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ABSTRACT:

This paper builds on earlier studies which examined oligopolists in a repeated
interaction as responding simply to past prices of their strategic rivals, and
which used data from a mature market, with stable rules of thumb (mappings
from past actions, or states of the market, to present prices) for the
oligopolists’ behaviour, whether purposefully learnt or emerging from the
natural selection of the rivalry. The earlier studies imposed exogenous
partitions on the action space, as perceived by the players. This study
explores how such perceptions might be endogenised. A firm answer to the
question of how oligopolists partition their perceptions of others’ actions, both
through time and across the price space, will also provide information on how
much or how little information they choose to use: in short, how boundedly
rational the oligopolists have chosen to be. We use data from a retail coffee
market to examine the evolved optimal partitioning and mapping of price
space, manifest as the oligopolists’ rules of thumb. The data suggest that
brand managers are using very little information: whether prices changed or
not.
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1.  Partitioning of Prices and History

This study follows from earlier work of the U.S. retail ground coffee market,
in which we modelled players as responding simply to the past prices and
other marketing actions of their strategic rivals (Marks Midgley & Cooper
1995; Midgley Marks & Cooper 1997). That study used a genetic algorithm to
derive “good” mappings from past actions to the marketing actions (such as
price) to be pursued in the present period on the part of three strategic rivals.
In the course of the earlier study we became aware of the importance of
modelling not just the patterns of response of the strategic players, but also
their perceptions, both in looking back and in discerning whether small price
movements of their rivals’ are strategically significant. This study explores
how such perceptions might be endogenised. A firm answer to the question of
how players partition1 their perceptions of others’ actions, both through time
and across the price space, will also provide information on how much or how
little information they choose to use: in short, how boundedly rational
players are.

In the U.S. retail ground coffee market the price has been seen to vary
from about $1.50 per pound to about $3 per pound. Cluster analysis shows
that some prices and price regions are used more frequently than others for
each brand, and so the earlier study used four of these for each brand as the
four actions in its simulation. Even though our earlier studies constrained
the artificially intelligent adaptive economic agents to these four actions (of
the many they had been seen to use, and of the 150 or more that are feasible),
we found that the historical profit performances could be improved using
simple four-action, one-round-memory machines.

But cluster analysis is a crude technique. We wish to use the data to
examine the price partitions that the players actually used. Such partitions
will generally be in terms of price (and marketing action) levels, but the
boundaries introduced mean that (away from the boundary) a one-cent-a-
pound change in price is not a signal responded to by the other players, while
that (at the boundary) such a small price change will be seen as strategically
significant by the rival players. It may be that we should partition the first
differences of prices, so that a small change in price will not be perceived as a
strategically significant shift (no matter where the price was before the shift);
only a price change (positive or negative, symmetrically?) will be seen as
such.2

We first formalise the process that each player uses in deciding his
action in the market from one week to the next, using a framework outlined

_______________
1. The concept of partitioning in order to use the coarsest (or minimal) partition which is as

informative as the non-partitioned space was introduced by Blackwell & Girshick (1954),
or earlier (Bohnenblust Shapley & Sherman 1949). Radner (1972) describes a model in
which there is no strategic uncertainty, and in which our partitions are his signals.

2. There is a literature on partitions as a means of imparting information to Bayesian-
rational agents (Geanakoplos 1989, Samet 1990). A recent paper (Dimitri 1993) considers
sequential experiments, in order to model certain information-processing skills on the
part of agents.
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by Lipman (1995). Each week, faced with the actual external state (or E-
state), the players perceive an internal state (or P-state), which may update
their beliefs, on which are conditioned their actions for the week, which
together with the actions of their strategic rivals determine their profits.

2.  Formalities

There is a finite set of external states (or E-states), Ω. The E-states are
defined by the prices (and marketing actions) that each of the players charged
for its brand for a large number of weeks into the past. Ω = A 1 × A 2 × A 3,
where Ai is the vector of brand i’s prices (or actions) for all weeks into the
past.

But it is unlikely that players perceive the information partition as
finely as it is defined in the E-state. Nor is it likely that players remember
more than a few weeks past in determining the internal state Θ. There is a
function ζ : Ω → Θ, that tells which perceived P-state the player observes as a
function of the E-state, where ζ is the perception function: in E-state ω , the
player observes P-state ζ (ω ).

As a consequence, the true information content of the P-state Θ is that ω
is one of the E-states generating this P-state: the true E-state ω is some
element of ζ −1(Θ). If the P-state is optimally determined, then the lost
information is valueless to the player — he or she is no worse off with the
coarser partition of the P-state than with the finer partition of the E-state.
But if the P-state is sub-optimal, then the lost information is valuable, in that
its use would result in a perception of the rivals’ behaviour that would on
average result in a higher profit for the player.

