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1. Introduction

What is the best risk profile for a decision-maker in a risky
world to hav e?

In a von Neumann-Morger nstern world there are three
(cons tant) possibilities:

1. risk-neutr al: choose the prospect with the highest
expect ed value

2. risk-averse: choose the prospect with the highest
expect ed utility

3. risk-prefer ring: ditto

By risky is meant that the possible outcomes and
probabilities (which might be subjective) are known.
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Infor mally, it is widel y held that in a risky world, with the
possibility of the discontinuity of bankruptcy, the most
pr udent risk profile is risk aversion.

“Risk aversion is one of the most basic assumptions
underlying economic behavior” (Szpiro 1997), perhaps
because “a dollar that helps us avoid poverty is more
valuable than a dollar that helps us become ver y rich”
(R abin 2000).

But is risk aversion the best risk profile? Even with
bankr uptcy as a possibility?

Previous researcher s’ answer s:

• Szpiro (1997): risk averse

• Chen et al. (2005): risk averse (log utility)

• and DellaVigna & LiCalzi (2001) model Kahneman-
Tver sky agents which learn to make risk-neutr al
choices.
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Met hodology

We use two kinds of von Neumann-Morgens t ern utility
function (the wealt h-independent exponential utility
function, or Constant Absolut e Risk Aversion CARA , and the
Cons tant Relative Risk Aversion CRRA function, which is
sensitive to the agent ’s level of wealt h) and run comput er
exper iments in which each agent chooses among three
lott eries, and is then awarded with the outcome of the
chosen lott ery k .
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Met hodology

We use two kinds of von Neumann-Morgens t ern utility
function (the wealt h-independent exponential utility
function, or Constant Absolut e Risk Aversion CARA , and the
Cons tant Relative Risk Aversion CRRA function, which is
sensitive to the agent ’s level of wealt h) and run comput er
exper iments in which each agent chooses among three
lott eries, and is then awarded with the outcome of the
chosen lott ery k .

Repetition of this choice by many agents allows us use a
technique from machine learning — the Genetic Algorit hm
(Holland 1992) — to search for the best risk profile, where
“bes t” means the highest average pay off when chosing
among lott eries.
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2. Decisions under Uncer tainty and Risk Profiles

The von Neumann-Morgens t ern for mulation of the decision-
maker ’s attitude to risk is based on the observation that
individuals are not alw ays expect ed-value decision maker s.
That is, there are situations in which people apparentl y
prefer a lower cer tain outcome to the higher expect ed (or
probility-weight ed) outcome of an uncertain prospect (where
the possible outcomes and their possibly subjective, or
Bayesian, probabilities are known).
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2. Decisions under Uncer tainty and Risk Profiles

The von Neumann-Morgens t ern for mulation of the decision-
maker ’s attitude to risk is based on the observation that
individuals are not alw ays expect ed-value decision maker s.
That is, there are situations in which people apparentl y
prefer a lower cer tain outcome to the higher expect ed (or
probility-weight ed) outcome of an uncertain prospect (where
the possible outcomes and their possibly subjective, or
Bayesian, probabilities are known).

An example is paying an insurance premium that is great er
than the expect ed loss without insurance. On the other
hand, people will sometimes “gamble” by apparentl y
prefer ring a lower uncer tain outcome to a higher sure thing:
this is risk-prefer ring.
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We can for malise this by obser ving that, by definition, the
utility of a lott ery is its expect ed utility, or

(1)U (L) =Σ p i U (x i ),

where each (discret e) outcome x i occur s wit h probability p i ,
and U (x i ) is the utility of outcome x i .
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We can use the C.E. to descr ibe the decision-maker ’s risk
profile (Howard 1968). Define the Expected Value x of the
Lott ery as:

(3)x =Σ p i x i .

When x̃ = x then the decision-maker ’s utility function
exhibits risk neutrality, when x̃ < x then risk aversion, and
when x̃ > x then risk preference.
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Approximating the Certainty Equiv alent

Expand utility U (. ) about the expect ed value x .

U (x 0) ≈ U (x ) + (x 0 − x )U ′(x ) + 1
2

(x o − x )2U ′′ (x )

< >



R. E. Marks 201 4 IEEE CIFEr Page 8

Approximating the Certainty Equiv alent

Expand utility U (. ) about the expect ed value x .

