three brands or players and in three models (A, B, and C) 16 of the models’ outputs,

using 50 weeks of data, are shown in Table 1, with “0” corresponding to a player’s

“High” price and “1” to a player’s “Low” price.17 Modelling deeper memory for the

brands results in similar distributions, but the tables are 64 rows and 512 rows deep,

with 2-week and 3-week memory, respectively, corresponding to 64 and 512 states.

The important thing to note here is that these are models of strategic interaction:

it is not sufficient to examine a single brand’s time series of actions, since these have

affected — and in turn have been affected by — its rivals’ actions over time. This is

essentially a multivariate validation problem.

6. The State Similarity Measure (SSM)

Introduced in Marks (2010), the SSM counts the absolute difference in the fre-

quency of each possible state in each of two sets of vectors (or time series), and sums

these to obtain the SSM for the pair of sets of vectors. In effect, SSM treats each time

series set as a vector p in an n-dimensional, non-negative, real vector space with a fixed

Cartesian coordinate system, where there are n possible states in the sets of vectors. The

16 In Midgley et al. (1997) and Marks (2013), Model A is called Model 26a, Model B is called Model 26b,

and Model C is called Model 11.
17 Figures 2 and 3 of Marks (2013) plot these behaviours. State 000 corresponds to all three players choosing

High prices; State 001 corresponds to Players 1 and 2 choosing High prices and Player 3 choosing a Low

price, etc.
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Table 2

SSMs calculated between the six pairs of sets.

Pair 1-week 2-week 3-week

memory memory memory

b History, Model A 18 36 54

f Model A, Model B 22 42 60

c History, Model B 28 48 68

e Model C, Model B 42 60 80

d Model C, Model A 62 76 88

a History, Model C 70 88 92

SSM between two sets matrix P and matrix Q of vectors (or time series) is calculated

as the rectilinear Minkowski’s L1 or cityblock distance (Krause 1986) d1 between their

two constructed vectors p and q, given by

d
PQ
1 = d1(p,q) =

n
∑

i=1

|pi − qi|, (1)

where pi is the number of occurrences (or frequencies) of state i in vector set P. That is,

SSM is the sum of the absolute differences of the coordinates of the two sets of vectors

as n-dimensional constructed vectors. (See Marks (2013), Appendix 1 for details of this

procedure.)

As defined here, the SSM is an absolute measure, where its maximum distance D

is a function of the equal length of the pair of sets of vectors. The lower the SSM, the

closer the two sets of vectors.

The maximum D of an SSM measure occurs when the intersection between the

states of the two sets of vectors is null, with D = 2×S, where S is the number of window

states, which depends on the memory length, inter alia. In our example, maximum D

would be 100 for 1-week memory, 2 × 49 = 98 for 2-week memory, and 2 × 48 = 96
for 3-week memory, (given that there are 50 observations per set of time series). It is

possible to define a normalised measure.

6.1. Results for the models

The six pairs of SSMs between the partitioned prices of the three models and the

observed historical data, using 50-week data series, are presented in Table 2 for 1-, 2-

, and 3-week memory. Table 3 presents the distances between History, and the three

simulations, Model C, Model A, and Model B from Marks et al. (1995), with 3-week

memory. Model C is far from any of the other sets, and Model B is closest to Model A,

but Model A is closer to the History historical data (at 54/96) than it is to the closest

other simulation, Model B (at 60/96).

As the partitioning becomes finer (with deeper memory of past actions), the SSMs

increase as the two sets of vectors (or time series) become less similar. This should not
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Table 3

SSMs between Observed History and Three Models

History Model A Model B Model C

History 0 54 68 92*

Model A 54 0 60 88*

Model B 68 60 0 80*

Model C 92* 88* 80* 0

surprise us. We also note that with these four sets of time series, the rankings do not

change with the depth of memory: (from closer to more distant) (History, Model A),

(Model A, Model B), (History, Model B), (Model C, Model B), (Model C, Model A),

and (History, Model C). Which of the three models is closest to the historical data of

History? The SSM tells us that Model A is best, followed by Model B, with Model C

bringing up the rear.