There will be a set of actions the player can choose from, denoted by A,
with at least two elements. How or whether these actions are related to the
perceived P-states is an empirical issue, although for the moment we shall
use a distinct set. Note that since such perceptions are subjective, there is no
guarantee that different players will perceive the same sets of P-states.

There will also be a profit function (usually in the form of a payoff
matrix): u : A × Ω → R, which describes how the state affects the value of the
different actions available to any player. Note that here Ω represents the
true E-state of the market during the present week, and will not be known to
the players until after they have each chosen their actions. Note, too, that
players will only know their perceived states, not the true external states,
even later. In general, one can assume a prior probability distribution q on
Ω, although in our case, discussed below, the probability distribution over
external states is determined endogenously by the choices of the players in
the market.

How does the P-state Θ determine beliefs about the external state? Let
∆ denote the set of probability distributions on Ω. Then β : Θ → ∆ is the belief
function. Beliefs matter because actions are contingent on them. The
mapping from belief to action α : ∆ → A is the action function.

Figure 1 illustrates the model from external E-states to final payoff,
with an example of an E-state, showing how it is transformed into a P-state
and an action. As Lipman points out, it is possible to combine perception,
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E-states Ω
ω = {1.59,2.40,2.27; 2.00,1.75,2.30; . . . }

P-states Θ
θ = {low, High, high}

Beliefs ∆
δ

Actions A
a = {Low}

Payoffs
{857.3}

partition function ζ

belief function β

action function α

payoff function u

Figure 1: From External State to Payoff: The Player Modelled
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belief, and action functions into a behaviour rule: f : Ω → A, where
f (ω ) = α (β (ζ (ω ))). This corresponds in the figure to an arc from the E-states
node to the Actions node. In our earlier studies (Marks et al. 1995; Midgley
et al. 1997), the partitioning mapping from the E-states node to the P-states
node was exogenously determined, and we used a Genetic Algorithm (Mitchell
1996) to search for arcs (mappings) from the P-states node to the Actions
node, using the payoffs as fitnesses.

We can check the internal consistency of the belief function β . No
processing: δ  = β (θ) ∀ θ , which suggests δ  = q, the prior distribution. Full
processing: θ  ≠ θ ′ ⇒ β (θ) ≠ β (θ′). We expect β (θ) to put probability 1 on the
set ζ −1(θ). As Lipman puts it, the player should be able to say to himself:
“My beliefs are δ . But I know I’d have these beliefs if and only if ω ∈ W. So I
shouldn’t be putting any probability on states outside W.”

Lipman distinguishes between interim optimality and ex-ante
optimality. For the former, an action function α : α (δ ) which maximises the
following function for all δ must be derived:

ω ∈ Ω
Σ u(a, ω ) δ (1)

Then a behaviour rule must be constructed by letting f (ω ) equal the action
α(δ ) where P-state ζ (ω ) results in action δ . That is, for each ω : β (ζ (ω )) = δ ,
let f (ω ) = α (δ ). This describes how the player will behave in searching any
given solution.

If β (ζ (ω )) = β (ζ (ω′)), then f (ω ) = f (ω′). If the player has the same
beliefs in two E-states, then his behaviour is the same in those E-states; that
is, f is measurable with respect to β (ζ )).

In our earlier studies, we derived equation (1), and we used evolutionary
fitness to proxy for u. Our action function was α(δ ), where δ is the player’s
belief of the E-state: we explicitly separated the determination of δ and the
determination of α .

The belief function β : Θ → ∆ can also be endogenous: if f is an interim-
optimal behaviour rule f : Ω → A, then let V be the ex-ante expected profit
associated with processing information according to the function β :

V (β ) =
ω ∈ Ω
Σ u (f (ω ),ω )q (ω ).

Recall that β affects f by imposing a constraint on the set of available fs via
the measurability requirement. Then we can model the determination of β by
supposing that the player chooses it (endogenously) so as to maximise
V (β ) − c (β ), where c gives the expected information processing costs.
Typically, the player is constrained to choose β from a set B of belief
functions.