U (x 0) ≈ U (x ) + (x 0 − x )U ′(x ) + 1
2

(x o − x )2U ′′ (x )

The C. E. x̃ of a continuous lott ery is obt ained by int egration
ov er the probability density function (p.d.f.) f x (. ):

(4)
U (x̃ ) = ∫dx 0U (x 0)f x (x 0)

≈ U (x ) + 0 + 1
2
σ2U ′′ (x ),

< >



R. E. Marks 201 4 IEEE CIFEr Page 8

Approximating the Certainty Equiv alent

Expand utility U (. ) about the expect ed value x .

U (x 0) ≈ U (x ) + (x 0 − x )U ′(x ) + 1
2

(x o − x )2U ′′ (x )

The C. E. x̃ of a continuous lott ery is obt ained by int egration
ov er the probability density function (p.d.f.) f x (. ):
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U (x̃ ) = ∫dx 0U (x 0)f x (x 0)
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(5)U (x̃ ) ≈ U (x ) + (x̃ − x )U ′(x ).
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Approximating the Certainty Equiv alent

Expand utility U (. ) about the expect ed value x .

U (x 0) ≈ U (x ) + (x 0 − x )U ′(x ) + 1
2

(x o − x )2U ′′ (x )

The C. E. x̃ of a continuous lott ery is obt ained by int egration
ov er the probability density function (p.d.f.) f x (. ):

(4)
U (x̃ ) = ∫dx 0U (x 0)f x (x 0)

≈ U (x ) + 0 + 1
2
σ2U ′′ (x ),

where σ2 is the var iance. But, by expansion,

(5)U (x̃ ) ≈ U (x ) + (x̃ − x )U ′(x ).

Therefore, from equations (4) and (5),

(6)
x̃ − x ≈ 1

2
σ2 U ′′ (x )

U ′(x )

∴ x̃ ≈ x + 1
2
σ2 U ′′ (x )

U ′(x )
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3. Utility Functions

We consider two types of von Neumann-Morgens t ern utility
function:

1. those which exhibit constant risk preference across all
outcomes (so-called wealt h-independent utility
functions, or Constant Absolut e Risk Aversion CARA
functions), and

2. those where the risk preference is a function of the
wealt h of the decision maker (the Constant Relative
Risk Aversion CRRA functions).

This includes the risk-averse log arit hmic utility
function.
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Wealt h Independence

If an increase of all outcomes in a lott ery by an equal amount
∆ increases the C.E. of the lott ery by ∆, then the decision
maker exhibits wealt h independence:

U (x̃ +∆) = U (L′) =Σ p i U (x i +∆).
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Wealt h Independence

If an increase of all outcomes in a lott ery by an equal amount
∆ increases the C.E. of the lott ery by ∆, then the decision
maker exhibits wealt h independence:

U (x̃ +∆) = U (L′) =Σ p i U (x i +∆).

Acceptance of this proper ty restricts possible utility functions
to be linear (risk neutral) or exponential, or constant-
absolut e-risk-aversion (CARA) functions.

CARA utility functions charactise risk preference by a sing le
number, the risk aversion coefficient, γ.

Since CARA utility functions are wealt h-independent, any
av ersion to bankr uptcy is thus precluded, by definition.

Whet her a decision maker exhibits a wealt h-independent
utility function is an empir ical ques tion.
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3.1 CARA Utility Functions

When utility is linear in outcomes, the decision maker is risk-
neutr al, across all outcomes, but such a simple constant-r isk-
profile utility function is of no further interes t.
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3.1 CARA Utility Functions

When utility is linear in outcomes, the decision maker is risk-
neutr al, across all outcomes, but such a simple constant-r isk-
profile utility function is of no further interes t. Ins t ead, we
consider the exponential constant absolute risk averse
(C ARA) functions, where utility U is given by

(7)U (x ) = 1 − e−γx ,

where U (0) = 0 and U (∞) = 1, and
where γ is the risk aversion coefficient:

(8)γ ≡ −
U ′′ (x )

U ′(x )
.
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Risk Aversion with Exponential Utility
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Risk Aversion with Exponential Utility

Fr om equations (6) and (8), for exponential utility,

x̃ ≈ x − 1
2
σ2γ

which indicates that when γ = 0, then x̃ ≈ x (r isk
neutr ality), when γ > 0, then x̃ < x (r isk av erse), and when
γ < 0, then x̃ > x (r isk prefer ring), with positive var iance.
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Risk Aversion with Exponential Utility

Fr om equations (6) and (8), for exponential utility,

x̃ ≈ x − 1
2
σ2γ

which indicates that when γ = 0, then x̃ ≈ x (r isk
neutr ality), when γ > 0, then x̃ < x (r isk av erse), and when
γ < 0, then x̃ > x (r isk prefer ring), with positive var iance.

