Learning to be Risk Averse?

Robert Marks
Economics, University of New South Wales,
and University of Melbourne

2014 IEEE CIFEr, London
March 2728

robert.marks@gmail.com



Learning to be Risk Averse?

Roadmap.
I. Introduction
2. Decisions Under Uncertainty and Risk Profile
3. Utility Functions
a. Constant Absolute Risk Aversion
b. Constant Relative Risk Aversion
4. The Simulations and Results
5. Discussion
6. Bibliography



I. Introduction

What is the best risk profile for a decision-maker in a risky
world to have?

In a von Neumann-Morgernstern world there are three
(constant) possibilities:

I. risk-neutral: choose the prospect with the highest
expected value

2. risk-averse: choose the prospect with the highest
expected utility

3. risk-preferring: ditto

By risky is meant that the possible outcomes and
probabilities (Which might be subjective) are known.



Informally, it is widely held that in a risky world, with the
possibility of the discontinuity of bankruptcy, the most
prudent risk profile is risk aversion.

“Risk aversion is one of the most basic assumptions
underlying economic behavior” (Szpiro 1997), perhaps
because “a dollar that helps us avoid poverty is more
valuable than a dollar that helps us become very rich”
(Rabin 2000).

But is risk aversion the best risk profile? Even with
bankruptcy as a possibility?
Previous researchers’ answers:

e Szpiro (1997): risk averse

e Chen et al. (2005): risk averse (log utility)

e and DellaVigna & LiCalzi (2001) model Kahneman-
Tversky agents which learn to make risk-neutral
choices.



Methodology

We use two kinds of von Neumann-Morgenstern utility
function (the wealth-independent exponential utility
function, or Constant Absolute Risk Aversion CARA, and the
Constant Relative Risk Aversion CRRA function, which is
sensitive to the agent’s level of wealth) and run computer
experiments in which each agent chooses among three
lotteries, and is then awarded with the outcome of the
chosen lottery k.
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function, or Constant Absolute Risk Aversion CARA, and the
Constant Relative Risk Aversion CRRA function, which is
sensitive to the agent’s level of wealth) and run computer
experiments in which each agent chooses among three
lotteries, and is then awarded with the outcome of the
chosen lottery k.

Repetition of this choice by many agents allows us use a
technique from machine learning — the Genetic Algorithm
(Holland 1992) — to search for the best risk profile, where
“best” means the highest average payoff when chosing
among lotteries.



2. Decisions under Uncertainty and Risk Profiles

The von Neumann-Morgenstern formulation of the decision-
maker’s attitude to risk is based on the observation that
individuals are not always expected-value decision makers.
That is, there are situations in which people apparently
prefer a lower certain outcome to the higher expected (or
probility-weighted) outcome of an uncertain prospect (where
the possible outcomes and their possibly subjective, or
Bayesian, probabilities are known).
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The von Neumann-Morgenstern formulation of the decision-
maker’s attitude to risk is based on the observation that
individuals are not always expected-value decision makers.
That is, there are situations in which people apparently
prefer a lower certain outcome to the higher expected (or
probility-weighted) outcome of an uncertain prospect (where
the possible outcomes and their possibly subjective, or
Bayesian, probabilities are known).

An example is paying an insurance premium that is greater
than the expected loss without insurance. On the other
hand, people will sometimes “gamble” by apparently
preferring a lower uncertain outcome to a higher sure thing:
this is risk-preferring.
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utility of a lottery is its expected utility, or

U(L) = X piU(x;), (1)

where each (discrete) outcome X; occurs with probability p;,
and U (X;) is the utility of outcome X;. It is useful to define
the Certainty Equivalent X (or C.E.), which is a certain
outcome which has the identical utility as the lottery:

U(X)=U(L) = X p;U(x). (2)

We can use the C.E. to describe the decision-maker’s risk
profile (Howard 1968). Define the Expected Value X of the
Lottery as:

X =Y piX;. (3)

When X = X then the decision-maker’s utility function
exhibits risk neutrality, when X < X then risk aversion, and
when X > X then risk preference.
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Approximating the Certainty Equivalent
Expand utility U (. ) about the expected value X.
U(X) = U(X)+(Xq = X)U'(X)+ 3 (X, —X)?U"(X)

The C. E. X of a continuous lottery is obtained by integration
over the probability density function (p.d.f.) f, (.):

U (X) = Jdx U (X)f x (Xo)
=U(X)+0+; 0’U"(X),
where o7 is the variance. But, by expansion,
U(X)=U(X)+ (X —X)U'(X). (5)
Therefore, from equations (4) and (5),

(4)

(6)




3. Utility Functions

We consider two types of von Neumann-Morgenstern utility
function:

I. those which exhibit constant risk preference across all
outcomes (so-called wealth-independent utility
functions, or Constant Absolute Risk Aversion CARA
functions), and

2. those where the risk preference is a function of the
wealth of the decision maker (the Constant Relative
Risk Aversion CRRA functions).