Lipman raises the question: Is it odd to model bounded rationality by
assuming optimal information processing? Why not just choose optimally a
given ω? Well, we assume general knowledge, that is, how to solve, not the
specific solution. The model shows how to choose β and f contingent on ω .
Moreover, if players do not achieve optimal β and f, then the model of the
world as the player sees it is not completely specified.
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3.  Partition Models

Information processing can be summarised by a partition Π of the set of E-
states Ω. A partition Π of a set Ω is a collection of subsets of Ω with the
property that every ω ∈ Ω is in exactly one of these subsets. The elements of
the partition Π are often referred to as events. Intuitively, a partition Π is
said to be finer than a partition Π′ when learning which event of Π contains a
given ω conveys more information than learning only which event of Ω′
contains ω ; the converse is a coarser partition.

Partitions are closely related to equivalence relations: binary
relationships that are reflexive, symmetric, and transitive. Given any
equivalence relation R (such as two E-states ω and ω′ are equivalent if they
lead to the same beliefs), we can partition Ω into equivalence classes: for any
given ω ∈ Ω, let

R (ω ) = (ω′ ∈ Ω | ωRω′).

Thus R (ω ) is the set of points equivalent under R to ω — the equivalence
classes of R — which it is readily shown form a partition, Ω, called the
partition induced by R. Similarly, given any partition Π, we can define an
equivalence relation induced by the partition by saying that ω and ω′ are
equivalent if they are contained in the same event in Π.

Consider the equivalence relation over Ω defined by saying that two E-
states ω and ω′ are equivalent if they lead to the same beliefs (or if
β (ζ (ω )) = β (ζ (ω′))). Let Π denote the partition induced by this equivalence
relation, and let π (ω ) denote the event of Π containing ω .

The key to the partitional models is that beliefs are assumed to be
internally consistent, so that if the player’s beliefs are δ only in certain
external E-states, then δ must rule out any other E-states. Usually, the
stronger assumption is made: that δ is assumed to be calculated from the
prior q via Bayes’ Rule. The partition can be used to summarise the player’s
information processing without explicit reference to the underlying belief
function.

The partition Π is easily interpreted in terms of information processing:
if Π has only one event (the entire set Ω), then the player is not processing his
input P-states at all, which corresponds to the case where β (θ) = q for every
P-state θ . By contrast, a partition that has a different event for each different
E-state ω involves complete processing: the player processes the information
so thoroughly that he recognises every possible distinction between inputs.
His partition could not be finer.

Because Π summarises information processing, write V (Π) instead of
V (β ), for the expected profit associated with information processing according
to the belief function β , which is identical to the expected profit associated
with the information partition Π. If we further assume that the cost of a
given information processing function β depends only on the partition β
generates, then we can work with c (Π) instead of c (β ) for the expected
information processing costs.
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4.  Finite automata

Aumann (1981), Neyman (1985), and Rubinstein (1986) were the first to
study repeated games in which players were restricted to using finite
automata to implement their strategies. One reason for studying game-
playing machines is that they can be used to give a formal description of the
concept of “bounded rationality” (Simon 1972). Finite machines must by
definition be bounded, and can be used to model the concept. Neyman and
Rubinstein modelled bounded rationality as limitations on the number of
states of the machine: Neyman imposed an exogenous limit on the number of
states; Rubinstein assumed a cost trade-off.

An automaton consists of a number of internal states, one of which is
designated the initial state; a transition function, which specifies how the
automaton changes states in response to the other players’ actions; and an
output function, which maps state to action. See Marks (1992) for a fuller
treatment. In our earlier studies, (Marks et al. 1995; Midgley et al. 1997) we
used the genetic algorithm to determine the initial state and the mapping
from state to action.

Let I denote the set of possible histories of play (of actions). Then with
three players I  = A 1 × A 2 × A 3, where Ai is the history of player i’s actions in
the game. A strategy in the game is a function σ that specifies an action as a
function of the state of the game, which in turn is a function of the history of
the game. If the game has an unlimited number of rounds, then after any
history h the remaining game is still infinite. Hence a strategy for the overall
game, σ , specifies a continuation strategy following h for the game. Kalai &
Stanford (1988) call this the induced strategy, σ | h. We can say that two
histories, h and h ′, are equivalent under σ if they lead to the same induced
strategy; σ | h = σ |h ′.

Lipman argues that it is easy to show that this is an equivalence
relation, so that it generates a partition of the history set I, which can be
denoted by I (σ ). If the player knows which event of this partition a history
lies in, then he knows enough about the history to determine the strategy it
induces. Kalai & Stanford show that the number of internal states of the
smallest automaton which plays a given strategy is equal to the number of
sets in this partition, when the “Moore machine” representation is used
(Moore 1956). Banks & Sundaram (1990) considered the number of states
and the number of transitions, in a two-dimensional measure.