6.2. Monte Carlo simulations of the SSM

We can, using Monte Carlo stochastic sampling (Marks, 2016), derive some statis-

tics to test whether any pair of sets is likely to include random series (see below).

As Null Hypothesis we choose: each of two sets of time series is random.

With this null hypothesis, we can set 1% and 5% one-sided confidence intervals

to the SSM numbers. (Note: * in Table 3 indicates we cannot reject the null at the 5%

level.) With three brands and S = 48, the maximum D is 96. 95% of pairs of sets of three

random time series are at least 80 apart, and 99% of pairs of sets of three random time

series are at least 76 apart.18 This means that, in Table 3, we reject the null hypothesis of

random data for the pairs (History, Model A), (History, Model B), and (Model A, Model

B), since all SSMs here are less than 76, so the data are significantly non-random, and

the null hypothesis is rejected. The other three pairs (all comparisons with Model C),

with SSMs above 80, are not significantly (5%) different from random, and the null hy-

pothesis cannot be rejected. By construction, none of the simulated data sets is random,

although they are not particularly similar (see Table 1). Figure 4 of Marks (2013) plots

the the Cumulative Mass Function (CMF) of the MC parameter bootstrap simulation

against the six SSMs of the pairs.

7. Classical possibility theory

Possibility theory offers a non-additive method of assigning a numerical value to

the likelihood of a system assuming a specific state, one of a given set of states. The

likelihood expressed is that of possibility; for this reason, the possibility assigned to a

18 This number was determined by a Monte Carlo bootstrap simulation of 100,000 pairs of sets of four

quasi-random time series, calculating the SSM between each pair, and examining the distribution. The

lowest observed SSM of 64 appeared twice, that is, with a frequency of 2/100,000, or 0.002 percent.
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collection of possible events is the maximum (rather than the sum) of the individual

possibilities (Ramer, 1989).

Hartley (1928) solved the problem of how to measure the amount of uncertainty

associated with a finite set E of possible alternatives: he proved that the only meaningful

way to measure this dichotomous amount (when any alternative is either in or out: no

gradations of certainty) is to use a functional of the form:

c logb |E|,

where set E contains all possible alternatives from the larger (finite) set X , and where

|E| denotes the cardinality of set E: b and c are positive constants, and it is required that

b 6= 1. If b = 2 and c = 1 (or more generally, if c log2 = 1), then we obtain a unique

functional, H , defined for any basic possibility function, rE , by the formula:

H(rE) = log2 |E|,

where the measurement unit of H is bits. This can also be expressed in terms of the basic

possibility function rE as

H(rE) = log2
∑

x∈X

rE(x).

H is called a Hartley measure of uncertainty, resulting from lack of specificity: the

larger the set of possible alternatives, the less specific the identification of any desired

alternative of the set E. Clear identification is obtained when only one of the considered

alternatives is possible. Hence this type of uncertainty can be called non-specific.

This measure was first derived by Hartley (1928) for classical possibility theory,

where any alternative element of set X is either possible (i.e. in set E) or not. The basic

possibility function, rE , is then

rE(x) =

{

0 when x ∈ E,

1 when x 6∈ E.

and is derived explicitly in Klir (2006, pp. 28). To be meaningful, this functional must

satisfy some essential axiomatic requirements.19

7.1. The Generalized Hartley Measure (GHM) for graded possibilities

Following Klir (2006), we relax the “either/or” characteristic of the earlier treat-

ment and allow the basic possibility function20 on the finite set X to take any value

between zero and one: r : X → [0, 1]. Note that

max
x∈X

{r(x)} = 1,

19 See further discussion in Marks (2013), Appendix 2.
20 It is not correct to call the function r a possibility distribution function, since it does not distribute any

fixed value among the elements of the set X: 1 ≤
∑

x∈X
r(x) ≤ |X|.
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a property known as possibilistic normalization.