Summar izing this:

Sign of γ Risk profile Curvature

γ = 0  risk neutral U ′′ (x ) = 0
γ > 0  risk averse U ′′ (x ) < 0
γ < 0  risk prefer ring U ′′ (x ) > 0
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3.2 CRRA Utility Functions

We want a utility function which is not wealt h-independent, to
see whether that will result in risk-averse agents doing best.
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The Arrow-Pr att measure of relative risk aversion (RRA) ρ is
defined as

(9)ρ(w ) = −w
U ′′ (w )

U ′(w )
= w γ

This introduces wealt h w int o the agent ’s risk preferences, so
that lower wealt h can be associated with higher risk aversion.
Risk aversion coefficient γ is as in equation (8).

< >



R. E. Marks 201 4 IEEE CIFEr Page 13

3.2 CRRA Utility Functions

We want a utility function which is not wealt h-independent, to
see whether that will result in risk-averse agents doing best.

The Arrow-Pr att measure of relative risk aversion (RRA) ρ is
defined as

(9)ρ(w ) = −w
U ′′ (w )

U ′(w )
= w γ

This introduces wealt h w int o the agent ’s risk preferences, so
that lower wealt h can be associated with higher risk aversion.
Risk aversion coefficient γ is as in equation (8).

The Constant Elasticity of Substitution (CES) utility function:

(10)U (w ) =
w 1−ρ

1 − ρ
, w > 0,

exhibits constant relative risk aversion CRRA, equation (9).

When ρ→ 1, (10) becomes logar ithmic: u (w ) = ln(w ).
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Risk Aversion with CES Utility

In the CRRA simulations, we use the cumulative sum of the
realisations of payoffs won in previous lott eries chosen by the
agent plus the possible payoff in this lott ery as the wealt h w in
equation (10).
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Risk Aversion with CES Utility

In the CRRA simulations, we use the cumulative sum of the
realisations of payoffs won in previous lott eries chosen by the
agent plus the possible payoff in this lott ery as the wealt h w in
equation (10).

Each agent codes for ρ.

Fr om equation (6), the C.E. with CES utility is approximat ed by

x̃ ≈ x − 1
2
ρ

w σ
2

If f 1
2
ρ

w σ
2 > 0 (or ρ/w > 0), then C.E. x̃ < expect ed mean x ,

and the decision maker is risk averse.

With w > 0, ρ > 0 is equiv alent to risk aversion.
With w > 0 and ρ = 1, the CES function becomes the (risk-
av erse) logar ithmic utility function, U (w ) = log(w ).
With w > 0 and ρ < 0 is equiv alent to risk prefer ring.
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4. The Simulations

Each lott ery is randoml y cons truct ed: the two pay offs (“pr izes”)
are randoml y chosen in the inter val between − and + Maximum
Absolut e Pr ize (MAP), usually 100; and the probability is also
chosen randoml y.

Each agent calculates the expect ed utility of each of the three
lott eries, using its utility function (a function of its γ or ρ/w ), and
chooses the lott ery k wit h the highes t expect ed utility. To do
this, agents know the prizes and probabilities of all three lott eries.
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randoml y realised, using its probability. The winnings of the
Cons tant Absolut e Risk Aversion agent (respectivel y, the wealt h of
the Cons tant Relative Risk Aversion agent) is increment ed
according ly. Each agent chooses 1000 lott eries.
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are randoml y chosen in the inter val between − and + Maximum
Absolut e Pr ize (MAP), usually 100; and the probability is also
chosen randoml y.

Each agent calculates the expect ed utility of each of the three
lott eries, using its utility function (a function of its γ or ρ/w ), and
chooses the lott ery k wit h the highes t expect ed utility. To do
this, agents know the prizes and probabilities of all three lott eries.

