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" 'SYNOPSIS

This report considers the development of computer
programs to carry out:plastic analysis and deslgn, using the
techniques of mathematical optimisation.

A survey of the literature dealing with plastic
analysis and design 1s madé. Thé theoretical bases of four
computér programs aré reviewed., The four programs are sulted
to two- or three—qiménsional pin-jointed trusses. They carry
out, réspectivély,

i. a load factor analysis;

ii., 'a deflexion analysis at any stage of loading

up to collépse;

iii. a design for minimum welght under one or
several loading cases;

iv. an efficient welght deslgn under one or
several loading cases, considering the self-
weight of the structural members.

Use of the programs 1s explained with examples, and

some results obtained from thelr use are discussed.
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_ " 'SYMBOLS
vector of member areas
vector of area ratios
reference area, (oy 4 1s réferénce tensile yield force)
diagonal area matrix A
diagonal area matrix corresponding to redundant members
diagonal area ratio matrix
lower 1imit on estimated possible values of vy

force transformation matrix
1" 1 11

q =B Q+B, x
number of loading cases

complementary energy

connexion matrix

submatrix of C, corresﬁonding to the unloaded,
unsupported joints

square augmented connexilon matrix, extra rows
opposite redundants

number of degrees of freedom ¢f collapse mechanism
vector of member deformations

vector of Jjoint displacements

Young's modulus

force transformation matrix

structure flexibility matrix

"dimensionless" structure flexibility matrix
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«force transformation matrix

dimensionless force transformation matrix
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p = G P+G,r
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number of joints of pin-jointed truss

transformed load matrix

unit load matrix: specifies load ratios and Joints of
application
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numbér of mémbérs of pin-jointéd truss

véctor of coefficients of actual load factor

flexural sectilon of i th beam

diagonal member length matrix

number of membérs at yiéld forcé

vector of ratios of member forces to member tensile

yield forces - -

dimensionless load matrix

the 1 th correction load matrix

member force vector

actual load vector

number of internal redundants (lost during collapse)

vector of ratios of redundant member forces to member

tensile yield forces _

vector of greatest ténsile member loads due to the

external loading cases only

vector of greatest compressive member loads due to

the external loading cases only

dimensionless positive redundant vector

transformed unit métrix

vector of relative redundant displacements

dimensionless complementary energy

proportional to dimensionless complementary energy
" 1" . " 1 1"

transformed connexion matrix

vector of member volumes

volume of structure

"dimensionless" volume of structure

submatrix of U |

weight density of flexural members

determinate member force system vector

weight of structure '

weight of minimum weight design (m.w.d.)

- vector of redundant member forces
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vector of ratios of redundant forces to reference
tensile yleld force ‘

positive redundant member force ratio vector

ratio of compressive to tensilé yield stress;

power in w « M

actual load factor for unit load vector

vector of ratios of actual member strains to tensile
-yield strains .

tensile yield strain

"dimensionless" load factor for unit load vector
collapse load factor ' -

.ftensile yleld stress

null matrix

null veétor

unit vector

vector of member lengéh
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- CHAPTER T. ' INTRODUCTION
The advent of the digital computer and the develop-

ment of Operations Research have revolutionised many aspects
of engineering. 1In structural engineering their development
has coincided with that of methods of design and analysis
based on the plastic theory of ductile structures. These
methods combiné simplicity of formulation with a rationality
in description of the behaviour of such structures. |

One of the first applications in structural
engineering of the mathematical optimisation techniques of
Operations Research came with the realisation that some
formulations of analysis based on plastic theory led to
optimisation problems and it was not long before plastic
analysis had been automated. A few years later plastic
design was similarly treated.

In the analysis of ductile structures, the ideal
rigid-plastic models of behaviour can be treated either
from a kinematic or mechanism approach or from a static or
equilibrium approach to obtain the plastic collapse loads. '
The former corresponds to a linear programming maximisation,
and the latter to a linear procgramming minimisation.

The plastic theory of design and analysis is form-
ulated in terms of the strength of the material’only - it
can be assumed to exhibit rigidéplastic behaviour. But the
ductile materials which can be analysed and designed using
plastic theory are elastic-plastic in behaviour and undergo
elastic deflexions before collapse. These deflexions are
not given by plastic theory but may well be critical.
(Elastic analysis gives the deflexion behaviour of the
structure while ignoring the reserves of strength inherent
in redundant, ductile structures.)

However, assuming perfectly elastic-perfectly plastic
behaviour, the elastic deflexions at collapse may be estimated,
as long as the correct member force distribution is known.
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In cases of complete or overcomplete collapse the correct
distribution is'givén by the équilibrium and yleld criteria

of plastiec théory. But'whén'the collapse is partial, as is
common in complex structures, the rigid-plastic distribution:
‘attained 1s not uniqué: compatibility must be considered

in order to obtain thévcorréct elastic-plastic distribution.
Compatibility must be considered also if the deflexions are
required béfore incipient collapse: either in the fully
elastic region or in the elastic-plastic region after ylelding
has first occurred. '

Compatibility can be considered by solving additional
virtual work or slope-~deflexion equatilors, but the correct
force distribution 1s also that distribution which leads to
the minimum structural complementary energy. This can be'
treated as a quadratic programming problem with linear
yield constraints.

' Design usually aims to achieve a minimum total cost
of materials, construction and maintenance. If the cost can
be expressed in terms of the independent design variables
and 1f the behaviour constraints are quantifiable then solution
for the minimum cost design (m.c.d.) 1s possible. This
formulation is not at all easy. But formulation of the
minimum volume or weilght design (m.w.d.) problem is simple:
using strength constraints only this 1is the plastic design
problem. Deflexion constraints (i.e. elastic-plastic design)
lead to non-linearities. In general one can either minimise
welght for constant strength-plastic (linear), or minimise
welght for constant straln energy-elastic (nonlinear).

But what is the relevance of m.w.d. to m.c.d?

In some structures the total cost 1s more dependent on the
cost of the materials in the structure, while in other
structures the cost of fabrigation and maintenance are far
more costly than the materials. 1In large office buildings
the materials cost is but a small part of the total cost
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and a saving of a few percent in structural material costs
is insignificant ovérali:_ thé time and effort spent in
attempting to achiéve m.w.d. may éven offset the savings in
materials cost. A

For any but the simplést sﬁructnres, then, m.w.d.
is hardly a practical economic objective., But it can
help in understanding the most (strncturally) efficient wéy‘
of supporting loads. In this sense the désigner can use it
as a guide in attempting more rational design of structures.
Some might say that the aesthetic pleasure obtained in achieving
the simplicity of the m.w.d. is justificatlon enough.

This thesis describes the theory and operation of
four programs dealing With elastic-plastic and rigid-plastic
two- or three-dimensional pin-jointed trussés. The programs
are for determining the collapse load factor, for obtaining
the elastic-plastic deflexions at any loading to coilapse,
and for obtaining the minimum weight design under one or
several loading conditions and taking into account the self- '
welght of the bars,



' CHAPTER II. LITERATURE SURVEY

2.1 " Plastic Analysis . |
Following work done in England in the thirties and
forties searching for simple yet rational procedures of

design, interest was aroused in the so-calledAplastic _ _
behaviour of ductile materials, in particular, of mild steel.
VAN DEN BROEK (1948) published "The Théory of Limit Design"
in 1948 and in the following year BAKER (1949) published the
results of his group in England.

These studies were concerned with the flexural behaviour
of rigid-jointed frameworks, but several assumptions had to
be made in order to be able to obtain results. The assumption
of elastic-perfectly plastic moment-curvature behaviour,
characterised by a sharply defined yield point and no strain
hardening, was the most important. Also, 1t was assumed
that plastic "hinges" formed at points where the bending
moment reached yield - these hinges were capable of large
angles of rotation at'constant moment of resistance: the
plastic moment. The effect on the plastic moment of axial
loads and shear forces was neglected, and the elastic .
deformations of the structure were assumed to have no effect
on the equilibrium equations. ‘ '

It was found that to obtain the collapse load

factor, a complete elastic-plastic analysis was not
necessary. Upper and lower bounds for the factor were
easily obtailned and these could be narrowed without much
difficulty (HORNE (1950), GREENBERG & PRAGER (1951)).
Apart from the simplicity of the technique, it was a more
realistic approach to structural behaviour: elastic design,
with onset of yielding anywhere in the structure as the
fallure criterion, disregarded the reserves of strength
inherent in redundant, ductile structures (NEAL & SYMONDS
(1950)).

The bounds on the collapse load are obtained from
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the following three theorems'

~ Static Theorem: 1if, for a given set of external
loads Qs, an internal stress distribution can be found that
satisfies equllibrium and doeqn't violate the condition that
yield nowhere be exceeded, then ;% Q,, the collapse load.
Such a state of stress is known as statically admissible.
This theorem provides a necessary and sufficient condition
for the structure to carry the loads (HORNE (1950),
GREENBERG & PRAGER (1951)).

Kinematic Theorem: if, for a given set of external
loads, Qx, a collapse mechanism can be found consistent with
-equilibrium requirements, then @ > @, the collapse load
(GREENBERG & PRAGER (1951), NEAL (1956)). v

Uniqueness Theorem: 1f, for a given set of external
loads @, a collapse mechanism can be found consistent with
an internal stress distribution that satisfies equilibrium
and nowhere exceeds yield, then ¢ = €, and the mechanism is
the actual mechanism of collapse (HORNE (1950)).

Similar theorems have been established for the general
case of solid bodies of perfectly plastic material
(DRUCKER et al (1951)).

, Early workers were more interested in design than
analysis, but failing a direct method of design, they
developed iterative analysis. Methods were at first based on
trial-and-error, but later one or both of the first two
theorems:

HEYMAN (1951) (1) proposed a trial- and-error
method but this was not suitable for partial collapse;

NEAL & SYMONDS (1952) suggested the "method of
combining mechanisms" based on a kinematic approach, suiltable
for partial collapse;

GREENBERG & PRAGER (1951) suggested a method of upper
and lower bound approaches successively, but this was awkward
for partial collapse;
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BAKER et al. (1956) suggested a trial-and-error approach;

NEAL & SYMONDS (1950) suggested a "method of in-
equalitles" based on a static approach but this was tedious
for complex structures; A

Heyman and Nachbar suggested an alternating upper
and lower bound approach but this reqdired arbitrary cuts in
the structure;

HORNE (1954) proposed a method of "plastic moment
distribution", successively modifying the lower bound of the
static approach; '

HEYMAN (1968) described an extension of the method
of combination of mechanisms to generate automatically a
statically admissible bending moment distribution, but by
hand only. |

A1l these methods depended to some extent on the
intuition and experience of the person making the calculations.

 In 1951 CHARNES & GREENBERG (1951) showed that
linear programming can be applied to the limit analysis of
pin~jointed trusses. Their approach was based on the static
theorem. They were able to develop systematic algebraic
procedures for computation of collapse states, and to show
that the kinematic approach leads to the dual problem.

FOULKES (1953), (1954), (1955) showed how the
kinematic approach could be considered as a linear programming
problem, and LIVESLEY (1956) analysed several frames by
computer using a non-linear approach of the static theorem.

DORN & GREENBERG (1957) suggested that the equations

BL=2Cg L.(2.1)

—oacy A 1< gloy Al | .. (2.2)
(which ensure that the equilibrium and yielding conditions
respectively are not violated) form the constraints of a limit
analysis of a pin-Jointed truss by the static approach:
the greatest lower bound on B would be the actual collapse
load factor Bc. Further, they suggested putting the bar



forces in terms of the-r redundant forces x:

maximise [1 é 0] PB} ..(2.3)
X
subject to | Bo L © B Bl ¢« {“‘5‘!4 L.(2.1)
URIEE T Y SRS Y
where q =8By L+ B x ..(2.5)

They also showed that the dual of this problem corresponds
to the kinematic approach to the limit analysis problem.
They mentioned an alternative problem which had non-negative
variables and the equations 2.1 as explicit constraints.

CHARNES et al. (1959) extended the equivalence of
dual linear programming problems with the static and kinetic
plastic collapse principles to rigid-jointed frames, and
showed, using virtical work, that a necessary and sufficilent
condition for collapse is that there is at least one solution
to the static and at least one to the kinematic problems.
| LIVESLEY (1964) showed how, for a rigid-jointed
frame, the equilibrium equations could be modified so that
the bending moments only were considered as significant.
Elsewhere (LIVESLEY (1966), (1967)), he showed how the
selection of redundants could be automated and how the collapse
mode could be plotted by the éomputer. WRIGHT & BATY (1966)
used Liversley's theory (LIVESLEY (1956)) to obtain both limit
analysis and minimum weight design by computer, '

KOOPMAN & LANCE (1965) extended the linear programming
approach of the lower bound or static method to continuous
structures. '

The above approaches were mainly concerned with
rigid-perfectly plastic material. PRAGER (1959) showed that
the yield limit of a rigid-perfectly plastic continuum |
coincides with the load-carrying capacity of the corresponding
elastic-perfectly plastic continuum,

HEYMAN (1959) (1), after HEYMAN & PRAGER (1958),
making alternate use of equilibrium and yield, and equilibrium
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and mechanism criteria described a program to obtain the
collapse load factor automatically

TOCHER & POPOV (1962) described a method suitable
for both proportional and variable repeated loading conditions,
similar to linear programming, but not giving a lower bound
B directly. WANG (1966) described an automated elastic-
plastic analysis; following the loading history, ﬁsing the
displacement method. JENNINGS & MAJID (1965) described a
similar program; taking axial load effects on the plaétic
moment into account. DAVIES (1967) described a method similar
to Tocher and Popov's, but allowing for frame instability, |
strain hardening, and hinge reversal.

KORN & GALAMBOS (1968) compared‘analyses of first
and second order accuracy, with.and without axial deformations.
They found that the analyses of some frames were not accurate
using first order terms: these frames have many hinges, and
almost level load-deflexion characteristics.

In 1909 HAAR & VON KARMAN (1909) stated their well-
known principle: "in the analysis of an elastic-perfectly
plastic structure, of all the stress distributions which satisfy
the equilibrium and yield conditions, that which actually occurs
1s that which minimises the elastic strain energy" (SAATY &

BRAM (196L)).

SYMONDS & PRAGER (1950) (1) were able to prove the
principle,for the condition that no temporary unloading of
the bars of the pin-jointed truss occurred, and they later
(SYMONDS & PRAGER (1950) (2)) spoke of minimising the
"fictiticus residual energy" corresponding to the "fictitious
state of residual stress" reached if complete unlbading were
a fully elastic process. PRAGER (1959) later showed that
the principle was true even if temporary bar unloading occurred,
as long as there was no decrease in the load factor.