In our earlier studies, the set of external states Ω is the set of histories I
= A1 × A 2 × A 3, where we model the strategic interaction of three brand
managers as players, following Fader & Hauser’s 1988 study. We arbitrarily
chose a time partition of one-round memory, so that no actions of more than a
week ago were directly perceived by the players (although indirect influences
through others’ actions last week were not, of course, excluded). To partition
the large number of possible prices, we used a statistical technique on
historical data of the oligopoly, namely cluster analysis, in order to partition
the price space into four bands, again an arbitrarily chosen number. The
boundary prices varied with brand.
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These techniques allowed us to map the E-state of brands’ prices (and
other marketing actions) for many weeks into a much coarser P-state of one
week’s data, suitably partitioned; an exogenous perception function ζ : Ω →
Θ. As described, we then used the machine-learning genetic algorithm to
search for better mappings from P-state to action, or α(β (θ)). Note that, using
machine representations, we did not explicitly model beliefs δ , or a belief
function (β : Θ → ∆), or how actions are mapped from beliefs (α : ∆ → A).
Instead, we can define our response function as a mapping from P-state to
action: γ : Θ → A. See our earlier studies (Marks et al. 1995; Midgley et al.
1997) for discussion of this search.

The set of actions, A, is the set of strategies for the repeated game.
Hence, following Lipman, any strategy σ can be described as a behaviour rule
f from I (σ ) into A, where f (h) = σ |h. Thus we can separate the choice of a
strategy σ into the choice, first, of a partition on the set of histories Π, and,
second, of a function from Π to the set of strategies or actions.3 The cost
function c is usually taken as an increasing function of the number of events
of the partition only, c (Π), although other functions are possible.

A related model is Dow’s 1991 model of search with limited memory.
The E-state is a pair of prices, one observed in period 1 and one in period 2.
The action is which price at which to buy. Dow’s agent knows (or believes) he
will not be able to remember the first price exactly (an exogenous constraint)
and so is modelled as partitioning the set of possible prices; his memory is
only into which event of the partition the period 1 price fell. The partition is
explicit, and Dow also assumes that costs are proportional to the number of
events in the partition.

The motivation for this study is the desire to endogenise the partitioning
which is necessary for simulations of interactions as mappings from state of
the market, suitably defined, and actions by the players. Although this study
does not go beyond the discussion below of how to partition to maintain
maximal information, future work will harness these results in further
simulations, as discussed above.

5.  Optimal Partitioning

Lipman discusses a class of models in which although the E-state is observed
directly, it is classified according to which of two sets it falls: whether or not it
is above a certain real-valued threshold.4 There seems no reason why the
concept should not be generalised to multiple thresholds. The exogenous
partitioning of our earlier studies was into four regions, requiring three
thresholds, but we have considered a finer partition. Although the

_______________
3. Lipman (1995, fn. 5) points out that not every partition of I can be generated by some

strategy, and that not every function from such a partition to A will constitute a
legitimate strategy.

4. If the E-state is not already expressed as a real number, it must first be translated into a
real number. In our case, however, prices are real numbers, up to the integers.
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programming effort increases in the number of thresholds, Lipman reports
that this class of models assumes zero cost for information processing.

5.1  A First Cut

We start by considering the simplest partition of the price space, into two
regions, a dichotomous partition between “low” and “high” prices. The
question is where best to draw the boundary between the two regions. To
explore this issue, we set up a model in which the choice of where to divide
the region between the lowest price and the highest price is one of eight
points, dividing the price space into nine equal regions. The data are 78
weeks of weekly observations for three competing brands in a mature market
(that for canned, ground coffee in a U.S. city).5

From above, the set of external states Ω of the market with three
strategic players is the set of histories I = A1 × A 2 × A 3, but we wish to define
a new set of market states based on the perceived states Θ. Instead of the set
of E-state histories I, define a set of histories Îi = Â1i × Â 2i × Â 3i, where Âji is
the history of actions of player j as perceived by player i. As soon as we
introduce subjective perceptions into the game, we introduce the possibility of
subjective histories, too, but, so long as the partitioning which gives rise to
the perceived actions of self and others is endogenous, no player could
improve his or her payoffs by changing his or her partitioning of the price
space, at least in equilibrium. From a learning or evolutionary viewpoint,
players will adjust their perceptions (their partitioning) so as to end up close
to their notional equilibrium partitioning.

We also consider dichotomous partitioning of the first differences of price
(both absolute and algebraic) in order to model players’ responses to price
jumps, as well as considering a symmetric terchotomous partition of price
levels.