The Generalized Hartley Measure (GHM) for graded possibilities is usually de-

noted in the literature by U , and is called U -uncertainty. U -uncertainty can be ex-

pressed in various forms. A simple form is based on notation for graded possibilities:

X = {x1, x2, . . . , xn} and ri denotes for i = 1, . . . n the possibility of the singleton

event {xi}. Possibilities can (although need not) be estimated by frequencies. Elements

of X are appropriately rearranged so that the possibility profile:

r = < r1, r2, . . . , rn >

is ordered in such a way that

1 = r1 ≥ r2 ≥ . . . ≥ rn > 0,

where rn+1 = 0 by convention. Moreover, the set Ai = {x1, x2, . . . , xi} is defined for

each i ∈ {1, . . . , n}.

Using this simple notation, the U -uncertainty is expressed for each given possibil-

ity profile r by the formula

U(r) =
n
∑

i=2

(ri − ri+1) log2 i (2)

Klir (2006, p. 160) notes something relevant to our purposes here: “Another impor-

tant interpretation of possibility theory is based on the concept of similarity, in which

the possibility r(x) reflects the degree of similarity between x and an ideal prototype,

xP , for which the possibility degree is 1. That is, r(x) is expressed by a suitable distance

between x and xP defined in terms of the relevant attributes of the elements involved.

The closer x is to xP according to the chosen distance, the more possible we consider x

to be in this interpretation [our emphasis].”

7.2. Applying U-uncertainty to our data

From the frequencies of Table 1 (one-week memory), we can reorder21 the possi-

bilities (observed frequencies) of the three runs and the historical data, to get the four

reordered, non-normalised22 possibility profiles:

Using equation (2), the four Hartley measures are calculated:23

21 It might be objected that this reordering loses information. But this overlooks the fact that the order of

the states is arbitrary. It should not be forgotten that the definition of the states with more than one week’s

memory captures dynamic elements of interaction.
22 Normalisation here means r1 = 1, not

∑

ri = 1.
23 For clarity, we have included the (i = 1)th element, (r1 − r2) log2 1, which is always zero, by construc-

tion, consistent with equation (2).
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Table 4

The four possibility profiles, one-week memory.

History: 32 7 6 2 2 1 0 0

Model A: 30 11 5 3 1 0 0 0

Model B: 20 12 10 7 1 0 0 0

Model C: 18 16 15 1 0 0 0 0

Table 5

GHMs calculated for three memory partitions.

Process 1-week 2-week 3-week

memory memory memory

History 0.383 0.495 0.782

Model A 0.516 0.679 1.085

Model B 1.054 1.657 2.542

Model C 1.399 2.179 2.787

1. History:

U(r) =
1

32
(25 log2 1 + 1 log2 2 + 4 log2 3 + 0 log2 4 + 1 log2 5 + 1 log2 6)

= 0.383

2. Model A:

U(r) =
1

30
(19 log2 1 + 6 log2 2 + 2 log2 3 + 2 log2 4 + 1 log2 5)

= 0.516

3. Model B:

U(r) =
1

20
(8 log2 1 + 2 log2 2 + 3 log2 3 + 6 log2 4 + 1 log2 5)

= 1.054

4. Model C:

U(r) =
1

18
(2 log2 1 + 1 log2 2 + 14 log2 3 + 1 log2 4)

= 1.399

The GHMs for the three models and History have been calculated for the three

cases of 1-week, 2-week, and 3-week memory, as seen in Table 5.

These GHMs are true metrics (they satisfy Property 6, unlike the K-L information

loss), and so we can compare the differences of Table 6 between the four measures.

We can readily see that Model A (0.516) is closest to the historical data of History

(0.383); next is Model B (0.516), with Model C (1.399) furthest from the Historical
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Table 6

GHM differences calculated for the six pairs of sets.

Pair 1-week 2-week 3-week

memory memory memory

b History, Model A 0.133 0.184 0.303

e Model C, Model B 0.345 0.522 0.245

f Model A, Model B 0.538 0.978 1.457

c History, Model B 0.671 1.162 1.760

d Model C, Model A 0.883 1.500 1.702

a History, Model C 1.016 1.684 2.005

data. Moreover, we can see that Model A is closer to the Historical data than it is to

Model B.