In discussing Symonds & Prager, CHARLTON (1951)
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pointed out that the Haar-Karman principle was a particular

case of Engésser's principle of minimum ¢omp1éméntary energy

for nohflinéar élastic systems: "since enérgy is a mathématical
concépt, application of (Engesser's) principle is valid in

the non-conservative plastic range providédAthat a givén ‘
static loading is applied only." "Elsewhere, (CHARLTON (1950),
(1952)), he showed that Engesser's principle dépended on

"the conservation of complementary energy", which excludes

gross geometric distortions. '

WESTERGAARD (1942) had shown how Engesser's principle
could be applied to elastilc, non-linear structures to account
for settlement, temperature gradients, and displacement
boundary conditions. _ :

MATHESON (1959) showed how all thejenergy principles
of Castigliano and Engesser, described by WILLIAMS (1938)
and CHARLTON (1950), (1952) were related. ARGYRIS & KELSEY"
(1960) showed that the principle of stationary complementary
potential energy was a generalisation of Castigliano's
principle of minimum strain energy: "for given forces, the
complementary energy of total deformation and the complementary
work are minimum when equilibrium and compatibility are
satisfied.™

DORN (1960) showed that the dual of the principle of
minimum elastic strain energy for an elastic-perfectly
plastic material was "of all elcongations and displacements
which are compatible, the actual ones are those which
minimise the potential energy" (SAATY & BRAM (1964)) - a
generalisation of the principle of minimum potential energy.

In applied mechanics there are two theories of
plasticity: the flow theory and the deformation theory. 1In
the latter the relations between instantaneous states of
stress and strain are so postulated that, when the strain is
given, the stress 1is uniquely determined, or vice versa:
as this determination may not be unique in both directions
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the deformation theory is unsuitable for describing completely
the plastic béhaVioﬁr of a metgl and should bé replaced by
' the flow theory (PRAGER (1948), WASHIZU (1968)).

GREENBERG (1949) showed that the Haar-Karman principle
in the deformation theory of Hnncky was analogous to the
principle of minimum_stress rate intensity in the flow theory
of Prandtl and Réuss. Assﬁming thé Haar-Karman principle,
Hencky obtained his stress-strain rélation (élastic-perfectly
plastic) as the Euler-Lagrange équations of the integral
being minimised.

WASHIZU (1968) showed that the Haar-Xarman principle
implied an absolute minimum for proportional loading.

’

In an early paper GREENBERG & PRAGER (1951) noted
that a general, simple method for estimating the deformation
of an elastic-plastic structure was needed. Soon after,
KNUDSEN et al, (1953) summarised and compared the methods
availlable: |

i. numerical intégrafion of the actual moment
curvature curve gave good agreement, but was tedious and
empirical; | |

| 11. mathematical integration of the idealised
moment - curvature curve (HRENNIKOFF (1948)) was reasonable but
complicated; ‘ » ‘

iii. the curvature-area method‘neglected spread of
hinges and gave inaccurate results;

iv. simple plastic theory, neglecting strain
hardening, but considering plastic spread, gave reasonable
results;

V. the "plastic hinge method", based on elastic-
perfectly plastic béhavio ur, was very simple and gave
reasonable results.

The "plastic hinge method" had been developed by
SYMONDS & NEAL (1951), (1952) and HORNE (1950). Assuming
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elastic-perfectly plastic behavioﬁr of rigid-jointed frames,
the formation of plastic hinges, and neglecting the effects

of shear and axial forces and stability, the.method wvas well
sulted to structures which collapsed completely., These ‘
structures were determinate at incipient collapse and the mode
of collapsé with the equilibrium conditions led to the

moment distribution, using plastic analysls and statics only.

To determine the last hinge to form, one could
elther assume in turn that each was the last, the correct
assumption leading to the greatest deformations, or one
could assume any to be the last and collapse the structure
further until all but one of the calculated rotations were
in the same sense as thelr bending moments, the one with no
plastic rotation being the last hinge to form (SYMONDS &

NEAL (1952), HORNE (1950)).

HORNE (1950) explained that &% the required deflexion
there would be elastic continuity at the last hinge to be formed,
while all other hinges would show rotations in the directions
corresponding to thelr full plastic moments. If the assumption
of a particular hinge to be the last were incorrect, some
of the calculated rotations would be in the wrong sense.
Further collapse in the correct mechanism would lead to all
rotations being either of the correct sign or zero. One (or
several) would be zero: the last to form. As the collapse
deflexions had been increased to achieve this, the last hinge
would be characterised by the largest deformations.

SYMONDS & NEAL (1952) noted that for an r times
redundant structure there were three types of collapse
behaviour, characterised in part by 7, the number of hinges

i. complete collapse - n = r + 1 leading to a
determinate structure at incipient collapse, and a collapse
mechanism with one degree of freedom;

ii. overcomplete collapse - n > » + 1 leading to
a determinate structure at inciplent collapse, and a collapse
mechanism with more than one degree of freedom;
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iiil partial or incompleté collapsé - < r + 1
leading to a redundant structure at lnclplent collapse, and
a collapse mechanism with one degree of freedom. ‘ ‘

Overcomplete collapse occurred when two or more
hinges formed simultaneously at incipient collapse, leading
to a mechanism with several degrees of freedom. GCroups
of hlnges in turn must be assumed to form last, to obtaln the
correct group to form last.

Partial collapse, Symonds & Neal pointed out, meant
that the elastic moment distribution was not completely
determined by the values of the moments at the plastic hinges
together with the conditlons of static equilibrium. They
suggested using the principle of least work to minimise the
strain energy of the frame, leading to the correct moments.
This was a tedious process by hand.

NEAL (1956) suggested using slope-deflexion equations
with the condition of elastic continuity at unhinged joints,
‘and LEE (1958), extended by ODEN (1967), proposed using the
conjugate beam approach to shorten Neal's method slightly.
HODGE (1959) also suggested minimising elastic energy: even
though the frame were partially plastic at collapse the
principle could be used, since the work done in plastiec
rotation was independent of the redundants. HEYMAN (1961),
after STEVENS (1960), suggested using virtual work to obtain
the redundant moment distribution, and discussing Heyman‘s '
paper, GREGORY (1962) suggested that the virtual work approach’
was mathematically equivalent to the method of statiec
complementary energy.

In a paper specifically on the problem of partial
collapse, PERRONE & SOTERIADES (1965) underlined that the
positions of hingeé in the elastic-plastic structure occurred
where suggested by the rigld-plastic moment distribution _

only.if they satisfied continuity. In discussion, GURFINKEL
- (1965) pointed out that for proportional loading the correct
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elastic plastlc moment distribution was the solution to a
constrained minimisation of elastic strain energy. LIND (1965)
suggested "rotation distribution", analogous to moment
distribution for certain cases. THODANI (1966) suggested
using "Mohr's equation", a form of virtual work.

In 1956 NEAL (1956) discﬁssed certain assumptions
necessary for the calculation of deflexions at incipient
collapse: HORNE (1948) had concludéd that the 1dealisations
of no plastic spread of hinges and no strain-hardening were
valid as the two effects cancelled éach other in deflexion
calculationé. Neal pointed out that a further assumptilon
was that, having formed, no plastic hinge unload. HODGE
(1959) stated that if any hinge once formed had unloaded, then
the predicted deformation would be an overestimate.

NEAL (1956) stated that no limit analysis could show
whether unloading had occurred or not, and that the only safe
procedure was to trace the successive formation and rotation
of hinges in a step-by-step analysis. FINZI (1957) showed
not only that unloading might occur, but that in general it
would. v

BERTERO (1965), in.discussing Perrone & Sateriades,
showed that the simplification of the virtual work approach of
HEYMAN (1961) and MARTIN (1962) could not be used when hinges
occurred which were not involved ih the cdllapse mechanism.,
This would happen in partial collapse and in hinge unloading,
he said, but, for partial collapse, correct use of the virtual
work approach of HEYMAN (1961), HORNE (1962), or MARTIN (1962),
or of the slope-deflexion equations (SYMONDS & NEAL (1952))
would lead to the discovery of these 1solated hinges and
the correct deflexions,

" 2.4 " Plastic Design

Design methods based on itérative analyses are
described above. They were indirect, and HEYMAN (1951) (2)
and FOULKES (1953) were quick to realise that plastic theory
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could supply direct methods of design. These were concernéd
with minimum volﬁmé or wéight désign (m.w.d.), if not because
this was practicable; then bécausé it offered an ultimate
critérioh with which to assess practical designs,

In 1904 MICHEL (1904) obtained sufficient conditions
for pin-jointed trﬁsses to bé of minimum welght, independent
of the stress-strain relationship. Also studying the problem
of a single, proportional loading system, FOULKES (1953),
(1954),  (1955) wrote a series of papers on the m.w.d. of
rigid-jointed frames. Using a_géometric analogue of design,
he was able to prove three necessary andrsufficiént conditions,
(analogous to the mechanism, equilibrium, and yielding
criteria of'limit analysis), which the m.w.d. must fulfil:

i. Mechanism condition: the design must be
capable of failing in a mechanism (a "Foulkes mechanism")

such that, for every design sectlon ¥;, I hinge rotation
Z

assoclated with the sectlon design ¥; = I length associated
7

with M,

ii. Work equation: the load factor of the mechanism
which satisfies i. must be unity; ‘

111, Yield condition: there must not exist any
other mechanism for the design with a load factor of less
than unity. , _ .

From these three conditions, FOULKES (1954) was
able to prove two bounding theorems on the m.w.d., analogous
to the static and kinematic approaches to plastic analysis
respectively:

1. Upper-bound theorem: 1f a design collapses in
a mechanism with a load factor of unity, satisfying 111.;
then 1ts weight is greater than or equal to that of the
m.w.d. This 1s the "safe'" approach.

2, Lower-bound theorem: 1f a design satisfies 1.
and 1i. then its'weight 1s less than or equal to that of the
"m.Ww.d. This is the "unsafe" approach.



15.

DRUCKER & SHIELD (1956) obtainéd sufficlent conditlons
for continuous. three dimensional structures.

SVED (1954) showed that, for a single loading system, _
the m.w.d. of a pin-jointed structure 1s statically determlnate,
for elastic or plastic behaviour. DORN et al. (1964), in a
study concérned with the configﬁration as well as the sectlons
of the m.w.d. structure, and PRAGER (1965), considering the
analogy between network flows and plastic analysis, showed
this also.

KICHER (1966) and SHEU & PRAGER (1968) showed
analytically that the m.w.d. of a large class of structures
subject to a single loading will bé fully stressed and
statically determinate. It follows that the m.w.d. of multi-
loaded structures which are elther statically indeterminate,
or have buckling modes depending on loadings, generally
will not be fully stressed. Structures which collapse partially
under a single loading are not m.w.d.

HEYMAN (1959) (2) considered the absolute m.w.d. of
Structures with members of varying cross-section and showed
that these could have 50% less material than structures
wlth uniform sections as members A

For rigid-jointed frames, the weight den51ty is
w o« y* s, Where M 1s the plastic strength, and o a constant.

(In practice, o = 0.6). Most methods of design take o = 1
which simplifies the procedure,‘with reasonable accuracy.
PRAGER (1956), considering the convex problem of 0 < o <1,
obtained necessary and sufficient conditions for such a
m.w.d. MEGAREFS & HODGE (1963) showed how to overcome the
problems of nonlinearity and vanishing members using a
density function analogous to straln energy. PRAGER &
SHIELD (1967) developed a generai theory of plastic deslgn
with a convex density. ’

Methods of solution of m.w.d. for single loadings
were developed, usually based elther on the upper ("safe")
or on the lower ("unsafe") bounded approach. The "safe"
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method is better sﬁitéd to automatic solﬁtion, while the
"unsafe" to manual solution. HOSKIN (1960) noted that, as

the lower bound approach dealt entirely with kinetic qualities,
i1t did not directly give the individual bar sections, although
it gave the me.d. weight and collapse mode. A

The geometric analogue method of FOULKES (1953),

a lower bound approach, had béen based on an examination of
all possible collapse modes. Latér FOULKES (1955) showed how
the problem was equivalent to one of linear programming.

The "method of inequalities" of HEYMAN (1951) (2)
was a "safe" method but was tedious to solve by hand, and
HEYMAN (1953) later suggested a design method which alternated
between the two approaches, successively reducing the bounds
on the m,w.d. HEYMAN & PRAGER (1958) automated this method,
claiming it to be more efficient than methods based on one
approach only.

LIVESLEY (1956) automated an upperbound approach,
"solving the minimisation by a method of modified steepest
descent. This was the first automated procedure. WRIGHT &
BATY (1966) used this procedure, expressing the moments in
terms of the external loads and a set of redundants.

~ HOSKIN (1960), by analogy with CHARNES & GREENBERG -
(1951), showed the upper and lower bound design approaches
to be equivalent to dual linear programming problems. CHAN
(1964) was able to show that this duality led to Michell's
necessary and sufficient conditions for the m.w.d. of pin-
Jointed trusses. _

TOAKLEY (1967), (1968) described an automated "safe"
approach which he solved using the dual simplex algorithm
of linear programmihg. He showed that, ignoring instability
and gross geometric distortion, the rigid-plastic assumption
is reasonable for elastic-plastic behaviour.

The problem of multi-load design 1is more difficult
than single load design, and can lead to shakedown (not
treated here). HEYMAN & PRAGER (1958) noted that for several

loadings the size of calculation is doubled, tripled and
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SO on.

PEARSON (1958) suggested using a load space, analogous
to Foulkes' design space, to estimate thé worst effect on
each possible mechanism. LIVESLEY (1959) noted that there was
no meaning in speaking of the "worst" system of loading,
as the m.w.d. balanced the effects of a number of extreme
loading states; each exciting a different mechanism.

_ SAVE & PRAGER (1963), considering moving loads
(an infinite number of loading cases), suggested a super-
position principle for Single spans, although this is not
generally suitable. SHIELD (1963) gave sufficient conditions
for m.w.d. under multi-loading conditions. Using this theory,
MAYEDA & PRAGER (1967) extended the method for one 1oading
case of HEYMAN (1959) (2) to multi-loading conditions.
PRAGER (1967) showed that the usual proof of the existence of
a Foulkes mechanism as a necessary condition for m.w.d. is
not applicable to multi-loading.

DORN et al. (1964) showed how for two loadings the
number of constraints in the linear programming problem
would be doubled and the number of design variables increased.
Similarly for more loading cases. ‘

WRIGHT & BATY (1966) suggested obtaining a "design
envelope" for all loading cases and hence getting the m.w.d.
This is a highly inefficient method.

CHAN (1967), (1968), considering the duality of the
two bounds approaches to m.w.d., extended the necessary and
sufficient conditions of single loading deéign (MICHELL
(1904), FOULKES (1954)) to the multi-loading casé.