5.2  Measures of Optimality

Which partitioning is best?
We argue that the best partition is the one that loses the least amount

of information. One candidate is the partition (or partitions) which result in
the highest number of perceived states, but there is a more informative
measure: Theil (1981), in discussing the general issue of information
measures associated with events, suggests entropy.6 Entropy H is given by

_______________
5. For further details, see Midgley Marks & Cooper (1997). The three rivalrous brands are

Folgers, Maxwell House, and Chock Full O Nuts.
6. As discussed in Section 7 below, information is merely the means to an end: the player’s

profits, or expected profits in a stochastic game. But, as McGuire (1972) argues, the
search for a one-dimensional measure of “informativeness” — the value of a “information
structure” or partition — is in vain; entropy included. See also Radner (1987, p.300):
“...there is no numerical measure of quantity of information that can rank all information
structures [partitions] in order of value, independent of the decision problem in which the
information is used”. Note that Kolmogorov introduced the concept of the entropy of a
countable partition in 1958 (Iyanaga & Kawada 1977).
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H ≡ −
i =0
Σ

N −1
pi logb pi, (2)

where there are N perceived states, and the probability (or observed
frequency) of state i is pi. If the logarithm base b is 2, then the units of
entropy are “bits”; if b is the exponential constant e, then “nits”.

Theil argues on axiomatic grounds that entropy is justified, by showing
that the entropy information measure of an event (such as the observation of
a specific market state) satisfies four axioms:

Axiom 1. The information content of observing that a state i occurred depends
only on the probability pi of its occurrence prior to the observation.

Axiom 2. The information is a continuous function of pi in 0 < p ≤ 1 and
monotonically decreasing.

Axiom 3. When state i is certain, its observation carries zero information.

Axiom 4. The information content of a state which is the union of two
mutually exclusive states (zero intersection) equals the sum of the
information of observing one state and that of observing the other.
(Additivity.)

The maximum number of states is equivalent to entropy as an
information measure only when each state is equally likely or frequent as is
readily seen in equation (2) with pi = 1/N,  ∀ i. With non-uniform
distribution of states, the measure of the maximum number of states N
throws away information about each state’s frequency. None the less the two
measures are empirically close at determining the optimal partition point
with dichotomous partitioning. In order to better compare the two measures,
we use the antilogarithm of entropy, or alog entropy (AE), which is given by
the expression:

AE ≡ antilogb H ≡ b H =

i =0
Π

N −1
pi

pi

1_______, (3)

where b is the base of the logarithm used in equation (2). This measure,
unlike entropy, has the additional benefit of being independent of the base b.
The units of the measure of alog entropy are “equivalent states”.

A dichotomous partition divides the price line into two regions only:
“low” (below some partition point λ ) and high” (above it); there remains the
empirical issue of the optimal location of the dichotomous partition point.
Since there is only one degree of freedom in its choice, we can plot any
measure against its location.

Figure 2 uses the market data from Chain One7 to plot two measures of
information losses against the position of a dichotomous partition, as it moves
in steps of a thousandth of the range between lowest price and highest price
charged by each of the three brands over the 78-week period of the data. The
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measures are:

1. The number of perceived states; and

2. The closely related measure of sample alog entropy across all perceived
states, from equation (3).

The two measures are brand- or player-independent, since they don’t require
consideration of the actions that result from the perceived states, by player.

The steps we follow are:

1. For each of the three brands or players, determine the minimum and
maximum prices charged over the period.

2. For the following five steps, choose a partition point λ , (0 ≤ λ  ≤1). With
iteration of these steps, the partition point will increment from zero to
one in steps of a thousandth of the range between each brand’s
minimum and maximum prices.8

3. For each brand’s price, for each week, for a given partition point λ ,
determine whether the price is “low” or “high”: if

price ≤ minimum price + λ (maximum price – minimum price),
then the price falls “low”, otherwise “high”. When λ = 0, almost all
prices are classified as “high”, since the partition point is at the
minimum price, and so the “low” set is almost empty; when λ = 1, all are
classified as “low”, for the opposite reason. (Note that the minimum and
maximum prices in the expression are brand- or player-specific, since
there is no constraint on players to price in the same range as do their
rivals.)

4. For the given partition point, determine the perceived state of the
market. With three players and one-week memory, there are 23 or 8
possible states. Arbitrarily number them by calculating the state
number:

state = 4 × F + 2 × MH + CFON,
where F is Folgers’ action, MH Maxwell House’s, and CFON Chock Full
O Nuts’; if a player priced “low” last week, then define that player’s
action to be 0, otherwise 1. (For Figure 4, with two-week memory, there
are 26 or 64 possible states, similarly arbitrarily numbered.)