This includes the risk-averse logarithmic utility
function.



Wealth Independence

If an increase of all outcomes in a lottery by an equal amount
A increases the C.E. of the lottery by A, then the decision
maker exhibits wealth independence:

U(X +A4) =U(L) = X p;U(x; +A).
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If an increase of all outcomes in a lottery by an equal amount
A increases the C.E. of the lottery by A, then the decision
maker exhibits wealth independence:

U(X +A4) =U(L) = X p;U(x; +A).

Acceptance of this property restricts possible utility functions
to be linear (risk neutral) or exponential, or constant-
absolute-risk-aversion (CARA) functions.

CARA utility functions charactise risk preference by a single
number, the risk aversion coefficient, 7.

Since CARA utility functions are wealth-independent, any
aversion to bankruptcy is thus precluded, by definition.

Whether a decision maker exhibits a wealth-independent
utility function is an empirical question.
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When utility is linear in outcomes, the decision maker is risk-
neutral, across all outcomes, but such a simple constant-risk-
profile utility function is of no further interest. Instead, we
consider the exponential constant absolute risk averse
(CARA) functions, where utility U is given by

Ux)=1-e%, (7)

where U (0) =0 and U (c0) = I, and
where 7 is the risk aversion coefficient:
_ U I (X )

U'(x)

Y = . (8)
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Risk Aversion with Exponential Utility

From equations (6) and (8), for exponential utility,
X=X —10%
which indicates that when 7 = 0, then X = X (risk

neutrality), when 7 > 0, then X < X (risk averse), and when
v <0, then X > X (risk preferring), with positive variance.

Summarizing this:

Sign of 7 Risk profile Curvature

r=0 risk neutral U"(x)=0
r>0 risk averse U"(x)<o0
r <0 risk preferring U "(xX)>0
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3.2 CRRA Utility Functions

We want a utility function which is not wealth-independent, to
see whether that will result in risk-averse agents doing best.

The Arrow-Pratt measure of relative risk aversion (RRA) p is
defined as
U " (W ) _

u'w)
This introduces wealth w into the agent’s risk preferences, so

that lower wealth can be associated with higher risk aversion.
Risk aversion coefficient 7 is as in equation (8).

The Constant Elasticity of Substitution (CES) utility function:

-
U(W):W p, w >0, (10)

pWw)=-w

WY €)

exhibits constant relative risk aversion CRRA, equation (9).

When p - 1, (10) becomes logarithmic: u (w) = In(w ).
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Risk Aversion with CES Utility

In the CRRA simulations, we use the cumulative sum of the
realisations of payoffs won in previous lotteries chosen by the
agent plus the possible payoff in this lottery as the wealth w in
equation (10).

Each agent codes for p.

From equation (6), the C.E. with CES utility is approximated by
> - 1P y
X =X 7w ag
Iff 2 £ 0 >0 (or p/w >0), then C.E. X < expected mean X,
and the decision maker is risk averse.

Withw > 0, p > 0 is equivalent to risk aversion.

Withw > 0 and p = I, the CES function becomes the (risk-
averse) logarithmic utility function, U (w ) = log(w ).
Withw > 0 and p < 0 is equivalent to risk preferring.
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Each lottery is randomly constructed: the two payoffs (“prizes”)
are randomly chosen in the interval between — and + Maximum
Absolute Prize (MAP), usually 100; and the probability is also
chosen randomly.

Each agent calculates the expected utility of each of the three
lotteries, using its utility function (a function of its ¥ or p/w ), and
chooses the lottery k with the highest expected utility. To do
this, agents know the prizes and probabilities of all three lotteries.