Then the actual (simulated) outcome of the chosen lott ery k is
randoml y realised, using its probability. The winnings of the
Cons tant Absolut e Risk Aversion agent (respectivel y, the wealt h of
the Cons tant Relative Risk Aversion agent) is increment ed
according ly. Each agent chooses 1000 lott eries. At this stage there
is a population of agents, each of which has a average winnings or
a cumulative level of wealt h, based on its risk profile and the
successive outcomes of its choices among the lott eries.
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Diag rammaticall y
Three two-pr ize lott eries with random prizes and probability :

X

x 1 x 2

p x 1 − p x
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Diag rammaticall y
Three two-pr ize lott eries with random prizes and probability :

X

x 1 x 2

p x 1 − p x

Y

y 1 y 2

p y 1 − p y

Z

z1 z2

p z 1 − p z

Calculat e the three expect ed utilities, functions of γ (or ρ and w ):
U (X ) = p x U (x 1) + (1 − p x )U (x 2)
U (Y ) = p y U (y 1) + (1 − p y )U (y 2)
U (Z ) = p zU (z1) + (1 − p z )U (z2)

Choose the lott ery I wit h the highes t expect ed utility. Win
whichever prize (i 1 or i 2) is realised in that lott ery, based in the
lott ery’s probability p i .
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Searching with the Genetic Algorit hm

We now use an implement ation of the Genetic Algorit hm (Gilber t
200 4) to search for the best risk profile. That is, we select the best-
per for ming agents to be the “parents” of the next gener ation of
agents, which is gener ated by “crossover” and “mutation” of the
chromosomes of the pairs of parents. Each of the new gener ation of
agents chooses the lott ery k wit h highes t expect ed utility a thousand
times. Again, the best are select ed to be the parents of the next
gener ation.
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200 4) to search for the best risk profile. That is, we select the best-
per for ming agents to be the “parents” of the next gener ation of
agents, which is gener ated by “crossover” and “mutation” of the
chromosomes of the pairs of parents. Each of the new gener ation of
agents chooses the lott ery k wit h highes t expect ed utility a thousand
times. Again, the best are select ed to be the parents of the next
gener ation.

We use the GA simulation in this search as an empir ical alt ernative to
sol ving for the best (highes t per for ming) risk profile analyticall y.
No te that Rabin (2000) asserts that “theor y actuall y predicts virtual
risk neutrality.” We retur n to this paper in the Discussion below.
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4.1 The Simulations with CARA Utility

Using NetLogo (Wilensky 1999), we model each agent as a binary
string which codes to its risk-aversion coefficient, γ, in the inter val ±
1.048576.
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outcome is calculated for that lott ery, based on its probability.
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Using NetLogo (Wilensky 1999), we model each agent as a binary
string which codes to its risk-aversion coefficient, γ, in the inter val ±
1.048576.

Each lott ery is a two-pr ize lott ery, where each prize is chosen from a
unifor m dis tribution, between − and + MAP, where MAP can be set up
to 100 by the simulator, and the single probability is chosen randoml y
from unifor m [0,1].

Each agent chooses the lott ery k wit h the highes t expect ed utility
from equations (1) and (7), based on its value of γ. Then a realised
outcome is calculated for that lott ery, based on its probability.

Each agent faces 1000 lott ery choices, and the cumulative winnings
that agent ’s “fitness” for the Genetic Algorit hm.
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The CARA Results
See http://www.agsm.edu.au/bobm/teaching/SimSS/NetLogo4-models/RA-CARA-EU-3l2p.html for
a Jav a aplet and the NetLogo code.
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a Jav a aplet and the NetLogo code.

The windows captured from the NetLogo simulations show three
things clearly:

1. The mean (black) fitness grows quic kly to a plat eau af ter 20
gener ations or so;

2. the mean, maximum, and minimum risk-aversion coefficients γ
(resp. black, green, red) converge to close to zero (risk
neutr ality) ov er the same period, and

3. Any γ deviation from zero up (more risk-averse) or down
(more risk-prefer ring) leads to the minimum (red) fitness in
that gener ation collapsing from close to the mean fitness.

These observations clearly show that CARA agents perform bes t (in ter ms of
their lott ery winnings) who are closes t to risk neutral (γ = 0).

Too risk averse, and they forgo fair lott eries; too risk prefer ring and
they choose too many risky lott eries.
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4.2 The CRRA Results
See http://www.agsm.edu.au/bobm/teaching/SimSS/NetLogo4-models/DRA-CRRA-EU-
revCD-3l2p.html for a Jav a aplet and the NetLogo code.
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av erse, but to be risk neutral. Is this because the wealt h-independent
CARA utility function precludes bankruptcy?
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See http://www.agsm.edu.au/bobm/teaching/SimSS/NetLogo4-models/DRA-CRRA-EU-
revCD-3l2p.html for a Jav a aplet and the NetLogo code.