5. For the given partition point, calculate the observed frequency pi of each
state i, as defined by the number of times each perceived state is
observed as a proportion of the total number of times states are
perceived.

_______________
7. We had scanner data from three supermarket chains, but here use data from Chain One

and (in Figure 3) Chain Two only.
8. With the data we have, increments smaller than one thousandth do not reveal any finer

structures in the entropy measure: one thousandth is a sufficiently fine increment.
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6. For the given partition point, these frequencies can be thought of the
sample probabilities of the perceived states, which enables calculation of
the alog entropy measure associated with a particular partition point,
from equation (3).

7. As mentioned above, the the total number of perceived states would be
equal to the alog entropy if the frequencies of all perceived states were
equal: using the total number of perceived states as a measure of the
effectiveness of a partition point at retaining relevant information
means throwing away the information of the frequencies of the
perceived states, for the given partition point. Alog entropy is bounded
above by the the total number of perceived states, as seen for instance in
Figure 2.

8. After incrementing the partition point by one thousandth, Steps 2 to 7
are repeated, until the full interval between minimum and maximum
prices has been searched, as plotted in the Figures below.

We examine the possibility of price changes, as well as price levels,
below, calculating both measures.9

6.  Results

Following the eight-step procedure listed above, we use 78 weeks of data from
Chain One to plot the measures in Figure 2. This is compared with Chain
Two data in Figure 3. For the Chain One data, we have also considered two-
week memory (Figure 4); first-differences in prices with one-week memory,
both absolute, in which only the size of the price jump matters (Figure 5), and
algebraic, in which both size and direction of the price jump matter (Figure
6); and a symmetrical terchotomous partition, in which the price range of
each brand is divided into three partitions, symmetrically about the mid-point
of the range, which requires a single parameter only (Figure 7).

The six cases are summarised in Table 1 and the results are
summarised in Table 2, below.

_______________
9. An earlier version of this paper explored the possibility of a third, brand-dependent

measure. This was based on the concept of the mappings from state to action of a specific
brand manager. It is possible to derive a matrix, the rows of which correspond to
perceived states, given the partition point, and the columns of which correspond to a fixed
number of price ranges which span the actions of a specific player. Intuitively, when the
partition is such as to maximise the number of perceived states, the best partition is that
which minimises the mean mapping from perceived state to action. The rationale is that,
under the ideal partition, all possible states are perceived, and that each state is found to
map to only one action in the historical data. If, in the limit, it is found impossible to
reduce the number of actions per perceived state to one, with all states perceived, then
this may be due to one of several possibilities: a misspecification of the model (it may be,
for instance, that players respond to not price levels but to price changes), or that the
assumption of a deterministic mapping from state to action is wrong, with some mixing
of strategies. We do not explore this further here.
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Figure Data Partitions Weeks of Price
(Chain) Memory Variable_______________________________________________________

2 One 2 1 level
3 Two 2 1 level
4 One 2 2 level
5 One 2 1 |difference|
6 One 2 1 difference
7 One 3 1 level_______________________________________________________

Table 1: Summary of the Cases.

6.1  Dichotomous Partition of Price Levels

6.1.1  One-week memory. Examination of Figure 2 reveals that entropy is a
much finer measure than is the number of perceived states: over ranges of the
partition point λ , the latter measure is unchanging, while the entropy varies.
Moreover, from Figure 2 the entropy measure suggests that the optimal
dichotomous partition for Chain One data is a threshold λ at 90.1% This
means that for a dichotomous partition with the observed behaviour of the
three strategic brands in Chain One, less information is lost with a partition
point at 90.1% of the distance between each brand’s minimum and maximum
prices than with any other partition point.

For Chain Two data, the optimal partition point using the entropy
measure is significantly lower, at between 71.4% and 71.5%, as seen in Figure
3. Comparing Figures 2 and 3 for the two sets of data, we can characterise
the players in Chain Two as more responsive to prices in the mid-upper range
than the players in Chain One appear to be. In Chain One, the threshold
between “high” and “low” prices is around 90% of the price range between
highest and lowest price of each player; in Chain Two it is around 71%.