Then the actual (simulated) outcome of the chosen lottery K is
randomly realised, using its probability. The winnings of the
Constant Absolute Risk Aversion agent (respectively, the wealth of
the Constant Relative Risk Aversion agent) is incremented
accordingly. Each agent chooses 1000 lotteries. At this stage there
is a population of agents, each of which has a average winnings or
a cumulative level of wealth, based on its risk profile and the
successive outcomes of its choices among the lotteries.
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Diagrammatically
Three two-prize lotteries with random prizes and probability:

P x I — Py Py l_py P2 1-p;

X X2 Yi Y2 Z Z,

Calculate the three expected utilities, functions of 7 (or p and w):
U(X) =pxU(x)+ (1 -py)U(Xz)
U)=p,Uly)+(1—-py)U(y,)
U(Z)=pZU(z,)+(l _pz)U(Zz)

Choose the lottery | with the highest expected utility. Win
whichever prize (i, or i,) is realised in that lottery, based in the
lottery’s probability p;.
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2004) to search for the best risk profile. That is, we select the best-
performing agents to be the “parents” of the next generation of
agents, which is generated by “crossover” and “mutation” of the
chromosomes of the pairs of parents. Each of the new generation of
agents chooses the lottery k with highest expected utility a thousand
times. Again, the best are selected to be the parents of the next
generation.
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We now use an implementation of the Genetic Algorithm (Gilbert
2004) to search for the best risk profile. That is, we select the best-
performing agents to be the “parents” of the next generation of
agents, which is generated by “crossover” and “mutation” of the
chromosomes of the pairs of parents. Each of the new generation of
agents chooses the lottery k with highest expected utility a thousand
times. Again, the best are selected to be the parents of the next
generation.

We use the GA simulation in this search as an empirical alternative to
solving for the best (highest performing) risk profile analytically.
Note that Rabin (2000) asserts that “theory actually predicts virtual
risk neutrality.” We return to this paper in the Discussion below.
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Using NetLogo (Wilensky 1999), we model each agent as a binary
string which codes to its risk-aversion coefficient, 7, in the interval +
1.048576.

Each lottery is a two-prize lottery, where each prize is chosen from a
uniform distribution, between — and + MAP, where MAP can be set up
to 100 by the simulator, and the single probability is chosen randomly
from uniform [0,1].

Each agent chooses the lottery k with the highest expected utility
from equations (1) and (7), based on its value of ¥. Then a realised
outcome is calculated for that lottery, based on its probability.

Each agent faces 1000 lottery choices, and the cumulative winnings
that agent’s “fitness” for the Genetic Algorithm.
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See htt p: // ww. agsm edu. au/ bobm t eachi ng/ Si n5S/ Net Logo4- nodel s/ RA- CARA- EU- 3l 2p. ht ml for
a Java aplet and the NetLogo code.

The windows captured from the NetLogo simulations show three
things clearly:

I. The mean (black) fitness grows quickly to a plateau after 20
generations or so;

2. the mean, maximum, and minimum risk-aversion coefficients 7
(resp. black, green, red) converge to close to zero (risk
neutrality) over the same period, and

3. Any 7 deviation from zero up (more risk-averse) or down
(more risk-preferring) leads to the minimum (red) fitness in
that generation collapsing from close to the mean fitness.

These observations clearly show that CARA agents perform best (in terms of
their lottery winnings) who are closest to risk neutral (y = 0).

Too risk averse, and they forgo fair lotteries; too risk preferring and
they choose too many risky lotteries.



NetLogo — RA-CARA-EU-revB {/Users/bobm/handouts/CSU/RA-CARA-EU-revB}
[ Interface | Information Procedures
5 ) - oL » - view updates —
g m + "abc Button w I ¥ @ . 2 = I ( Settings... )
[:_“\T [,1'_'\[‘[1'_- Add normal Speed \ continuous v
|/ A icks:0
fitness “’V
146000 7=V T V||
setup W \ M
90 o | | w
J|( | ’ ‘
0
generation mean gamma 0 116
102 0.0018505700¢(
gamma
1.11
I .
max-abs-prize 100 /\_ _
T T 0
_sss—
mutatn-rate 0.01 ‘( }| " \ | (
-1.26°
0 116

Command Center

observer>

[ Clear |




4.2 The CRRA Results

See ht t p: / / www. agsm edu. au/ bobm t eachi ng/ Si n5S/ Net Logo4- nodel s/ DRA- CRRA- EU-
revCD- 3l 2p. ht m for a Java aplet and the NetLogo code.



4.2 The CRRA Results

See ht t p: / / www. agsm edu. au/ bobm t eachi ng/ Si n5S/ Net Logo4- nodel s/ DRA- CRRA- EU-
revCD- 3l 2p. ht m for a Java aplet and the NetLogo code.

Despite our prior belief, the CARA agents do not learn to be risk
averse, but to be risk neutral. Is this because the wealth-independent
CARA utility function precludes bankruptcy?