2.5  Simplifying Assumptions

In 1951 SYMONDS & NEAL (1951) noted that the develop-
ment of plastic methods of analysis could take two directions:
simple hypothesés leading to elegant mathematical theories and
better understanding, or detailed behaviour of members,

connexlons, and frames, leading to more realistic descriptions
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of behaviour. -

This work has been baséd_on an idéal model of actual
behaviour in pin-jointed trusses in the hope that this will
lead to avbetter understanding of the theoriles attempting
to describe realistic behaviour.

A main assumption has béén,that the load—déflexion
behaviour; In both tension and compression, 1s eilther rigid-
perfectly plastic (Fig. I) or elastic-perfectly plastic
(Fig. II). 1If the load capacity is sustained over a sufficient
deformation plateau; the simplé mechanisms may be combined
into a collapse mechanism. For mild steel in tension the
description 1s a good approximation (Fig. III), but for
compression members it may not be valid. -

NEAL (1950) noted that for a slender, pin-jointed
strut which is perfectly straight and loaded axially, the axial
deformation below the Euler critical load is proportional
to the load (i.e., linear elastic). When the Euler load is
reached, buckling occurs, and the lateral deflexion increases
at constant load. Hence, as in ideal plastic behaviour, the
axial deformation increases at constant load. But the
buckling 1is purely elastic (for large slenderness ratios)
and the enefgy stored during buckling is recoverable as,
unlike elastic-plastic unloading, the strut unloads elastically
at constant load. |

SYMONDS & PRAGER (1950) (1) noted that if the
compression member had the flat yield stress-strain curve of
ldeal plasticity, there would be instability at yield.
"HRENNIKOFF (1965) has shown how strain hardening provides for
instability. |

Elastic buckling, however, occurs only at uneconomically
large slenderness ratios. STEVENS (1968) considered elastic-
plastic instability in compression members (Fig. IV). Behaviour
depends on slenderness ratio and degree of end fixity; Very
short members exhibit good ideal plastic behavlour, but long
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Figure I '+ TIdeal rigid-plastic load-deformation

" behaviour.

dy d

Figure II : Ideal elastic-plastic 1load-deformation

behaviour.
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Figure IV : Actual load-deformation behaviour of
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(from STEVENS (1968))
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ones may havé no plastilc plateau at all. _

This may be overcome by lowering the working yield
load and using a load-deflexion diagram (Fig. IV) which
generally gilves a short plateaﬁ and leads to a conservatlve
answer 1n analysils or deslgn for reasonable axlal strailns.
However; for small axial“stra;ns the approach may well be
_grossly overconsérvativé, and, for the large axial strains
sometimes found as the full stréngth of the»structure
develops, the approach 1s non-conservative.

Proportional loading is assumed: that 1s, the
loading increases monotonically from zero. This does not
ensure that no bar unloading occurs, but excludes failure
by alternating plasticity or incremental collapse.

It is also assumed that the value of the tensile
vleld strain (that i1s, the ratio between Young's modulus
and the tensile yield stress) is sufficilently small for the
assumption that the deflexions before collapse have no effect
on the equilibrium equations to be valid. That is, the analysis:
1s concerned with small deflexions only.

In deflexion calculations, the further assumption
that no bar unloading occurs is made. As noted in section 2.3,
the only way to be sure that this doesn't happen is to '
analyse the complete loading history of the structure.

PRAGER (1959) noted that the deflexions obtained using this
assumption are still a good estimate, in fact are over-
conservative.
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CHAPTER III. GREATEST LOWER BOUND ESTIMATE OF COLLAPSE TLOAD

- 3.1 Introduction

- Several workers (CHARNES & GREENBERG (1951), FOULKES
(1955), DORN & GREENBERG (1957)) have shown that the problem
of obtaining the plastic collapse load for a structure can

be viewed as a problem in linear programming. This chapter
explains the theory of the static, or lower bound, approach
to the problem for pin-jointed trusses.
To achieve generality it is desirable to work in
dimensionless quantities. To this end, define
p, = 49,/9y 4, : ..(3.1)
where P, is the ratio of the actual force in the member
n to the tensile yield force of that member
q,, is the actual force in member =
Oy is the tensile yield stress of the material
An is the cross-sectional area of member =.

Then, in matrix notation

q =0, Ap . , -+ (3.2)
where Aii = Ai’ area of the 1 th member
- Aij =0, 1 # J |
Also define XA = B/4 Oy ..(3.3)

A is the load factor for any giveh unit load, to give
the actual load divided by the reference tensile
yield force (= 4 o)
B 1s the load factor for any given unit load, to give
the actual load ’
4 1is the reference cross-sectional area
If Q is the actual load matrix, and L the unit
lcad matrix specifying the ratios, directions, and points of
application of the loads, then

B L =20 , I L (3.4)
Define a "dimensionless" load matrix, given by
P=2XL =204 o, .. (3.5)

Then 1t 1s possible to work entirely in "dimensionless"
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quantities, the only data needed being C, L, and A*, where
A* 1s the area ratio matrix A*.- = A-/A
' ' A* = 0 z # 3 ‘
'3 2 Explioit Equilibrium Constra1n+ Eouations
The statie approach states that 1if equilibrium is »
everywhere maintained and the yield force 1s nowhere exceeded

the external loads in equilibrium w1th fhe internal loads
are equal to or less than the collapse loads.
In matrix notation, express equilibrium equations as
BL=Q=¢Cgq : ..(3.6)
where ¢ 1s the connexion matrix, a force transformation
matrix, generally rectangular, (square only if structure
determinate), and Comprising the direction cosines of the
members. ‘
Express the yield condition as
ady A 1295 -0y A 1 , . (3.7)
- where o 1s the ratio of compressive to tensile yield stress,
1 is the unit vector.
The greatest value of B satisfying 3.6 and 3.7 is
the collapse load factor. To obtain a linear programming
problem, the rows in 3.6 corresponding to load components
are added and divided to get
B =ml q . .. (3.8)
where m is a coefficient vector. The remaining rows are
expressed by
0 =C. g ..(3.9).
where 0 is the null vector ' |
C 1s a submatrix of C, corresponding to the unloaded,
unsupported joint components.
The linear programming problem is to maximise B
subfect to 3.7 and 3.9. The independent variables are q,
and 1f there 1s complete collapse the set of q will be
unique; 1if there is partial collapse the set of q will not
be unique, as compatibility will have to be considered to
get the actual set of q.

In "dimensionless" quantlties, substituting
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3.2 and 3.3, the problem becomes

maximise A= WT A% p ~ ,.(3.10)
subject to a 1 < p < 1 .. (3.11)
and 0 =C_ A% p ..(3.12)

'This problem has m independent variables where
there are m members, and the number of constraints is -
< 2m + 2(2j =~ ¢) if two-dimensional
< 2m + 2(35 - 7) 1f three-dimensional
where there are j joints. The large size of this problem
leads to inefficient use of computer storage and time.

As an alternative to the approach of section 3.2,
this section deals with a more efficient formulation of the
problem. The forces in a redundant pin-jointed truss can be
expressed in terms of the external loads and a set of
redundants: . :

Q=B Q-+ B x=8B_L+B, x ..(3.13)
where Bo and Bl are force transformation matrices

x 1s a vector of redundant member forces.

Glven the set of redundants, x, LIVESLEY (1964) has
shown how to obtain 3.13 from the equilibrium equation‘3.6:
add extra rows to the connexion matrix, corresponding to a

set of "releases" or redundant forces, to obtain

[.f?.%. =Gy
X
where C, 1s a non-singular, square matrix
Then q = C+_l [?,E]
X .
multiplying, q = E[ B .. (3.14)
S
where E, a transformation matrix, has k' columns less than
c,”',
where k = 27 - ¢ (two diménsions)

37 - 7 (three dimensions)
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Equation 3.14 1s equétion 3.13 after.the mul€iplication of
By L. |
Thé linear programming problem is thén
maximise 8= (1 : 0] [B] ..(3.15)
X

subject to doY Al<E [B].< oy A1 ;.(3.16)

X
This problem has » + I independent varilables, where

there are » redundant members, r = m-24+3 (two dimensions)

] m=-3j+6 (three dimensions)
and the numbef of constraints 1s 2m. This represents a _ '
great saving of storage and time over the previous method,
especially for structures with low redundancy.

Analogous with equation 3.2, defilne vector r such
that

x = oy A_r _ .. (3.17)
where r 1s the vector of the ratios of redundant member '
forces to their tenslle yleld forces
A, 1s the area matrix corresponding to the set of
redundants.
Then equation 3.13 becomes

Pp=Go P+ Gy r=2XG, L+ Gy r ..(3.18)

where Go = Ax-1 Bo } ..(3.18a)

and Gy = Ax~1 By A%, |

multiplying, p = G [A] 4 ..(3.19)
e

The lilnear programming problem 1s
maximise A = [7 ¢ oT][A] ..(3.20)
. -

subject to a 1 < G [5.]5 1 ..(3.21)

r

In the program described 1n section 3.5, r has not
been used, but a quantity y, given by
Yy = x/A oy ..(3.22)
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that is, y is the actual redundant force in terms of the

reference tensile yield force. The problem becomes

maximise A =[1 ¢ OT] [A'] ..(3.23)
. .. y - ‘
subject to o 1 < [6 L . ax ! B‘] [Xl_ﬁ ]
' Y

" 3.4 Automatic Selection of Redundants
The method of the previous section (LIVESLEY (1964))
suffers from the fact that a set of redundants must be supplied

to the program and must be consistent and reasonably well-
conditioned, so that the cut structure 1s not a mechanism.

Algebraic procedures for automatic selection of
redundants have been developed by DENKE (1965), ROBINSON
(1966), and LIVESLEY (1966), (1967). In a survey of the
literature, ROBINSON (1968) noted that the best set of redundants
is that which leads to a "cut", determinate structure as
close as possible to the indeterminate structure. To achileve
this, knowledge of the applied loading system and the relative
flexibilities of members is needed. DENKE (1965) showed how
to consider the relative flexibilities by dividing columns
of the connexion matrix € and multiplying rows of the force
vector q, but this procedure is not used here as the author
wished to develop a "modular" set of subroutines, suitable
for both analysis and design. ‘

The method described below 1s based, as are all of
the algebraic methods, on the well-known Gauss-Jordan method
of solving simultaneous equations. It is virtually ildentical
to the methods of ROBINSON (1966) and LIVESLEY'(1966). As
well as selecting a consistent, well-conditioned set of
redundants x, the method generates the force transformation
matrices Bo and B] of equation 3.13, analogous to the matrices
G, and G, of equation 3.18.

The first stage of the process 1s the transformation
~ of equation 3.6 from the form.
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g1 L=2Cyq , ,
where 1 1s a unit matrix, to the equivalent form
BTL=1Ugqq '

where U consists of a unit matrix and othér columns: thé
structure is redundant; having moré members than degréés of
freedom at its joints; so the number of columns of C >
number of rows of ¢. For each row in turn, the largest
element in € is determined and the row in | and ¢ normalised
with respect to this element. Multiplies of this row of C and
I are added to the other rows of C and | respectively, in
Ssuch a way as to make all other elements in the column of
the largest element equal to zero.

If ¢ is of full rank, the process may be applied
to all rows without a complete row of zeros in both ¢ and
I occurring. If such a row does occur, it correspcnds to a
dependent equilibrium equation and may be neglected. Thus
I and ¢ are transformed respectively into T and U, U having
(m - ») columns with a single 1 as the only non-zero element,

If the structure is a mechanism, one or more of the
rows of U will be entirely zeros, while the corresponding
row(s) of T will have one or more non-zero elements. The
number of degrees of freedom of the mechanism equals the
number of such rows.

The columns of U are rearranged to form

BT L= [1:V] w] ..(3.21)

X

where w is the vector of member forces associated with the
columns of | : the determinate system
'_ X 1s the vector of member forces associated with the
columns of V: the redundant system.
Rearranging equation 3.24
w=R8TL -V x
and X = I x .
- V|8 L .. (3.25)
RN

or, combining, [w]

X

L I
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where @ 1s a null matrix; Returning to the origlnal order
of q involves an interchange of the rows of the transformation
matrix in équation 3}25; opposité to thé interchange of columns
of U made previously. )

Thus 1s o?tained the required résult, equation 3.13

a= [B, B8] [BL]

X
or knowing L, eqﬁation 3.14

G

If L is known from the outset, and if B, or B
are not required, the process 1s simpler and less demanding
of computer storage. Operations are made directly on L
instead of I, and equation 3.24 becomes '
B k= [I :V] [w ..(3.26)
where the vector k is equal to T L.
Hence follows

w] o= [eiov] e, ..(3.27)
X o . I X 4

and rearranging for correct order of member forces leads to
equation 3.14,

g

In the programs described below, the procedure is

carried out on an augmented matrix. C is augmented to
[c 2 1] or [c : -L]. The matrices of equation 3.23 are obtained
after the seleétion of the redundants and the generation of
the matrices B, and Bj.
The process of searching for the largest pivot in
each row should ensure that the resulting set of redundants
is well-conditioned. .
When B, and B, have been generated, substitution
in equation 3.18a yields G, and Gy, the "dimensionless"
transformation matrices.
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This section briefly describes a program written‘
to set up equations 3.23 for any two- or three-dimensional
pin-jointed truss; and to solvé the dual of this linear
programming problem; tsing the two-phase Standard Simplex
algorithm, '

The program, known as RANK PLASTICITY OPTIMISATION,
comprises eight subroutines: ’

NOINV - dimensions the arrays and calls the other
subroutines in turnj .

PLOPT 3 - reads the data_cards describing the truss,
and forms the connexion, load, and area matrices. The
connexion and load matrices are augmented;

RANK - using the "Rank technique" described in -
section 3.4, this generates the transformation matrix of
equation 3.14, isolates a consistent set of redundants, and
determines the degree of redundancy or the number of degrees
of freedom of the structure. The load matrix is known, so
the procedure is that of equations 3.26 and 3.27;

FORMS - calculates A*"' B_ and Ax' B ; _
DUALP 3 - sets up the equations 3.23, forms the dual
of this linear programming problem, and calls KRANTE and
KRSIMP, The subroutine was developed by Mr. D.W. Bennett
of Melbourne University; '

KRANTE and KRSIMP - these solve the dual problem
using the two-phase Standard Simplex,algorithm. They were
developed by Dr. K. Reinschmidt of M.I.T.; '

ANSWER - prints the collapse load factor and calculates
and prints the collapse force distribution corresponding
fo the set of optimum redundants.