Despit e our prior belief, the CARA agents do not lear n to be risk
av erse, but to be risk neutral. Is this because the wealt h-independent
CARA utility function precludes bankruptcy?

We could, of course, put a floor on agent wealt h, below which is
oblivion, but better to use a utility for mulation that is not wealt h
independent and repeat the search. We use the CES utility functions
(equation (10)) that exhibits CRRA.

The results are sur pr ising: the CRRA agents do not lear n to be risk
av erse, but are ver y close to risk neutral.

Remember : γ =
ρ

w
, so dividing the ρ values by the high w values

att ained implies corresponding minute values of γ here.
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Choice under Uncer tainty

So far : decision-making under risk (knowing payoffs and probabilities).
What of decision making under uncertainty?

Let ’s blind the agents to the probabilities. They choose a lott ery
making the (wrong) Laplacian assumption of equi-probable prizes.

With CARA and CRRA utility, the mean γ is close to zero (risk
neutr al) but the outliers don’t converge.

This might explain Chen & Huang (2005)’s results of log-utility
decision maker s (i.e. risk averse) performing best in an artificial stock
market.
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5. Discussion

Unlike the GA simulations of Szpiro (1997), we find that the best-
per for ming CARA agents are risk-neutr al, not risk averse. Because of
the indirect way in which Szpiro modelled the risk profiles of his
agents (unlike a referee ’s sugges tion, footnote 3, Szpiro’s model “only
dis tinguishes between risk-averse aut omata and all other s”),
explanation of the contradict ory results is not easy, but since our
models allow any risk profile to emerge, we argue that they are more
gener al than Szpiro’s.
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5. Discussion

Unlike the GA simulations of Szpiro (1997), we find that the best-
per for ming CARA agents are risk-neutr al, not risk averse. Because of
the indirect way in which Szpiro modelled the risk profiles of his
agents (unlike a referee ’s sugges tion, footnote 3, Szpiro’s model “only
dis tinguishes between risk-averse aut omata and all other s”),
explanation of the contradict ory results is not easy, but since our
models allow any risk profile to emerge, we argue that they are more
gener al than Szpiro’s.

Should we be sur pr ised that risk neutrality does better than risk
av ersion in CARA utility functions? Rabin (2000) sugges ts a reason
why not, at leas t for small-s takes lott eries. He argues that von
Neumann-Morgens t ern expect ed-utility theor y is inappropr iate for
reconciling actual human behaviour as revealed in risk attitudes over
large stakes and small stakes. If there is risk aversion for small stakes,
then expect ed-utility theor y predicts wildly unrealis tic risk aversion
when the decision maker is faced with large stakes. Or risk aversion
for large stakes mus t be accompanied by vir tual risk neutrality for
small stakes.
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Rabin argues that loss aversion (K ahneman and Tversky 1979), rat her
than risk aversion, is a better (i.e. more realis tic) explanation of how
people actually behave when faced with risky decisions. This
sugges ts possibilities for further simulations, although “loss aversion”
sugges ts a prior conclusion.
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But we do not appeal to empir ical evidence or even to prior beliefs of
what sort of risk profile is best. Whereas there has been much
research into reconciling actual human decision making with theor y
(see Arthur 1991), we are int eres t ed in seeing what is the best (i.e.
mos t profit able) risk profile for agents faced with risky choices.
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than risk aversion, is a better (i.e. more realis tic) explanation of how
people actually behave when faced with risky decisions. This
sugges ts possibilities for further simulations, although “loss aversion”
sugges ts a prior conclusion.

DellaV igna & LiCalzi (2001) prov e that Kahneman-Tversky decision-
maker s, faced with symmetr ic lott eries, learn to make risk-neutr al
choices.

But we do not appeal to empir ical evidence or even to prior beliefs of
what sort of risk profile is best. Whereas there has been much
research into reconciling actual human decision making with theor y
(see Arthur 1991), we are int eres t ed in seeing what is the best (i.e.
mos t profit able) risk profile for agents faced with risky choices.

And we find that for wealt h-independent CARA utility functions
(e xponential) agents learn to become risk-neutr al decision maker s in
order to maximise their retur ns when choosing among risky
propositions. This is different from the risk-averse agents that Szpiro
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(1997) observed. But for wealt h-dependent CRRA utility functions
(CES) our agents often do lear n to be slightl y risk averse, as expect ed,
but not alw ays.
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