Table 6 shows the six pairwise differences in GHM, derived from Table 5. It can

be compared with the six pairwise SSMs of Table 2. For 1-week memory the maximum

GHM, corresponding to 50 equi-likely states, is log2 50 = 5.644; for 2-week memory

log2 49 = 5.615, and for 3-week memory log2 48 = 5.585. These numbers are the

maximum pairwise difference between GHMs; the minimum difference is zero in all

three depths of memory.24

8. Comparing the distances measured by SSM and GHM

From Table 2, for 1-week memory, the SSMs are ranked (closest to farthest): {b, f,

c, e, d, a}; but, from Table 6, the GHM differences are ranked (smallest to largest): {b, e,

f, c, d, a}. Model A is closest to History using either measure, and Model C is farthest,

Note, however, from Table 2, that although the SSM rankings are the same for 1-, 2-, or

3-week memory, the GHM rankings are sensitive to the depth of memory (see Table 6).

That is, the two methods do not always produce identical rankings, although the degree

to which these two measures result in similar rankings of distances is noteworthy, given

their quite different foundations.25

9. Conclusions

Is a particular computer model the best model of a particular real-world phe-

nomenon? “Best” can have several meanings, but here we mean whether the behaviour

(“output”) of the simulation model is closest to the observed behaviour of the phe-

nomenon. Measuring the closeness of the simulated behaviour and the observed (histor-

ical) behaviour might be simple (for example, for univariate, interval-scaled, determin-

istic variables) or not (for example, for multivariate output of nominal-scaled variables).

24 We could also define a normalised GHM.
25 Exploration of these differences awaits further research.
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Measuring this closeness is necessary to validate any model, and can be used to choose

the best model of set of contenders.

We have examined the appropriateness of measures from four families of tech-

niques, as characterised by the kinds of output observed and generated. Using Ferson

et al.’s “desirable properties” of validation metrics, and focussing on the kind of phe-

nomenon (oligopolistic, strategic interactions among sellers) which exhibits multivari-

ate, nominal-scaled behaviour, we have argued that two contenders — SSM and GHM

— are appropriate.

These two strategic measures, SSM and GHM, are true metrics that allow us to

measure the degree of similarity between two sets of vectors (or matrices X and Y), here

multivariate time series. The SSM between two sets of vectors is the absolute distance

between two constructed vectors in non-negative, n-dimensional vector space, where n

is the number of possible states that each set of vectors can exhibit. GHM is a measure

of the possibility of any set P of vectors occurring as a vector p in n-dimensional space.

Since GHM is a metric, differences of sets of vectors’ GHMs are meaningful. SSM

is also a metric (satisfying Property 6). As such, both measures can be used to score the

distance between any two sets of vectors, such as sets of time series, which previously

was unavailable.

The SSM and GHM strategic state measures have demonstrated closeness in mea-

suring similarity of sets of time series, although the two measures’ rankings of distances

are not identical, as seen above. The SSM is intuitive: it uses the cityblock metric to

tally the differences in the states between two constructed vectors. It can be described

in six simple steps, as outlined in Marks (2013), Appendix 1. The GHM is anything but

intuitive, based on arcane possibility theory.

Using Occam’s Razor, the SSM, as a simpler, more transparent measure, is pre-

ferred.

The two strategic state measures, SSM and GHM, are not restricted to measuring

the similarity of (or distance between) two sets of time series: they are more general, as

we have reminded the reader, in that they can be applied to pairs of sets of (equal length)

vectors. The data used here are illustrative only: the two measures can be applied to any

pairs of simulated data and historical data, so long as the number of observations of the

model output and the historical data are equal, with equal numbers of vectors, or obser-

vations. Even more generally, the two measures can be thought of alternative methods

of measuring the row-wise distance between any two matrices of equal dimension.
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