To fully describe the structure, the members and
Joints are numbered, the support Joints numbered last. A
set of coordinates 1s decided upon, and the Joint positions
assligned coordinates.
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10
READ NUMBER OF CIMENSIONS
JOINTS
SUPPORT JOINTS

MEMBERS
& PRINT THEM

READ JDINT COORDINATES
RESTRAINTS AT SUPPORTS
& PRINT THEM '

READ MEMBER INCIOENCES & PROPERTIES
CALCULATE MEMBER LENGTHS
OIRECTION COSINES
& PRINT THEM

FORM CONNEXIDN MATRIX C FROM
OIRECTION COSINES

READ NUMBER OF LOADED JOINTS
LOAD COMPONENTS
FORM LOAD MATRIX Q

CORRECT AUGMENTED MATRIX A FOR
SUPPDRTS

PRINT CONNEXION 6 LOAD MATRICES

A 4

CALL FORMS

CALCULATE NIV
FORM SENS MATRIX
PRINT NMBS,NIY,SENS
A 4

ICALL DUALP 3I

QUTPUT OPTIMUM VALUES OF LAMDA
MEMBER FORCES
FIRST ROW OF 2 ARRAY

3
CALL _RANK

JORDAN ELIMINATION OF A

CHECK FOR INCONSISTENCY

(PRINT NUMBER OF OEGREES OF
FREEODM)

CHECK FCR DEPEMDENT EQUATIONS

COUNT REDUNDAMNCIES
CHECK NRO = NCC-NR
PRINT NRD & MREO

MOVE REOUNDANT COLUMNS TO
RHS OF MATRIX A

FORM UNIT MATRIX IN A(NR,NR)

2

CLEAR Z-ARRAY

SET DUAL SENSTTIVITIES,
OBJECTIVE COEFFICIENTS,
& ACTIVITY CODES

IN 2 ARRAY

SET DUAL L.H. & R.H, SI0ES
& CONSTRAINT CODES 1IN Z ARRAY

MAKE R.H, SIDES OF DUAL
POSITIVE

OUTPUT Z ARRAY
CALL KRANTE (not listed)

OUYPUT Z ARRAY '

CALL KRSINP (not 11sted)

DUTPUT Z ARRAY

SET VALUES OF PRIMAL VARIABLES IN

FIRST RDW OF Z<-ARRAY (2(1,1)),
PRIMAL OBJECTIVE IN 2(2,1)

©

CALL TIiH

PRINT TIME TAK

Flgure V : Flow Diagram of RANK PLASTICITY OPTIMISATION
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The data required for the analysis of a pin-jointed
fruss is, in order: |

1. 1is the structure two- or three-dimensional?

The number of joints; the number of supports, and the number
of members;

2; thé joint coordinates and the diréctions of
restraint of the support joints;

3. the memberbcross-sectional areas and member
incident joints; |

4, the number of loaded Jjoints;

5. the load components at each loaded joint. This
method of specifying the structure (with a few modifications)
1s also used in the three programs described below.

A flow chart for the program described above 1is
presented in Fig. V, and a full listing in Appendix A.

3.6 Analysis Examples

Three examples are presented: one to show the solution
for a trivial case (truss 1), one to show the solution for a
planar truss with varying cross-sectional areas (truss 2),
and one to show the solution for a space truss (truss 3).
| Truss 1 1s a simple, once determinate planar truss
with uniform cross-sectional areas. <Clearly it must fail
in either complete or over-complete collapse and so the
force distribution obtained is unique, and identical in the
rigid-plastic and elastic-plastic cases. The results can be
seen in Fig, VI: the collapse load is 1.2C07 x 4 x Ty
Truss 2 is a four times redundant planar truss wilth
the varying cross-sectional areas shown in Fig. VII with
the joint and member numbering system. The collapse load is
1 x A x Ty - The force distribution given by the analysis is
not unique as the structure may collapse partially.
Truss 3 1is a complex, three times redundant space
fruss with uniform cross-sections. The loading system, supports,
and joint and membering systems are shown in Fig, VIII:
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the str‘uctur'e has a triangular base and top, and each of °

its six joints is connected to the other five. The 'collapse N
load factor is Ov.5000'. As the strﬁcture may collapse partially,
the rigid-plastic force distribution is not unique.
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Flpure VI : Collapse load factor analysis of truss 1.
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A= 1,000

A¥* = [ ,750 .500 .750 .500 5.00 .750 .500
.250 5,00 .750 .250 .,750 .250 1.061
.354 .354 ,354. 5,00 65.00 .707 5.00 ]

p = [ 1.00 1,00 1.00 1.00 0.00 -1.00 0.00
1,00 0.60 1.00 1.00 1,00 1.00 =-.999
1.00 -1.00 -.999 0.00 -1.414 -1.00 0.00 ]

Figure VII : Collapse load factor analysis of truss 2.
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Collapse load factor analysls of truss 3.
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- CHAPTER IV,  ELASTIC DEFLEXIONS AT TNCTPTENT COLLAPSE

4.1 Introduction o
Plastic désign and analysils are éssentially formulated

in terms of the stréngth of'strﬁctures, and may be considered

as dealing with rigid-plastic models of behaviour. It has

been shown (PRAGER (1959)) that the results obtained in

dealing with the strength of rigid-plastic models are

identical with those of elastic-perfectly plastic models.

But an elastic-perfectly plastic structure will
experience elastic deflexions before collapse. The deflexions
of actual ductile structures may well be critical in their
performance under load. It would seem very useful to have
a method of obtaining these deflexions.

In section 2.3 various methods were mentioned. The
simplest of these was the "plastic hinge" method, and this
gave reasonable results compared with more sophisticated
methods, This section shows how this method, adapted for
pin-jointed trusses, may be used to estimate the elastic-
plastic deformations of such trusses at collapse and at any
stage 1n the loading history before collapse.

‘The actual stress distribution can be found by
minimising the complementary energy of the structure - for
elastlc-perfectly plastic behaviour, the elastic strain
energy.

The simplifying (and restricting) assumptions have
been discussed in section 2.5. The assumptions are prop-
ortional loading, neglect of changes of geometry on the
equilibrium equations, a perfectly elastic-perfectly plastic
load-deformation relationship for both tension and compression,
and no unloading of yielded bars as the load is increased
from zero to the collapse load.

The dimensionless notation introduced in section 3.1
will be used, although the deflexions will be in the same
units as the Joint coordinates,
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"h.2 " Problems of Deflexion Calculations . N

A main problem is the assumption, mentioned above,
that no unloading of yielded bars occurs as the load is
inereased from zero to thé collapsé load. This was discussed
in sections 2.3 and 2;5: short of a compléte loading history

of the structure, it is reassuring that the assumption will
lead to an over«éstimate of deflexlons. |

In section 2.3 it was noted that an r times redundant
structure could collapse in three basic ways:

i. complete collapse - the number of yilelded
members n = r + 1, leading to a determinate structure at
incipient collapse and a collapse mechanism with one degree
. of freedom;

ii. over-complete collapse - the number of yielded
members n > r + 1, leading to a determinate structure at
incipient collapse and a collapse mechanism with more than
one degfee of freedom;

iii. partial collapse ~ the number of ylelded members
n <r + 1, leading to an indeterminate structure at incipient
collapse and a collapse mechanism with one degree of freedom.

In the first and second cases the determinate set of
forces at incipient collapse 1s unique and given by the
procedure described in chapter III above. In the third
case, considering rigid-~plastic behaviour, the set of forces
at incipilent collapse is indeterminate and not unique. The
set given by a load factor analysis, satisfying yield and
equilibrium, will not necessarily satisfy -the compatibility
requirements of an elastic-plastic structure.

It must be added that, in complex structures,
partial collapse is the most common type of collapse behaviour,
although a combination of partial and over-complete collapse
may occur 1f several bars yleld together, forming a mechanism
of more than one degree of freedom in one region of the
structure, leaving the rest of the structure indeterminate.
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In this case‘ n; the number of yielded bars 1s no guide to
the collapse behaviour, although the further knowledge of the
number of degrees of freedom of the collapse mechanism or the
degree. of indeterminacy of the remaining frame will help.

If two 1ndependent mechanisms form at collapse of
-a structure, then even the additional information of number
of degrees of freedom and the degree of indetermlnacy may
not indicate the actual behaviour. However, the assumption
that a particular form of collapse occurs will be verified
by the member deformations subsequently calculated.

4.3 Mininum Complementary Energy

The Haar-von Karman principle (as stated in section
2.2) of minimising the elastic strain energy is identical to
Engesser's principle of minimum complementary energy, for a
proportionally loaded, elastic-perfectly plastic structure.

The complementary energy C 1s given by

=/, 4 Fa » L (8.1)
where F is the structural flexibility matrix F.. =L . /E A.
F..~0 # J

To use the dimensionless vector p, define

U = 1/2 pF% p | L. (8.2)
where F*is the "dimensionless" flexibility matrix

F*ii = AiLi/A

F*ij =0, 1 # J
then U= x FA

(oY)2

Applying the principle 1s to minimise U
subject to - a 1 <p < . L. (4.3)
and A L== P = A* p o I

the yield and equilibrium conditions respectively. This is
with a definite load which is constant: |

AL =p

Using equation 3.18 to get p in terms of P and r
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©
it

G P+ G, r

°_3 1
A% B

v-l ° P '
] A" Bl A'r . }
and the problem becomes

. _ T, T. T,
minimise  U' = 2 g F*G,r + r G, F*G,r } .. (b4.6)

subject to -al-g < G

where G

o
it

v+ 1-g
Using a non-negative variable s, where
c = ow | o o (B.T)
the problem becomes
minimise U" = 2(gT-lTG]T)F*G]s + STG]TF*GlS‘ } ..(M.S)
subject to Gyl ~a 1l -g<Gs <61 +1 -9 '
This is a quadratic optimisation problem with linear
constraints. As F*, and hence G, |
positive definite matrix, the function U"” is strictly convex.
This means that the function has only one minimum. This 1s
a global minimum. A program which minimises U"” subject to
the constraints of equation 4.8 is described below,.

TF*Gl, is a symmetric,

4.4 Deflexion Analysis

The problems of calculating the elastic deflexions
at incipient collapse and of determining which is the last
bar to yield are closely linked. There are two ways of

determining which is the last bar to yleld: one may either
assume in turn that each bar (or group of bars in over-
complete collapse) 1s the last, the correct assumption leading
to the greatest deflexions, or one may assume any bar to be
the last, and collapse the structure further until all but
one of the calculated plastic strains are in the same sense
as their axial stresses, the bar with no plastic strain being
the last to yield. The first method has been considered
more suitable for automation and has been used 1n the progran
described in section 4.5 below.

Given the correct force distribution by minimising
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- the complementary energy of the structure the program

counts the n yilelded members, calculates the "Cr combinations
of r different members (where r is the degree of redundancy
lost in collapse), and forms elastic structures by eliminating
in turn the columns or elements in the matrices C, %2, and p
corresponding to the groups of plastilc members assumed

to yield first. o ,

This, in effect, 1s reducing the elastlc-plastic
redundant structure to an elastic structure with constant
loads replacing the first yilelding members, determinate
if fallure by complete or overcomplete collapse, probably
st11ll redundant if failure by partial collapse. It i1s assumed
that the (n - ») remaining members at yield are the last to
yleld, that 1s, are not strained plastically at incipient
collapse.,

A set of elastic joint displacements and a set of
elastic-plastic deformations of all members are calculated
for each assumed elastic structure, as descrilbed below.

The set of joint displacements with the largest overall values
1s the correct set and gives the correct group of members to
yield last. The corresponding set of member deformations

must have no elements of opposite sign to the corresponding
elements in the set of member forces, p, and the assumed
vlelded members must have strains greater than the yield
strain.

If the assumed elastic structure for any group forms
a mechanism, then the group of (n - r) members assumed last
to yield 1s incorrect: the redundant structure must be stable
until all » members have ylelded. _

The main drawback to automatlng thls process completely
is in determining the correct value of rf 1s the collapse
partial or not? Consider the most general case of a highly
redundant structure which collapses partially, several bars
ylelding together at final collapse.

If d, the number of degrees of freedom of the partial

.collapse mechanism, can be found, thenr, the reduction in
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redundancy due to the partial collapse mechanism, is given by

o r=n-d | .. (4.9)
where n 1is the number of yielded'members at collapse. This
is Yo} because as each member ylelds 1t reduces the overall
redundancy by one” unt il the local degree of redundancy is
zero, at incipient collapse. The number of degrees of
freedom of the partial collapse mechanism 1s equal to the further
number of bars which yield, forming the mechanism.

In general, then, ‘the assumed elastic structure 1s
still redundant and the transformation matrices BOe and Ble
can be generated from the connexion matrix €., as described in
sectlon 3.3, (The subscript e implies that the structure is
treated as wholly elastic; c, is reduced'fromvmatrix C as
mentioned above).

From the force method of analysis (LIVESLEY (1964))
the equations .
D=B ' F gq ..(4.10)

I Lo(b)

are obtained, where D is the vector of joint displacements
and u is the vector of relative redundant displacements and
will equal zero if the structural member forces are compatible.
(The subscript e implies that the columns or rows corresponding
to the assumed group of r plastic members have been eliminated),

Non-dimensionally, that is, substituting '

dg = Oy A_ P o(B12)

) e "e _
into 4.10 and 4.11, the relationship became

. T
(g_)o =(E\0 = B, % P . (4.13)
Sy Ty |

[LNu =(E\u = BT % b, co(h.1h)
EY O'Y ,

where 2, is the reduced vector of member lengths.

f
w

Then D and u can be evaluated for each assumed
group and checked to find the overall largest corresponding
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to a zero u. A further check must be made of the member

deformatipns by using

fE\ d = CT D §_~ ﬂ.”.‘(Ll‘.lS)
(OY) . v |

to evaluate the member deformations d of all members even
those assumed to have yielded. Hence, Y, can be calculated
for each member, where Y; is the ratio of actual strain to
yleld strain, given by

€y €y li Oy zi
If the member has yielded,
lv.| > 1 | o (B1T)
1
and sign (v;) = sign (p;) ..(4,18)
and if the member is one of a group to yield last,
lv;| = 1 _ .. (4.19)

Thus Yz becomes an added check on the correct group of
members last to yield.

In addition, Y, is a measure of the size of plastic
plateau required in order to develop the full strength
of a ductile structure:

plastic plateau = Y; - 1

This section has so far been mainly concerned with
calculating the elastic deflexlons at incipient collapse: _
this.is the point of greatest load and largest deflexions before
collapse, and for complete or over-complete collapse the '
actual force distribution can be calculated without recourse
"to compatibility considerations. But, using the Haar-von
Karman principle, the actual force distribution can be determined
for any pin-jointed truss at any stage of loading.
' Hence, using the procedure outlined above of elimin-
ating the elements of the structural matrices corresponding
to members at yield, the elastic deflexions of the structure
can be calculated at any stage of loading to collapse.
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4.5 A Program to Calculate the Elastic Deflexions of Pin-

Jointed Trusses Loaded to Collapse
This section describes briefly a program to calculate
the compatible force distribution at any load to collapse,
and to calculate the elastic deflexions of the structure
and the elastic-plastic deformationsAof the members.