6.1.2  Two-week memory. Players with two-week memories can respond to
movements in other players’ prices, unlike players with one-week memories
only: a rise (from “low” to “high”), a fall, a steady “low”, or a steady “high” on
the part of each of the other players (as well oneself) can be responded to.
With two-week memory, three players, and dichotomous partitioning, there
are 26 = 64 possible states of the market. Comparison of Figures 2 and 4
reveals a richer information structure of the same data set (Chain One). But
the entropy-maximising partition point λ is exactly the same: at 90.1%
precisely (using steps of 0.001 of the range). This is only an artefact of the
data, as is seen when the Chain Two data are analysed with a two-week
memory model: the maximum entropy partition is slightly higher than in
Figure 3, at 72.4%.

6.2  Dichotomous Partition of First Differences of Price

Using two-week memory the model can track the directions of players’ price
movements, but not, with dichotomous partitioning, the magnitudes of price
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jumps. For this reason, and since it may better describe the way the
historical brand managers behaved, we consider not price levels, but the first
differences of prices: price at week t minus price a week earlier.

Figure 5 deals with absolute first differences, so that only the magnitude
but not the direction of the price jump matters, and Figure 6 deals with the
actual (or algebraic) first difference, which include both magnitude and sign
of the change. For Figure 5, the partition point is between 0% and 100% of
the range between the smallest (greater than or equal to zero) and largest
absolute first difference in price for each player; for Figure 6, between 0% and
100% of the range between the smallest (most negative) and largest (most
positive) first difference for each player.

6.2.1  Absolute First Differences. From Figure 5, we see that entropy is
maximised at λ = 1.4% and 1.5% (with steps of 0.001), which means that with
a dichotomous partition the most significant threshold is whether or not the
absolute value of a price change is greater than or less than about 1.4% of the
range between smallest absolute price change and largest. Intuitively, the
threshold is the boundary between no change (or negligible change) in price
from one week to the next, and a significant change (which is here any
absolute change greater than 1.6%, up or down).

6.2.2  Algebraic First Differences. Figure 6 is plotted for actual first
differences in price. As we might expect, it is more closely symmetrical than
is Figure 5, since price rises and falls register distinctly here. Maximum
entropy occurs at a λ equal to the exact midpoint of the range of price
differences. This seems consistent with the results of Figure 5, but there is no
reason, ex ante, to believe that price rises and falls should be even roughly
symmetric: a pattern of small falls followed by large rises — such as is
sometimes seen in petrol price wars (Slade 1992) — will bias the data, and
the midpoint will correspond to a positive price jump, but such asymmetries
are not seen in these data.

6.3  Symmetrical Terchotomous Partition of Price Levels

A dichotomous partition is the simplest we can consider (and the easiest to
calculate: above or below the partition point); with only one degree of
freedom, it is also the easiest to plot, as in Figures 2 through 6. But it may be
that players use more sophisticated partitioning of the price space. For
terchotomous (3) or higher-order partitions, there are more than one degrees
of freedom, in general, which is more difficult to search for and not as easy to
present graphically. There is, however, one way to model terchotomous
partitioning using only one degree of freedom: λ is the proportion of the range
spanned by the central partition of the three, centred on 50%, so that λ = 0
corresponds to two partition points together at the centre point of the price
range; λ = 1 corresponds to one partition point at the bottom (left) of the price
range and the other at the top (right); λ = 50.0% corresponds to one partition
point at the quarter point and the other at the three-quarters point of the
price range — hence the description symmetrical terchotomy.

Figure 7 presents the results of using this partitioning with the Chain
One data. The maximum entropy threshold λ occurs at 80.3%. This means
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that when the price range is divided into three partitions at about 10% and
90%,10 then least information is lost. That is, the most informative
symmetrical terchotomous partition is sensitive to price levels near the
bottom (aggressive) or near the top, and doesn’t differentiate over the large
range of prices in the middle (80% of the range). Of course, there is no reason
why the players should perceive price symmetrically in this manner.

6.4  Maximum Perceived States

In almost all the cases considered above, the partition which minimises the
entropy measure of information loss occurs in or at the boundary of the region
of maximum perceived states. This is summarised in Table 2, below, which
characterises the two measures of antilog entropy and maximum perceived
states in terms of the optimal partition point λ and the two respective
measures, in units of effective states.

E n t r o p y Perceived States
λ measure λ measure

Figure (%) (states) (%) (states)______________________________________________________________
2 90.1 6.525 86.5–93.8 8
3 71.4–71.5 6.235 54.3–71.5, 72.9–76.0 8
4 90.1 22.889 90.2–90.7 30
5 1.4–1.5 7.765 0.3–15.6 8
6 50.0 4.663 48.8–49.9 8
7 80.3 11.334 81.8–82.7 19______________________________________________________________

Table 2: Points of Maximum Information Retained

Figure 7 presents the greatest distance between the optimal partition points
of the two measures: 80.3% for maximal entropy is 1.5 percentage points
below the range of 81.8% to 82.7%. This reveals that, especially as the
number of possible states rises, it is not necessary that the maximum-entropy
point occur within the range of maximum perceived states.