4.2 The CRRA Results

See htt p: // ww. agsm edu. au/ bobm t eachi ng/ Si n5S/ Net Logo4- nodel s/ DRA- CRRA- EU-
revCD- 3l 2p. ht m for a Java aplet and the NetLogo code.

Despite our prior belief, the CARA agents do not learn to be risk
averse, but to be risk neutral. Is this because the wealth-independent
CARA utility function precludes bankruptcy?

We could, of course, put a floor on agent wealth, below which is
oblivion, but better to use a utility formulation that is not wealth
independent and repeat the search.



4.2 The CRRA Results

See htt p: // ww. agsm edu. au/ bobm t eachi ng/ Si n5S/ Net Logo4- nodel s/ DRA- CRRA- EU-
revCD- 3l 2p. ht m for a Java aplet and the NetLogo code.

Despite our prior belief, the CARA agents do not learn to be risk
averse, but to be risk neutral. Is this because the wealth-independent
CARA utility function precludes bankruptcy?

We could, of course, put a floor on agent wealth, below which is
oblivion, but better to use a utility formulation that is not wealth
independent and repeat the search. We use the CES utility functions
(equation (10)) that exhibits CRRA.



4.2 The CRRA Results

See htt p: // ww. agsm edu. au/ bobm t eachi ng/ Si n5S/ Net Logo4- nodel s/ DRA- CRRA- EU-
revCD- 3l 2p. ht m for a Java aplet and the NetLogo code.

Despite our prior belief, the CARA agents do not learn to be risk
averse, but to be risk neutral. Is this because the wealth-independent
CARA utility function precludes bankruptcy?

We could, of course, put a floor on agent wealth, below which is
oblivion, but better to use a utility formulation that is not wealth
independent and repeat the search. We use the CES utility functions
(equation (10)) that exhibits CRRA.

The results are surprising: the CRRA agents do not learn to be risk
averse, but are very close to risk neutral.

Remember: 7 = V%’ so dividing the p values by the high w values
attained implies corresponding minute values of 7 here.
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Choice under Uncertainty

So far: decision-making under risk (knowing payoffs and probabilities).
What of decision making under uncertainty?

Let’s blind the agents to the probabilities. They choose a lottery
making the (wrong) Laplacian assumption of equi-probable prizes.

With CARA and CRRA utility, the mean 7 is close to zero (risk
neutral) but the outliers don’t converge.

This might explain Chen & Huang (2005)’s results of log-utility
decision makers (i.e. risk averse) performing best in an artificial stock
market.
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5. Discussion

Unlike the GA simulations of Szpiro (1997), we find that the best-
performing CARA agents are risk-neutral, not risk averse. Because of
the indirect way in which Szpiro modelled the risk profiles of his
agents (unlike a referee’s suggestion, footnote 3, Szpiro’s model “only
distinguishes between risk-averse automata and all others”),
explanation of the contradictory results is not easy, but since our
models allow any risk profile to emerge, we argue that they are more
general than Szpiro’s.
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Should we be surprised that risk neutrality does better than risk
aversion in CARA utility functions? Rabin (2000) suggests a reason
why not, at least for small-stakes lotteries. He argues that von
Neumann-Morgenstern expected-utility theory is inappropriate for
reconciling actual human behaviour as revealed in risk attitudes over
large stakes and small stakes. If there is risk aversion for small stakes,
then expected-utility theory predicts wildly unrealistic risk aversion
when the decision maker is faced with large stakes. Or risk aversion
for large stakes must be accompanied by virtual risk neutrality for
small stakes.



Rabin argues that loss aversion (Kahneman and Tversky 1979), rather
than risk aversion, is a better (i.e. more realistic) explanation of how
people actually behave when faced with risky decisions. This
suggests possibilities for further simulations, although “loss aversion”
suggests a prior conclusion.
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most profitable) risk profile for agents faced with risky choices.
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DellaVigna & LiCalzi (2001) prove that Kahneman-Tversky decision-
makers, faced with symmetric lotteries, learn to make risk-neutral
choices.

But we do not appeal to empirical evidence or even to prior beliefs of
what sort of risk profile is best. Whereas there has been much
research into reconciling actual human decision making with theory
(see Arthur 1991), we are interested in seeing what is the best (i.e.
most profitable) risk profile for agents faced with risky choices.

And we find that for wealth-independent CARA utility functions
(exponential) agents learn to become risk-neutral decision makers in
order to maximise their returns when choosing among risky
propositions. This is different from the risk-averse agents that Szpiro



(1997) observed. But for wealth-dependent CRRA utility functions
(CES) our agents often do learn to be slightly risk averse, as expected,
but not always.
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