The programming problem of equation 4.8 is one of
minimiéing a strictly convex quadratic functlon subject to
linear constraints. KUNZI et al. (1968) suggest using either
of the diredt methods of BEALE (1959) or of WOLFE (1959).
However, the problem can be solved as an iterative linear
programming problem, using the method of REINSCHMIDT et
al., (1966),. :

Rather than work in the actual force hyper-space
V,(s) they suggest working in the delta-force hyper-space
VP(AS), using plece-wise linearisation of the quadratic
merit function U”., The problem was initially (equations 4.8)
lT) FG,s + sTG1 *6)
lT-al-g < G]s < GI] + 1-g

minimise " = 2(gT~lTG

subject to 5

or, more simply b < G;s < ¢

1
Starting from an initial point So> the problem in
delta-force hyper-space is

: au\'
minimise AU = (5?#)5 As

. | 0 ..(4.20)
subject to b-Gys, < G;4s < c-Gys
that 1is,
maximise AU = -2(gT +(sOT-1T)G])F*G]As

o (421)

subject to G, (I-s )-al-g < GAs < Gy (1-s )+l-g

This gilves optimum As, and the next point in the force
hyper-space is given by
S{ = s, * As

and so on., Adaptive move limits are uséd to achieve unconstrained
or semi-constrained optima. (Note that the substitution
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4.7 for r was unnecessary; as the vector As may still have .
both positive and negative elements).' ,
The program, known as MINIMUM COMPLEMENTARY ENERGY,
“comprises ten subroutines.
' ENERGY - dimensions the variable arrays and calls
the other subroutines in turnj;
PLOPT 7 - reads the data describing the truss and
forms the connexion, load, member length and area matrices;
RANK 2 - using the "Rank technique", this generates
- the transformation matriees B, and B, isolates a consistent
set of redundants, and determines the degree of redundancy
and/or the number of degrees of freedom of the structure;
HAAR - forms the matrices G], P, énd-g, and prints
their values. Forms S0 the initial set of redundants;

KARMAN - forms the objective coefficients(alf‘")
S,

39S

and computes the left and right hand sides of the constraint
equations 4.21, for any force point s,;
DUALP 5 ~ forms the dual of the linear programming
problem of equation 4.21 and calls KRANTE and KRSIMP;
NOWEND -~ prints the values of the number of iterations,
AU, p, As., s, and the "dimensionless" complementary energy U;
DEFLN -~ reads the values of r» and n and calculates
the nCP combinations. (It could have been written to count
n, the number of yielded members, to form a reduced connexion
matrix by eliminating all columns‘corresponding to yielded
members, to calculate d, the number of degrees of freedom of
the collapse mechanism, using RANK 2, and hence to obtain r,
the loss of redundancy of the structure at collapse from
equation 4,9, but there was insufficient time to automate
the process fully. As described here, it is semi-automated
only). Forms the assumed elastic structural matrices Boe,
B]e, Fe*, and Ag>s checking for the stability of the assumed
structure. Calculates Do and d and checks that u 1is zero
and computes Y;, and prints these values.
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DIMENSION ARRAYS
SET 1SW1,iSW2, ALF

S (LTI S
 ————

CALL DUALP § CALL NOWEND
CLEAR Z ARRAY PRINT XOUNT
oPYImuM 2(2,1)
SET DUAL SENSITIVITIES, 08J- HMATRIX PROD
CABL TIME ECTIVE COEFFICIENTS, & ACT- FIRST ROW OF 2
IVITY CODES IN Z ARRAY MATRIX X
SET COLUNNS FOR MOVE LIMITS CALCULATE & PRINT STRAIN ENERGY
CALL PLOPT? IN 2 ARRAY
( stmilar to PLOPTY In Fig.v, .
but doesn'y augment C § Q ) SEY DUAL L.H. & R,H, SIiDES AND
CONSTRAINT CODES IN Z ARRAY CALL DEFLN
STORE A IN C MAKE R.H. SIDES OF DUAL - e ———
CONSTRAINTS POSITIVE ; .
\
OUTPUT 2 ARRAY l‘-'—b-{REAO NRD, NY, NYLD}—pt |
CALL RANK 2 i, 1
(simitar to RANK In Flg.vV, CALL KRANTE (not listed) ] TOUNT NY, NYLD I
except & Is {c:I1], not ((‘--L]) I} IF NY.LT.NRD, NRD = NY ,
OUTPUT 2 ARRAY 1 \
I
!
!

[ RESET iswi, 15wi ] CALL KRSiMP (not listed)

OUTPUT 2 ARRAY CALCULATE THE an COMBINATIONS
SET VALUES OF PRIMAL VARIABLES PUT RYLD() TO NRO) INTO
IN FIRST ROW OF Z ARRAY, Z(1,1) ASCENDING ORDER

PRIMAL OBJECTIVE IN 2(2,1)
STORE € IN A
CHECK FOR AOAPTION OF MOVE
LIMITS ELIMINATE YIELDED MEMBERS
FROM A, PROD, & 08J

CALL RANK 2 TO FORM
FORCE TRANSFORMATION MATRICES

KOUNT.GE.NKD ?

no

| 1F A0D(2(1,1)).LT,

CALCULATE & PRINT JOINT
DISPLACEMENTS D

FORM QL MATRIX 2(1,1) = 0.0
x(t1) o x{1) Z(!_l)

FORM X(INITIAL) CALCULATE & PRINT MEMBER

T DEFORMATIONS OLGTH
PRINT Q, QL, SENS IF MoD{(z(1,1)). LT 10°°,
(r.1) -o 0 CALCULATE & PRINT RELATIVE
x(1) = x(1) + 0. 9«2(1 REDUNDANT DISPLACEMENTS D
4
_ RETURN PROD § OBJ TO INITIAL
ANY AOAPTIVE W.L. < 10 27 pres(i) ORDER

INCREMENT KOUNT °

s ‘ COMPUTE & PRINT MEMBER STRAIN
[Acc z(v,0) = OYW—»@ RATIOS DLGTN

CALL KARHAN. PUT NYLD() TO NRD) INTO
:: I noo(z(2,1)).61, 1l_yesO FORMER ORDER

FORM L.H.S. & R.H.S5. CONSTRA- re ?

INTS CALL TiME
FORM OBJECTIVE COEFFICIENTS PRINT TIME TAKEN

Flgure I1X : Flow Diagram of MINIMUM CONPLEMENTARY ENERGY
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A flow diagram of this program is presented in Fig. IX,
and a full listing can bé seen in Appendix B.
'h361'DeflexionﬂééiéﬁfééiSﬁ Examples
Three examples are presented: a trivial case‘
(truss 4), a planar truss with varying areas (truss 2), and
a space truss (truss 3).
Truss U4 is a simple, once rédundant planar truss with

uniform cross-sectional areas. At the load of 1.154 x 4 x ¢
(its collapse load), the force distributlon is as shown in

Y

Fig. X. From the D and y matrices it can be seen that the
assumption that member 3 is the last to yileld leads to the
largest values of joint displacements, and also satisfies
the conditions of equations 4.17, 4.18, and 4.19. .

Truss 2 (see Fig. VII as well) is found to have the
compatible collapse force distribution given in Fig. XI.
The last members to yield are 6 and 15, member 2 yielding
filrst. (Note that the structure fails partially with a
collapse mechanism of two degrees of freedom. The matrix Q
is zero so compatibility has been maintained). .

Truss 3 (see Fig. VIII also) is found to have the
compatible collapse force distribution given in Fig. XII.
The last member to yield is 11, member 9 yilelding first.
(Note that the structure fails partilally with a collapse
mechanlism of one degree of freedom).
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FORCES:
(Equal areas)
DISPLACEMENTS:
Y
p=1[ .187 1.00 -.999 1 X

If member 2 assumed last to yield,

then L o= .019 -.181 ]
€
Y

and Y

[ .187 1.000 -.455 ]

If member 3 assumed last to yield,

then % D=1[ .ol9 -.287 ]
Y .
and y = [ .187 1.529 -.999 ]

Thus member 3 is lastbto yield.

Figure X : Elastic deflexion analysis of truss 4.




Truss 2. : see Figure VII.

p=1[ .153 1.00 .625 .34 -.127 =-1.00 ~-.563
-.307 -.127 .153 -.125 .189 -.307 =-.153
~1.00 .125 .307 .180 ~-.062 ~-.346 0.000 ]

Members 6 and 15are found to yield last,
giving :

L b=l .o15-.399 .312 -.h2h .375 -.301 .166 .03
Y 196 -.282 .253 -.436 .353 -.383 .365 -.013
410 ]

y=1[ .153 2.97 .625 .346 =-.127 -1.00 ~-.563
-.307 -.127 .153 -.125 .189 -.307 -.153
1.00 .125 .307 .180 =-.062 =-.347 o0.00 1

u=[ o0.000 0.000 o0.000 ]
where cuts are made in
members 18, 19, 20.

(The load applied is the collapse load.)

Figure XI : Elastic deflexion analysis of truss 2.
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‘Truss 3. : see Figure VIII.

p=1[ .500 -.187 ~-.040 -.540 .31L
-.000 .460 -.687 1.00 -.540
-1.00 .34 -.650 =-.443 .320 ]

Member 9 is found to yield last, giving :

D

1
€y

[ .316 -.083 -.042 -.412 -.561 -.000
-.394 .331 .150 .031 -.506 -.737 1

.040 -.540 .313
.687 1.00 =-.540
.650 ~-.443 ,320 ]

y=1[ .s500 -.187
-.000 .L460
~3.687 .313

u=1[ 0.00 0.00 °1°
where ¢uts are made in
members 13, 16

Figure XII : 'Elastic deflexion analysis of truss 3.
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' CHAPTER V. ' PLASTIC DESIGN

5.1 Introduction

Within a few years of the first discusslons of the
plastic behaviour of ductile structures, various direct and
indirect methods of plastic analysis and design were described
(see sections 2.1 and 2.4). Plastic theory enabled the
condltions for direct design of structures to be simply
stated; while retaining rationality in attempting to take
into account the reserves of strength inherent in ductile,
redundant structures which were not allowed for in elastic

design methods.

In practice, good design attempts to reduce the cost
of the materials, construction, and maintenance over the
lifetime of the structure. This is not easily expressed
mathematically becausé of the many unknown factors which
may affect the cost., Plastic design for minimum weight,
however, can easily be formulated mathematically, and although
the minimum weight design (m.w.d.) may not really be practical,
it provides an ideal for the practical designer to aim for
as he takes into account the less easily quantifiable factors
mentloned above.

For the description below of the direct design of
minimum weight; three-dimensional, pin-jointed trusses,
the assumptions are those discussed in section 2.5. They
include proportional loading, neglect of changes of geometry
under load, a perfectly elastic-perfectly plastic load-
deformation relationship for both tension and compression,
and a homogeneous material so that the weight is directly
proportional to the volume. The'weight per unit length of
section is directly proportional to the plastic yield force
of the section., The discussion assumes a continuous range
of sections of uniform cross-sectional area.
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Wollow1nv TOAKLEY (1968), the direct design of
any ideal elastic plastic three—dimensional pin-jointed truse
is best formulated using a static or "safe" approach. The
equilibrium is satlsfled and the yield force nowhere exceeded
W, the weight of the truss, is an upper limit (i.e., "safe"
design) on W_, the welght of the m.w.d.

For a single loading condition this can be formulated
as follows. The eguilibrium equation 3.6

Q =¢Cq
or, with the member forces expressed in terms of the external

loading system and a set of internal redundants, equation 3.13

=28 Q+B x ’ ..(5.1)
The yield condition can be expressed as
OY a _>_q } 01(502)

a OY a > -q
where @ is the vector of member areas, a; = Ai'
Then substituting equation 5.1 into equation 5.2,
obtain ' .
Oy @ - By x 2+ 58,0 >..(5.3)
o OY a + 8., x > - B Q .

1
The volume or weight of the structure is obtained from

v o= 147 071 [a] | L. (5.1)
’ ’ X 9.
The linear programming problem is to minimise 5.4 subject to
5.3.
Substituting equations 3.5 and 3.22
AP

4y

o]

Q

Y
x = 0o,
into equation 5.3 results in

ak - B, v > + B° P > .. (5.5)

% : -
o a* + B1 y > B° P

where a* is the vector of area ratios, a*i = Ai/A' The

linear programming problem becomes
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minimise vE = [ZT SOT] [a*i | v : - ..(5.6)

subject to equation 5.5. B B

The reduced problem of éqﬁatipns 5.5 and 5.6 1is
formulated in terms of A; the reference area. If P has
elements of modulus close to unity, then a* and y are kept
COPPeSpondingly small. The program to solve this is described
in section 5.5.

The previous section describes the formulation of
the design problem with a single loading case. But designing
for a single loading system is hardly realistic as a structure
will normally support several independent loading cases.

They may act together or separately, loading or unloading
independently. 1In elastic des{gn and analysis thls can be
overcome by using superposition to obtain the worst possible
situation. But the principle of superposition does not hold
for plastic behaviour, and the added dangers of incremental
collapse and alternating plasticity further complicate the
prdblem. |

In this section, the problem of several proportional
loading cases applied alternately is studied. Toakley, in
a personal communication (1969), and DORN et al. (1964)
have suggested increasing the set of independent variables
of the linear programming problem to include a set of
redundants for each loading condition. This will ensure the
m,w.d. at the expense of doubling the number of constraints
with each loading case and increasing the number of independent
variables. For more than a few loading cases the method
becomes too large for any but the biggest computers.

The problem for ¢ loading cases becomés
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a | .. (5.7)

ninimise ve=[2' : o'l
Yy
YZ,
Y
. L C
subject to
ax - Blyl Z + o1
@ at+ By, Z 7 Pl (5.8
* - L N J *
ax B Y, >+ B P, (5.8)
o ot 12 B
. S, o
o a +Blyc > BoPc

A program using this method is described in section 5.5.

A procedure for obtaining an "efficient" design
which 1s "safe", although not the m.w.d., under many loading
- cases and which uses no more storage space than the single
loading case problem described in section 5.2 can be
formulated.

The linear programming problem becomes

minimise v+ = [27 : 0]  a% ..(5.9)
. gt
subject to a* - By >+ R__ ' } ..(5.10)
o ak + By 2R,
where Rmaxi is the greatest tensile load in member i due to
any of the external loading cases only, obtained by
R amy= max. L+ (B_ P )+ (B Po)yser st (B Pyl ..(5.11)
mini is the greatest compressive load in member i due to

any of the external loading cases only, obtained by
—Rmin7:= maX.{'(Bo Pl)i,-(Bo Pz)i,""-(Bo PC)i} 00(5012)
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Thus Rmaxiand Rminidefine an envelope of the critical
tensile and compressive member loads due to the external
loading cases only. _ _
Having obtainéd the optimum vector ax which minimises
V*, the collapse load factors for the designed structure
under each of the loading cases can be obtained. If all are
greater than unity, thén the cross-sectional areas of the
design can be divided by the smallest collapse load factor
obtained, leading to a modified load factor of unity for this
loading case. The design 1s then about to fail in at least
one of the loading cases. This 1s an efficient use of material,
but is not necessarily the m.w.d.: in general, 1t will not
be, except for the single loading case when this approach is
ldentical to that of equations 5.5 and 5.6.
A program based on equations 5.9 and 5.10 is
described below.