In the partitioning models of Figures 2, 3, 5, and 6, the maximum
number of states is 8, since there are three players, each with two possible
prices, “high” or “low”. We see that there exist partition points which allow
all 8 states to be perceived from the Chain One data (and, from Figure 2, the
Chain Two data). Figure 4 is plotted from a model with a maximum number
of 64 states, and with the Chain One data the maximum perceived is 30.
Figure 7 is plotted from a model with a maximum number of 27 states, since
each of the three players can have three possible prices; with the Chain One
data the maximum perceived is 19.

_______________
10. 10% = 50% – 80% of 50%; 90% symmetrically.
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6.5  Most Information Retained

The results of the six models, summarised in Table 2, provide sufficient
information for a tentative answer to a question posed at the outset: how
much information do the brand managers choose to use in their repeated
interactions? Since we have not here developed a brand-dependent measure,
we use instead the two measures of information retained — maximum
perceived states, and entropy — with various models of simple partitioning.
The individual information-processing of the managers has resulted in three,
interrelated series of actions over 78 weeks, which we have analysed, and
which can reveal which simple partitioning is best at retaining information.

As shown, the maximum possible number of perceived states provides
an upper bound to the entropy. This allows us to compare three of the
models, those underlying Figures 2, 5, and 6, all of which allow a maximum of
eight possible perceived states. The other models are difficult to compare
because they use different data (Figure 3), or have different numbers of
possible states (Figure 4, up to 64, and Figure 7, up to 27).

All three of the Figures 2, 5, and 6 reveal the maximum number of eight
perceived states. They can be ranked in terms of maximum entropy as Figure
5 (7.765/8), Figure 2 (6.525/8), and Figure 6 (4.663/8). Our tentative
conclusion is that, using a dichotomous partition of the price actions, the
brand managers are revealed as using a very simple model. The model
underlying Figure 5 with a partition point of 1.4%, as discussed in Section
6.2.1, means that if the managers respond simply to whether their rivals
changed their prices or not, comparing actions two weeks ago with actions
one week ago (first differences), then they glean more information from the
historical data than if they ask whether the prices were raised or lowered
(Figure 6) or whether the prices last week were “high” or “low” (Figure 2).

The Figure 5 model implicitly uses two-week memory to derive the first
differences of price; the Figure 4 model uses two-week memory explicitly. Its
maximum entropy measure of 22.889 is not close to the maximum number of
perceived states of 30 (or a maximum possible of 64), which leaves the model
of absolute first differences of prices (of Figure 5) with the highest
information retained under the dichotomous partition point of 1.4%. Similar
analysis of the historical data from Chain Two (unplotted, but a partition
point of 2.3% and an entropy of 7.803 effective states) confirms that the
simple dichotomous model of price change or not shows the highest level of
information retained.

7.  Conclusion

This paper has reported the latest stage in our programme of using the
techniques of machine learning and the historical market data at our disposal
to compare the behaviour of our artificially intelligent adaptive economic
agents using evolving partitions with the behaviour of such players using
exogenously determined partitions. We have shown how our search space has
been widened from the mapping of the response function γ : Θ → A (from P-
state to action) to the mapping from E-state to action: the behaviour rule f : Ω
→ A. We have discussed and demonstrated techniques for measuring the
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information retained associated with a particular partition. Using the
entropy measure we have examined optimal dichotomous partitions of
historical data of price competition, and derived optimal partition points.
This is helping us us to answer the question, at least for our historical data,
of how boundedly rational our players, the coffee brand managers, were.

Our conclusion, based on the simple partitioning models considered, and
the historical data of the three-way interactions between the brand
managers, is that the simple model of whether or not prices changed is the
most informative fit with the two sets of historical data examined. This
implies that the boundedly rational historical brand managers used this
simple model in their decisions to respond, whether consciously or not we
cannot say.

We have considered optimal partitions using entropy as the appropriate
measure of information retained. But the information is not an end in itself,
as we have implicitly assumed. Rather, the information is a means to an end
— to maximise net return in the repeated interaction among the players.11

The next stage of the research program is to search for the best combination
of information partitioning and the consequent mapping from state to action,
using exogenous actions, as previously.12 The last stage of the program must
be to endogenise the choice of actions too, so that we are searching for the
best combination of perceived states, action mappings, and final actions in the
repeated interactions. But this must await future work.
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