5.4 " Self-Weight Design
The design of structures using linear programming
and including the self-weight of the members can be done
iteratively. DORN et al. (1964) mentioned the problem, but
it has not received much attention. It is merely an extension

of the procedurss described above. 4

Firstly, using any of the above procedures, obtain
the optimum vector a*, assuming no self-weight, and using the
actual load matrix P (for one or more loading cases).
Then calculate

Vi% = M oa% . | .+ (5.13)
where v]* is a member volume (or weight) vector

M 1s the diagonal member length matrix Mii zi

Mos =0, 2 #
The member weight vector i1s obtained by multiplying
by the specific weight of the material. The correction load

vector P]‘is obtained by adding half the weilght of each
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member to the vertical downwards load components acting
at each end of the member.

The design procedure is repeated using the load
matrix (P + P, '), to get a new de51gn which has a different
weight from the old design. The new weight leads to a new
correction matrix Pz'; and the design is repeated using
(P + P,') as the load matrix.

The procedure is repeated until the difference
between the volumes of successive designs (Vn+1 - Vn)
is sufficiently small.

In designing for many loading cases, the corrections
can be applied to the tensile and compressive envelopes R

max
and Rmin‘

new R =oldR__ + B P’ ' .) .. (5.1h)
new R ., =oldR_, + B P! .

A program for the design of pin-jointed trusses,
allowing for self-weight, is described below.

" 5.5 Two Programs for Design with Several Loading Cases
Tn all the formulations above, (equations 5.6, 5.7,
and 5.9), the coefficients of the merit functions, the member

areas and structure volumes respectively, are positive or

zero. These problems can most efficiently be solved using the
Dual Simplex algorithm. TOAKLEY (1968) has developed such
an algorithm for the m.w.d. of rigid-jointed frameworks
under single loading conditioﬁs and it is this algorithm,
modified slightly, which is used in one of the two programs
below,

Toakley has described two means of shortening
the time and reducing the storage needed in solution. One
way 1is applicable when, as in equation 5.5, the Bo and Bl
terms cancel on addition of the equations. It leads to the
explicit consideration in the tableau of only half the
constraints. The other way is to use non-negative variables
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z, given by
| z =y +b ‘ | .. (5.15)

where b aré constant and chosen so that z are non-negative:
b are lower limits on the estimated possible values of VY.

The Dual Simplex algorithm of Toakley, employing
the substitution of 5.15; has been uséd in a program to solve
the "efficient" multi-loading case problem of equations 5.9
and 5.10, with self-weight iterations. The two-phase Standard
Simplex algofithm of KRANTE and KRSIMP has been used 1n a
program to solve the m.w.d. under multi-loading casé, the
equations 5.7 and 5.8.

The latter is known as MULTI-LOAD PLASTIC DESIGN
(TOAKLEY) and comprises eight subroutines: (

POLOAD - dimensions the arrays and calls the other
subroutines in turn;

PLOPT 5 - reads the data of the structure and forms
the connexion, load, length, and member incidences matrices;

RANK 2 - generates the matrices B, and B], and
1solates a consistent and well-conditional set of redundants;

MANYLD - sets up the problem as expressed by equations
5.7 and 5.8;

DUALP 2 - forms the dual problem and calls KRANTE
and KRSIMP;

FINAL - prints the optimum member areas, values of
the redundants, and the structural volume..

The former is known as SELF-WEIGHT PLASTIC DESIGN
and comprises six subroutines:

SELFWT - dimensions the arrays, sets up the initial
problem, and calls the other subroutines iteratively until
convergence;

. PLOPT 5 - reads the data of the structure and
forms the connexion, load, length, and member incidences
matrices;
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[DTWENSTON ARRAYS |

CALL TIME

{CALL PLOPTS )

[READ PROBLEM TITLE] "

T |
L1s 1T "FiNTSRY ?lAyes,‘iII’ :
. B ;

,no
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CALL RANK 2
{(as in Fig. IX, above)

[ CALL MANYLD }

READ NUMBER OF DIMENSIONS
JOINTS
SUPPORT JOINTS
MEMBERS

&€ PRINT THEM

READ JOINT COORDINATES
RESTRAINTS AT SUPPORTS
& PRINT THEM
READ MEMBER INCIDENCES
CALCULATE MEMBER LENGTHS (0BJ)
DIRECTION COSINES
& PRINT THEM

FORM CONNEXION MATRIX C FROM
DIRECT!ION COSINES

READ NUMBER OF LOAD CASES
LOADED JOINTS
LOAD COMPONENTS
FORM LOAD MATRIX Q

CORRECT MATRICES C & Q FOR SUPPORTS
& PRINT MATRIX C

5

Figqure XII1

CALCULATE NIV, NRS, NC, NCP

SET UP ACTIVITY CODE, ACT

COMPLETE OBJECTIVE COEFF~
ICIENTS, O0BJ

SET UP SENS MATRIX
FORM RHS MATRIX

PRINT NMBS, NIV
Q MATRIX
SENS MATRIX
0BJ MATRIX
ACT MATRIX
RHS MATRIX

CALL DUALP2
(similar to DUALP3 in Fig.V)

3

CALL FINAL

PRINT OPTIMUM MEMBER AREAS
VALUES OF REDUNDANTS
STRUCTURAL VOLUME

I
{[CALL TIME & PRINT TIME TAKEN]

Flow Diagram of MULTI-LOAD PLASTIC DESIGN
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RANK 2 -~ generates the matrices Bo and Bl’ and isolates

& consistent and well-conditioned set of redundants; )

~ SAG - adds the self-weight to the load matrix,
calculates and prints the critical load envelope R ax. 204
Rmins completes and prints the objectlve coefficients, and
prints o, the compression coefficient, and P, the load
matrix; ' ‘

LOMFRE - forms a contracted linear programming
tableau and solves the linear programming problem using the
Dual Simplex algorithm - a modification of Toakley's LIMFRAM
. program;

ULTIM - prints the optimum areas and redundants sets,
the minimum structural volume, and the number of iterations.

For a pin-jointed truss with m members, r of which
are redundant, a comparison of the size of the linear programming
problems shows:

' 1. for a single loading case (equations 5.5 and 5.6)
using Toakley's two methods of shortening the Dual Simplex
problem, number of independent variables = m + »

number of constraints =m
This particular problem is not described here.

2. for ¢ loading cases, using the formulation of
equations 5.9 and 5.10, and the Dual Simplex algorithm,

number of independent variables = m + »

number of constraints = 2m
with self-weight, this problem is iterated.

3. for c loading cases, using the formulation of
equations 5.7 and 5.8, to obtain the m.w.d. using the two-
phase Standard Simplex algorithm

number of independent variables = m + 2 X ¢ X p

number of constraints =2 X e Xm
Equations 5.7 and 5.8, to obtain the m.w.d. using the Dual
Simplex algorithm with Toakley's two devices:



DIMENSION ARRAYS

(AT

CALL PLOPTS

{as in Fi X1§1)

r

A 4

L, CALL RANK 2
(as in Figq. 1X,above)

l

FORM MATRIX BO FROM 4
PRINT BO

(R0 = 0 7 }—¥sip(3)

naq

lFORH B MATRIX FROM ﬂ

)

lcatcutaTe weys, wrgse] - T~ 77
)

US KOUNT .LT. 2 7}YeS o

no

INCREASE LOAD MATRIX TO
INCLUDE SUPPORTS

AOD SELF- WEIGHT TO THE
LOAD MATRIX

CORRECT LOAD MATRIX FOR
SUPPORTS

—

-
<%

i |
CALCULATE NiV, NCP, NC

SELECT CRITICAL LOAD PATTERN

1
'
t
$

HATRIX QU
TS NRD = o 7 ei__,_(:)

no

1
1
1
| INCREASE 08 MATRIX ]

Fiqure XiV

Q

SET & PRINT ALF

PRINT NMBS, NtV
MATRIX 08J
MATRIX QU
MATRIX Q

\ 4

CALL_LOWFRE]
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CLEAR vOL(1,2)

no

[voL(i,2) = voL(1,1}]

[caLcuLaTe NEW voL (1,1)]

[KouRT.L7.2 7] ves .(2)
>

VOLUME INCREASE NEcArln:ﬂ—lﬁi(:)
[VOLUNE INCREASE < 0.01

777 T [cAtcutATE size CiniTs - no
1
' CLEAR Z ARRAY, THE TABLEAU i
H 3 no
! PUT B, RHS, & 0BJ INTO 2 :
1
' FORM POINTERS t
t 8 KOUNT.GT.20 ?
] L}
FORM X, THE BASIC VECTOR YNCREMENT KOUNT,
FIND MOST NEGATIVE ELEMENT Z(LL,NP1)
IN COLUMN NP1, LL IS THE PIVOT ROW
CORRESPONDING TO THE VECTOR TO
LEAVE THE BASIS.
»
NO LARGE, NEGATIVE ELEMENT ? !
PIVOTING COMPLETE ? H CALL ULTIM 1
) >
no ?’ ] I

FINO NEGATIVE Z(LL,KK) SUCH THAT
Z(M1,KkK)/7Z(LL,KK) 1S THE GREATEST
IN ROW LL. KK 1S THE PIVOT COLUMN
CORRESPDNDING TO THE VECTOR TO
ENTER THE BASIS.

]

NEGATIVE ELEMENT. ?

NO LARGE, es
NO FEASIBLE PRIMAL SOLUTION ?

no —]

- - ————

PIVOT AS FOR STANDARD SIMPLEX

CORRECT THE POINTERS

®

PRINT TABLEAU NUMBER
CALCULATE REOUNDANT FORCES
STRUCTURAL VOLUME

Flow Diagram of SELF-WEIGHT PLASTIC DESIGN

PRINT OPTIMUM MEMBER AREAS X
VALUES OF REDUMDANTS R
STRUCTURAL VOLUME
ITERATION NUMBER

[eAaLl Time 7}

T
[PRINT TIME TAKEN |
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m+ e X »

il

number of independent varilables

number of constraints =cxm
Programming for this method of solution of the m.w.d. is not
described here; _ "

Flow diagrams of the two programs described above
are presented in Figures XIII and XIV. Full listings of
the two programs are preéénted in Appendices C and D.

5.6  Design Examples

The designs of two trusses are compared, using each
of the programs. The trusses are both fairly simple planar
trusses under two loading cases: the m.w.d. program,
MULTI-LOAD PLASTIC DESIGN cannot be used for large structures
with several loading cases, as the problem becomes too large

for the computer to handle,

Truss 5 -1s a three times redundant planar pin-
Jointed truss, as shown in Fig. XV. Loading case 1 is a unilt
vertical force downwards, loading case 2 is a unit horizontal
force to the right. The volume of the minimum welght design
(MULTI-LOAD PLASTIC DESIGN) 1s 30% less than the volume of
the "efficient" weight design (SELF-WEIGHT PLASTIC DESIGN).
After the addition of self-welght to the loading in the-
"efflclent" case, the volume has ilncreased by 10%.

Truss 6 is a twlce redundant planar truss, as shown
in Flg. XVI. Loading case 1 is a unit vertical downwards
force from the bottom midspan, and loadihg case 2 is a unit
horizontal force right, from the top midspan. The "efficient"
design is over twice the volume of the m.w.d., but self-
welght consideration increases it by about 10% only.
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MULTI-LOAD PLASTIC DESIGN.

Member cross-
sectional areqs

are shown in Italics.

~volume = 2.125x%x4

SELF-WEIGHT
PLASTIC
DESIGN

AN A YN N

volume = 3.3515x4

volume = 3.00x4 A
' (4th iteration)

(without self-weight)
(with self-weight)

Flegure XV : Plastic design of truss 5.




MULTI-LOAD
PLASTIC
DESIGN

SELF-WEIGHT
PLASTIC
DESICN

17071

48p.

volume = 4,0x4A

7071

.60

volume = 9.0x4

volume = 10.659x4

(5th iteration)

@,
|
\4

.0

1.204

777

(with self-weight)

Figure XVI : Plastic design of truss 6.
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- CHAPTER VI. "~ CONCLUSION , 4 _
_ Four algorithms have been written and programmed
successfully, dealing with planar or space pin-jointed trusses

of varying cross-sectional areas. The four programs,
respectively; A
' 1. perform a load factor analysis;

2. perform an elastic deflexion analysis;

3. obtain the minimum weight design for one or
several loading cases;

4, obtain an "efficient" weight design for one or
several loading cases, taking the self-weight of the members
into account. _

A subroutine has been written using the Rank technique
to isolate consistent and reasonably well-conditioned sets of
redundants. It generates the force transformation matrices
B, and B], and calculates the number of degrees of freedom
of any mechanism described.

An algorithm has been written to complete the constralned
minimisation of the strictly convex structural complementary
energy, using the piece-wise linearisation technique of
REINSCHMIDT et al. (1966) with adaptive move limits. 1In
purely elastic behaviour the minimum point is entirely
unconstrained. As the loading is increased the statically
admissible hyper-space shrinks as the yield constraints
~close in. As the first bar yilelds the previously unconstrained
minimim becomes semi-constrained. If the structure is about.
to fail in complete or over-complete collapse, the feasible
region is only a point at the intersection of the yield const-
raints, In the case of partial collapse the statically
admissible region is a hyper—spacé with as many dimensions
as the partial collapse structure has degrees of indeterminacy
at collapse,. '

The elastic deflexions at incipient collapse have
been calculated for several different types of truss. The
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assumption of ideal elastic-plastic ;oad—deflexion behaviour

- for struts; discussed in section 2.5, is valid only if the
plastic plateau required for collapse is not excessive. A
strut of truss 3 (see Fig; XII) showed a compressive plastic
plateau of 2;69 at collapsé; (with the compression coefficient
of @ = 1.0). None but the stockiest members could exhibit
plastic plateaus of this size; A réduced value of a in the
analysis would lead to a lower‘collapsé load and smaller
elastic deflexions at incipient collapse. The plastic plateau
required would be smaller. '

The collapse deflexions of structures are independent
of their actual member areas: the greater the areas the
stiffer the structure, but the greater the areas the stronger
the structure (see equation 4.13). For a given structural
and loading configuration, the collapse deflexions are
dependent on the area ratios, the compression coefficient a,
and the tensile yield strain €y - _

The minimum weight designs obtained under several
loading cases have generally been much lighter than the
corresponding "efficient" weight designs., Perhaps in structures
of low redundancy with many separate loading cases, the
"efficient" weight algorithm may offer a real advantage,
but for the structures considered, the'designs obtained,
although "safe", were hardly "efficient" in the same sense
as the m.w.d. ‘ |

Designs for self-weight are about 10% greater in
weight than the "efficient" designs without self-weight,
assuming a specific weight of 0.10. (The designs converged
after four to ten iterations).

Future Developments

Developments suggested here are of two kinds;
firstly, improvements in the programming techniques, and,
secondly, program modifications to allow their application to
structures acting flexurally.
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The Rank technique' used 1n all programs, could be
improved by selecting as plvot in the elimination the largest
remalining element in the whole of the submatrix C} Instead of
merely the largest element in each successive row. In ahalysis,
the technique described by DENKE (1965) of taklng account of
the member flexibilities could gilve a better set of redundants
(see section 3.4).

The deflexion analysis coﬁld be further automated
by calculating d and n, to obtailn r from equation 4.9,

The nCP combinations could then be calculated automatically,
and hence the corresponding D, d, and y matrices.

The program MULTI-LOAD PLASTIC DESIGN could make
better use of computer storage and time by using a modified
verslon of the subroutine LOMFRE to solve the equatlons 5.7
and 5.8. Both of the methods described by TOAKLEY (1968)
to reduce the computer time and storage could be used (see
sectlon 5.5). (LOMFRE was twlce as fast as KRANTE and KRSIMP
for a case of single loading).

The most important future development, however, is
the possible modification of the load factor and deflexion
analysls programs for use wilth flexurally-acting structures.
(This has already been done for design (TOAKLEY (1967),
(1968)).) A simplified method for considering the bending
moments only has been described by LIVESLEY (1964), but the
more general case of structures, some of whose members may
fall 1n bending, some in tension or compression, could easily
be formulated,
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" APPENDIX A

Appendix A présents thé listings of six of the eight
subroutines of the program RANK PLASTICITY OPTINISATION.
This is a program to determine the collapse load of two— or
three-dimensional pin-jointed trusses with ideal elastic-
pPlastic member load-deformation behavioﬁrs in tension and
compression.

The program is dimensioned:
maximum number of joints J = 16

" " " members m = 49

" " " redundant members r = 10
The relevant matrices of the program are:
COORD 1s the matrix of joint coordinates
RELS 1s the matrix of support restraints
A 1s the augmented connexion matrix [C E -L]
Z is the Simplex tableau '
SENS . 1s the coefficient matrix of equation 3.23
PROD 1s the member force ratio vector p
AREA 1s the member area ratio vector a*
MRED 1s the vector of the redundant member numbers
ALF is the compreésion coefficlent o
NRC  is the number of degrees of freedom at the joints
NMBS 1s the number of members
NRD is the number of redundant members
NIV is the number of independent variables
The two subroutines KRANTE and KRSIMP comprise a
two-phase Standard Simplex algorithm and not shown.
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$JoB 356879, MARKS

$TIME 3

$e RANK PLASTICITY OPTIMISATICN
$108408 MAP

SIBFTC NOINVY

C PROGRAM FQOR DgsggﬁﬁNlNG THE CRITICAL MEHRERS OF LUADED TRUSSES, CUMPOSED
C OF MEMBERS GF VARYING CROSS-SECTIONAL ARECAS,

C PLANAR DR SPACE TRUSSES PROCESSED

C THE PROGRAM [S CNMPRISED OF EIGHT SUB-PRQGgAMS -

NOIN ME} 0OF VARIABLE ARRAY

PLOP¥3 EaRgzsiggSCONNEXION ANC LOAD MATRICES, WITH DIFFERENT AREAS
RANK PROCESSES AND RFARRANGES THE AUGMENTED MATRIX A .

FORMS FORMS THE LINEAR PROGRAMMING PROBLEM

DuaLp FORMS THE Z ARRAY

KRANTE KRSI¥P = THE L. P. SUB- PROGRAMS

ANSWER CUTPUTS THE RESULTS

t+ 1

QOO0

REAL CODRDI(1643),RELSI16,53),A150,50),2( 62,15C),SENSI50,10),
* PROD([50),CHS[1C),AREA[SZ)

INTEGER KUT(150)4IDEG{150) ¢ NAME(150),MARK( 60} 4MRED(10),
* MOPI(50),KNUT(10)

00 170 LOOK = 1,20

CALL TIME

CALL PLOPT3 (CCORND,RELSyAgAREA,16450,NRC4NMBS)

CALL RANK (A MREDKNUTMOP,505310,NRC4yNMBS,NRD )}

CALL FORMS [A,3SENS,AREA12,50,NMBS,yNRDy NIV)

CALL DUALP3 (SENS»Zy1sCHSsKUT ) IDEGyNAME , MARKy 50910, 60,4150,NMBS,
* NIVels)

CALL ANSWER (SENS+Z+PROD,50, 60,150,NIV4NMBS,NRD)

CALL TIME (NMy,NSyNSS)

WRITE (64169) NM, NS, NSS
169 FORMAT(1H-,32HTIME TAKEN FOR ABOVE STRUCTURE =/20Xy1495H MINS, 106,
® 5H SECSy1646H SSECS)
170 CONTINUE

CALL EXIT
END

$IBFTC PLOPT]
"~ SUBROUTINE PLOPT3 {COORDyRELSyAgAREA,NTJISy NTUBS,NRC,NMBS)
REAL COORDI(NTJIS$3) yRELSINTIS13),AINTMBS,NTMBS) +TYPE(2)9XY2Z(3]},
* PRNAME(13),DRNCIS(3),QJ(3),LENGTH, AREA{NTMBS)
DATA TYPE/GH PLANE, 6H SPACE/, XYZ/1HXs 1lHY, 1HZ/, FIN/GHFINISH/
c .
C READ HEADER CARD
READ (5,10) PRNAME
10 FORMAT (13A¢)
IF (PRNAME(1).EQ.FIN} CALL EXIT
WRITE (6415) PRNAME
15 FORMAT (1H1, 13A6)
c
C READ PRURLEM PARAMETERS =
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C JF = 2 FOR TWO-DIMENSIONAL TRUSS

C JF = 3 FOR THREE-DIMENSIOMAL TRUSS

C NJS = NUMBER OF JOINTS IN TRUSS

C NSJS = NUMBER OF SUPPNRT JOINTS IN TRUSS
C NMBS = NUMBER 0OF MEMBERS IN TRUSS

WRITE (6,20)
20 FORMAT {1HO, 10X, 6HCATA -)
READ(5,25) JF, NJSs NSJS, NMBS
25 FORMAT (2014) .
c NFJS = NJS - NS JS
C OUTPUT PROBLEM PARAMETERS
WRITE TYPE(JF - 1)
30 Foannr'?iagizoz.zonrvpe OF STRUCTURE =,A6y29H TRUSS WITH THE CROSS-S
#S-SECTION/42X,27HAREA OF EACH MEMBER VARYING)
WRITE | NJS, NSJS, NMBS
35 Fonngr ?iagzzox.éouwunaen OF JOINTS  =,14/31X,1CHSUPPORTS =,14/3
’IXQIOHMEMBERS =.ll')
c
C READ JOINT NUMBERS ANG CDORDINATES =
C FREE JDINTS MUST BE NUMBERED FIRST, THEN SJPPORTS
C IF RELS(Ny1) = 1o ess RESTRAINT AT N IN X=DIRN,.
C IF RELS(N,2) le oee RESTAINT AT N IN Y-DIRN.
€ IF RELSIN,3) le eee RESTRAINT AT N IN Z-DIRN,
DO 39 1 = 1,NJS
DO 39 J = 1,JF
39 RELS(I,J) = 0.
DO 42 I = 1,NJS
READ (5445) Ny (COORD(NyJ)9J = 1,JF)
45 FORMAT (l4, 3F8.4)
IF (N.LE.NFJS) GO TO 40
READ (5,46) (RELS(NgJ)ed = 1,JF)
46 FORMAT (3F4e1)
40 CONTINUE

[}

c
C OUTPUT JOINT NUMBERS AND COORDINATES = FIRST FOR FREE JOINT AND THEN
C SUPPQORT JOINTS Lo SF)
WRITE {6,50) (xYZ2(1),I=1,
50 FORMAT (iHOtZOXnZOHJéINT COORDINATES =//28Xy SHJUOINT,10Xe3(A1,11X))
*)
WRITE (6,55) .
55 FORMAT (23 X44HFREE)
DO 60 I = 1,NJS
WRITE (6465) Is (CONRO(INJ)aJd=1,JF)
60 IF (T1.EQ.NFJS) WRITE (6,70)
65 FORMAT(IH ,131,2X,6F12,4)
T0 FORMAT (23 X,7HSUPPORT)
NFJSP = NFJS + 1
WRITE (6+47) ((RELSIT4J)ed = 14JF)sI = NFJSP,NJS)
47 FORMAT (1HO,20X,6HRELS -/27X.;6F5.1))
WRITE (6,75) (XYZ(1),] = 1+JF
75 FORMAT (;HO.ZOX:I?HNEMBER DETAILS «//31X,6HMEMBER:6X, SHSTART, 7X,
* JHEND +5Xs 6HLENGTH s 6X s 4HAREA2X93(3X,74DRNC(OS~4AL1)})
c
C LOOP ENTERED FDR ALL MEMBERS
NRC = JFaNJS
DO 79 I = 1,NRC
DO 79 J = 1,NMBS
79A(IIJ) = 0.
NC = NMBS + 1
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c
¢
C READ MEMRER INCIDENCES AND PROPERTIES
DO 120 M3 = 1.NMBS
READ (5,80) M,JNTST, JNTEND,AREAM
80 FORMAT 4
TR F12.4) (SNTENDCLESNJS) « ANDW{ JNTST.LT4JNTEND) ) GO
* T0 90
WRITE (6,85) M. _
85 FORMAT (1H-,20H INCIDENCE OF MEMBERsI4y 39H INCORRECTLY SPECIFICO.
» JOB TERMINATED)
CALL EXIT
90 CONTINUE
IF (AREAM.EQ.0.) AREAM = 1.
AREA(M] = AREAM
C CALCULATE MEMBER LENGTHS
TLGTH = Q.
DO 95 1 = 1,4F
95 TLGTH = TLGTH + [COORDIJNTENDs1) = COORD(JINTST,1))ee2
LENGTH = SQRTITLGTH)

(g X9l

CALCULATE MEMBER DIRECTION COSINES

0D 1CO I = 1,JF
100 ORNCOS(I) = ;CObRD(JNTENDoI) = COORDIJNTSTeI))/LENGTH
c
C OUTPUT MFMBER INCIDENCES AND PROPERTIES ~

WRITE (64105) MyJINTST,IJNTENDJLENGTHAREAM, {ORNCOSII),I = 1,JF)
105 FORMAT (1H , 23Xs 3111+2F1244y 6E11.3)

¢
C ADD MEMBER DIRECTICN CDSINES INTO THE CONNEXION MATRIX
LROCS = JFaINTST
IRGCS = LROCS = JF + 1
D0 110 I = [ROCS, LROCS
J = 1 - JROCS + 1
110 AlI,M) = =pDRNCCS(J)
LROCE = JFeJNTEND
IROCE = LROCE - JF +1
00 115 I = IRCCE, LRDCE
J =1 - [ROCE + 1
115 A(1,M) = DRNCOS(J)
120 CONTINUE

READ SIZES OF LOAD CIMPONENT AT EACH JOINT
MUST NUMRER [M QRDER Xy Y, Z, AT EACH JOINT
NLJTS = NUMBER OF LOADED JOINTS
READ 15,140) NLJTS
140 FORMAT (1614)
00 145 I = 1,NRC
145 A{I,NC) = 0,
00 155 NO = 1 ,NLJTS )
READ (54150) Ny, (QJII)y I = 1,JF)
150 FORMAT (14,9F8.4)
DO 155 I = 1,JF
J = JFe(N=-1) + I
155 AlJ,NC) = Qi)
c
C TO CORRECT MATRICES = AND & FOR SUPPURTS
NFJSP = NFJS + 1
M =219

OO0 0



156
157

DO 157 1 NFJSP,y, NJS
00 157 le JF

IF (RELS(I,J)eNEele) GO TO 157
K= JFe(l -« 1) + J - M
NRC = NRC = 1

DO 156 L = K. NRC
Ns=1L +1

ALLyNC) = A{N,NC)

00 156 I1 = 1, NMBS .
AL, TI) = A(NLID)

CONT INUE

M= M3

CONTINUE

C OUTPUT CONNEXION MATRIX

125

130
135

WRITE (6,125)

FORMAT { 1H-, 18HCONNEXICN MATRIX C/)
00 130 I = 1,NRC :

WRITE (65135) (Al14J)9J = 1,NMBS)
FORMAT {(1H , 10E12.3)

C OUTPUT THE LDAD MATRIX

160

165
170

WRITE (6,160)

FORMAT (1H=-,13HLOAD MATRIX Q/)
WRITE (64165) (A{I NC)s1 = 1,4NRC)
FORMAT (1H ,{20F6e¢3))

CONT INUE

RETURN

END

$IBFTC RANK

c

C SET
4

c

SUBROUTINE RANK (AyMREDyKNUT 4 MIP NTM3Sy NTIV,NRyNCC4NRD)
REAL A(NTMBS,NTMBS)
INTEGER MRED(NTIV) yKNUT{NTIV),MOP(NTMBS)

UP UNIT SUBMATRIX
NC = NCC + 1

00 4 [ = 1,NR
A(I'NC) = =A(I.NC)

C JORDAN ELIMINATION

10

15

DO 25 1 = 1,NR

DEM = Q.

D0 5 U = 1,NCC

AB ABSIA(TI,J))

DN ABS(DEN)

IF (AB.GT.DN) JJ = J

IF (AB.GT.NDN) DEN = AlI,J)
CONTINUE

IF (NEN.EQ.O.) 60 TO 25

00 10 K = 1,NC

ALT,K) = A[],K)/DEN

DO 20 L = 1,4NR

IF (L.EQG.I) GO TO 20

FAC = A(L.JJ)

00 15 M = 1,NC

AlLoM) = AlLyM) - A(I,M)eFAC

AL,
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20 CONTINUE
25 CONTINUE
3C1 FORMAT (1H /[20F6.2))

c

C CHECK FOR INCONSISTENCY AND CEPENDENCE
NDF = 0
DO 65 I = 1,NR
Jd=n

45 J = J ¢+ )
IF {JeGT«NC) GO TC 55
IF (A[1,4).EQ.0.) GO TO 45
IF [J.LE.NCC) 6U TO 65
NDF = NDF + }

GO 10 65

55 NR = NR - 1}
DO 60 K = I,NR
L=K +1 :
8]0] 60 M = 1|NC

60 A(K,M) = A{L,M)
65 CONTINUE
IF {(NDF.EQ.0) GO TO 66 . .
) ~ EGE =cC
50 :g;;ir(?;agzzggﬁHE STRUCTURE IS A MECHANISM/3CHNUMBER DF DEGREZS OF
*F FREEDUM =,13)
66 CONTINUE

C ISOLATE REDUNDANCIES

NRD = 0

DO 75 J = 1.NCC
KOUNT = ¢

DO 72 1 = 1,NR

70 IF (A(1,J)eNE.O.) KOUNT = KOUNT + 1
IF (XKOUNT.LE.1) GO TO 75
NRD = NRD + 1
MRED(NRD) = J
75 CONTINUE
C .
C REDUNDANCIES ... CHECK, OUTPUT
i ITE (6,80Q)
IF (1.NE«.NRD) WRITE '
BO FORMAT (1H=,22H{COLS = RUWS) .NE. NRD)
IF (NRD) 85,85,95
85 WRITE (6,90)
9C FORMAT (iHO.%ZHSTRUCTURE 1S ALREADY NETERMINATE)
GO TN 105
= RD)
95 WRITE (64172C) NRDyI{MRED(I),1 14N - ‘
100 FORMAT ({Ho.leSTRUCTURE IS sI12416H TIMES REDUNDANT/
# 22H REDUNDANT MEMBERS ARE,4013)
125 CONTINUE
(o
C MOVE ALL REDUNDANT COLUMNS TO RHS NOF MATRIX A
IF (NRD.LE.J) 6O TO 135
DN 110 K = 1,NRD
110 KNUT(K) = 0 Rp
DO 130 I = 1,N
IF (MREDIT)«GT.NR) GO TO 130

J = NR
115 4 = J + 1
K =0
120 K = K + ]



IF (MRED(K).EC.J) G2 TO 115
IF {KJLT.NRC) GC TO l?
K = MRED(I)
DO 125 L = 1,.NR
8LOC = A(L'J)
AlLyJd) = A(L,K)
A(L,K) = BLOC

125 CONTINVE
KNUTLTI) = MRFDI(I)
MRED(1)= J

130 CONTINUE

135 CONTINUE

c
C FORM UNIT MATRIX IN A{NR,NR)

00 155 LOO = 1,2
DO 140 I = 1.,NR
D0 140 J = 1,NR
‘F (A(I'J).EQIOO) GO TO 140
MOPLI) =

140 CONTINUE
DO 155 1 = 1,NR
IfF (MOP(I).ER.I) GO TO 155
D0 145 K = I,NR
IF (MOP(K).EQOI, L=K

145 CONTINUE
00 150 J = 1,NC
BLOC = A{1,J)
Ally3) = AlL.J)
AlL,J) = BLOC

150 CONTINUE
MOPIL) = MOP(])

155 CONTINUE :

o0

INCREASE A TO GET COMPLETE INTERNAL LOAD SYSTEM
K= NR + 1
IF {NRD.LE.D) GG TN 170
D0 165 1 = K,NCC
DO 160 J = KoNC
160 A(1,J3) = 0,
165 All,1) = -1.
170 CONTINUE

(g Xal

BACK TN DRIGINAL ORDER OF ELEMENT FORCES
IF (NRD.EQR.O) GO TO 174
CO 173 1 = 1,NRD
IF (KNUT(I1).EQ.D) GG TO 173
J = KNUT(I)
M = MREDI(I)
MRED(I) = J
DO 172 L = KyNC
BLDC = A(J,L)
AlJ,L) = A(M,L)
A(M,L) = BLOC
172 CONTINUE
173 CONTINUE
174 CONTINUE
RETURN
END



$IBFTC FORMS
SURROUTINE FORMS {A,SENS ARFA,NTIV,NTMBS,NMBS,NRD,NIV)

oo o0

AT7.

NODECK

REAL A(NTMPS,NTH“S),SEWS(NTMBS.NTIV).AQEA(NTMB‘)

FORM ACT, CON, GPT, X({INITIAL), LHS,RHS,0BJ

NIV = NRD + 1
FORM SENSITIVITIES

DO 20 1 = 1,N1Iv
K= NMBS ¢+ 2 - |
00 22 J = 1,NMBS

20 SENSUJ,1) = =A(J,K)/AREA(J)
IF {NIV.EQ.1) GO TO 30
00 25 1 = 2,NIV
00 25 K = 1,NMeS

25 SENSIK,1) = =SENS{K, 1)

30 CONTINUE
OUTPUT THE DPTIMISATION SUBROUTINE ARGUMENTS

WRITE (6

1601 INPBS 4 NIV

601 FORMAT {1H , SHNMBS=,14/6H NIV=- ,14)

WRITE (6,

602) L ISENSIL4J)yI=19NMBS)eJ=1sNIV )

602 FORMAT(1HO,6HSENS -/{10E12.3))

RETURN
END

$IBFTC DUALP3

OO0 On

o0

100

110

111

SUBRNOYTI

LIN

our
1P
1P
Ip
Ip

REAL SEN
INTEGER

CLE
DO 180 1
00 120 J
Z{l4Jd) =
SET

Z{1,4KK)
ZIN + 1,
Z{(N ¢+

NE DUALP3 (SENSoZyIPRNTyCHSyKUT 9 IDEGy NAME,MARK,NTRS,

* NTMBS NRZyNCZyM,NyALF)

EAR PROGRAMMING BY SOLUTION 0OF DUAL

PUT INDEX *IPRNT' FOR THIS SUBROUTINE

RNT = 0 NO OuTPUT

RNT = 1 O0OUTPUT IFAS,MOVE LIMITS

RNT = 2 nNUTPUT IFAS,MOVE LIMITS,Z-ARRAYS ETC,
RNT = 3 AS FOR 2 PLUS 0-ROW OUTPUT FROM KRSIMP

SINTRSyNTMBS) y ZINRZHyNCZ) +CHSINTMBS)
OPT1,KUT(NCZ) »10EGINCZ) 9 NAME(NCZ) 4 MARK{NRZ)

AR Z~ARRAY

= IyNRZ

= 1,NC2Z

0. _
DUAL SENSITIVITIES, OBJECTIVE COEFFICIENTS
ACTIVITY CODES IN Z-ARRAY

= =SENS{J, 1)
Jy = ~1.

s KK) = =ALF



113 CONTINUE

SET DUAL L.H. AND R.H. SIDES AND
CONSTRAINT CODES IN Z-ARRAY
121 N2 = M + ND
123 DO 132 1 = 1,N
LIIZNZ ¢+ 3) = 1,
125 Z{TyNZ+1) = 3,
130 CONTINUE
14N2 + = 1.
2 ﬁAKEai.H éIDES OF DUAL CONSTRAINTS POSITIVE
DO 135 1 = 1,N
CHS(I) = -1,
135 CONTINUE
OUTPUT Z-ARRAY BEFORE CALLING KRANTE
MZ = N
M22 = N ¢+ 2
NI3 = N2 + 3
IF (IPRNT.LT.2) GO TO 140
WRITE t(6,136)
136 FORMAT (30H0Z-ARRAY BEFORE CALLING KRANTE/)
DO 137 1 = 1,M22
137 WRITE (6,138) (Z(1,J),J=1,N23)
138 FORMAT(1H ,10E12.3)
140 CONTINUE
CALL KRANTE (2,M24N2,1FAS,KUT,NRZ,NCZ)
OUTPUT Z2-ARRAY ETC. BEFORE CALLING KRSIwP
MZ2 = M2 ¢+ 2
NIl = NZ ¢+ 1
If (IPRNT.LT.2) GO TO 145
WRITE (64141)
141 FORMAT(35§O§-ARRAY BEFORE CALLING KRSIMP/)
CO 142 I = 1,M22
142 WRITE (65136) (Z(1,J),J=1,N21)
WRITE (6,144) IFAS,(KUT(J)yJ=1,4N2)
144 FORMAT(7HOIFAS =,14/12HOKUT ARRAY -/(1H 22415))
14 0
> EATIl:gglMP (2o IFASyMZyNZyNAME,IDEG+KUT 3 NRZH,NCZ, IPRNT, MARK)
F F G0 TO 162 .
l (lOG$P5$ glARRAY ON RETURN FROM KRSIMP
M1 = MZ + 1
IF (IPRNT.LT.2) GO TO 150
WRITE ( 46)
146 FORMAT ?;éHOZ-ARRAY ON RETURN FROM KRSIMP/)
DO 147 1 = 1,M21
147 WRITE (6,138) (Z(1+Jd)sJd=14N2Z1)
150 CONTINUE
IF {IPRNT.LT.1) GO TO 152
WRITE (6,151) IFAS
151 FORMAT {THOIFAS =,14)
5
122 CONTlggs VALUES OF PRIMAL VARIABLES IN FIRST ROW
OF Z-ARRAY, PRIMAL OBJECTIVE IN Z2(2,1)
DO 154 J = 1,M2
154 Z(1,9) = CHSUJ) & Z(MZ21,9)
(2+1) = «212,1)
160 CONTINUE
RETURN
162 2(2,1) = 0.0
RETURN
END



AQ.

SIBFTC ANSWER NOCECK "
SUBRAUTINE ANSWER (SENS+ZsPRODINTMBS NIZoNCZoNIV, MBS, NRD)
REAL SENS(NTMBS,NTMBS), Z(NRZ,NCZ), PRODINTMBS)
C OUT PUT CPTIMUMM VALUES CF LAMDA
10 ?g;]\‘:ir(?]’_:.'93SOH'I.I'llii{{.......’Q......QQQ{QQ..QQQII..I.....I’...{)
WRITE (6,15) Z(1,1)
15 FORMAT {1H=,15HCPTINUM LAMCA -,£16.8)

C OUTPUT MEMBER FURCES

DO 20 I = 1,NMBS
PROD(I) = 0.
CO 20 J = 1,NIvV
20 PROD(I) = PROD{I) + SENS{I.J)#Z{1,J)

WRITE N) (PROD(I),I = 1,NM8S)
30 Fo;;ar(?iao: 16HPROCUCT MATRIX =/(6E12.4))
WRITE (6950) (Z{1,1)s1 = 1,NIV)
50 FORMAT (1HO, 7HZ ROW =/{15E12.4))
RETURN
END

504
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" APPENDIX B

AppéndiX»B presents the listings of elght of the ten
subroutines of the program MINIMUM COMPLEMENTARY ENERGY.
Thls is a program to determine the elastic deflexions of
two- or three-dimensional pin—jointéd trusses, with ideal
elastic-plastic member load—deformatiqn behaviours, at any
loading up to collapse load. ‘Mémbers, having yielded, are
assumed not to unload.

The program is dimensioned:
~maximum number of joints L d =16
maximum number of members _ m = 50
maximum number of redundant members r = 10

The relevant matrices of the program are:

COCRD 1s the matrix of joint coordinates

RELS 1is the matrix of support re§traints

A 1s the augmented matrix [C ! 1]

Q 1s the joint load vector L

~LEN  1is the member length vector £ )

AREA 1is the member area ratio vector a¥*

SENS 1s the coefficient matrix G]

OBJ is the vector of objective coefficients (equation 4.21)
LHS is the vector of the left hand side constraints

(equation 4.21)

RHS " the vector of the right hand side constraints

(equation 4.21) |

is the vector of positive redundant force ratios s
Z is the Simplex tableau
QL is the member load vector g
PROD 1is the member force ratio vector P
D is the joint displacement vector D, and alsou
DLGTH is the member deformation vector 4, and also vy
C is the connexion matrix C
MRED 1is the vector of the redundant member numbers
NYLD 15 the vector of the yielded member numbers

ALF 1s the compression coefficient o
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The two subroutines KRANTE and KRSIMP describe
a two-phase Standard Simplex algorithm and are not listed.



Bl.

$J08 357531, MARKS
$TIME 3
$e MINIMUM COMPLEMENTARY ENERGY
$18J08 MAP
$IBFTC ENERGY NODECK .
’ $12
E PROGRAM WHICH, USING THE HAAR-VON KARMAN Pz1Nc1pL;;Er:N;rigchr:chss I
C  ENERGY OF REDUNDANT STRUCTURES TO OBTAIN THE CJRbM%AND IS OF FARCES U
C ELASTIC -~ PERFECTLY PLASTIC BEHAVIOUR. EQUILIBRI
C  ARE SATISFIED,
¢ REAL COORD(16.3).RELS(16.3)'A(53'100)'3(50).Lezésgéa?&gﬁzgg;:
) semstso,IO),oaJ(10),LH$(50),nHS(ss),xtlg).géx(lé) '
* CHS(10),PROD(5C),D(5C)43DLGTHISC)ClI5G,50), e NAVE(1591 s
INTEGER MRED(1C)oKNUT(1D0),MOP(50),KUT(150), IDEG ’ 2
* MARK (63),NYLD(5Q)sADAP(10,2)
EQUIVALENCE (2,A)
ISWl = 2
lSH2 = 2
ALF = 1,
C
D0 170 LOOK = 1,29
CA TIM ’
CAtt P{ogr7 (COORD RELS+AsQeLEN AREAs15+504 19C yNRCyNMBS)
D0 S 1 = 1,NRC
BO 5 J = 1,NMBS
5 Cl14d) = A{1,J)
CALL RA;K 2 ;A,HRFD.KNUT'MUP'SOoIOC IO'NRC.NWBS.NRO)
IF (NRD.EQ.O) GC TO 30
c IF ISWl = 1 READ LOAD FACTORS -
c IF ISW2 = 1 READ NRD,NY, (NYLO(I),1 = 1,°
c IF ISW2 = 2 SEARCH FOR NY AMDONG MEMBERS W = NRD = ©
c IF ISW2 = 3 NO ELIMANATION OF MEMRERS -
: ISWl = )
ézzf :AiR (Q'AREAvAvQLoSENva'MREDOSOQIOOQlc'NMBSqNQOQNRCQQLFoISﬁl)
. )

KOUNT = ¢

1D KOUNT = KOUNT + 1

15
16

17
20

21

25

RHS 95T o IC+NRDL,NMBS,ALF)
RM ENe AREAWCLeSENSsNBJIeX s LHS
g:tt ECZL:Q :gENgynBJlLHS|RHS.X,ZQlyCHS'KUf'fDEG.NAME.MARK.EOX,

® ADAP,50410, 609152, NMBSyNRD 43,1004 KOJINT)

IF {KOUNTJLE.NRD} GO YO 16
DO 15 | = 1,NRD -
IF (ABS(Z(141))eLT41.E=06) Z(1,1) = 4
X{1) = x{1) + 2(1,1)
GO0 TO 20
IF (ABS{Z{1,1)).LT.1.,E-D6) Z(1,1)
XUI) = X{(1) + 2(1,1)%.9
CONT INVE
NET = ¢
DO 21 1 = 1,NRD
IF {ROX(I).LE.1.E~35) GO VO 25
IF (7(1,1).€G.0.) M$$ ;SNET +1
IF {NET.EQ.NRD) GO

.”T.I-E—08) CO T0 lo . .
éiLtAggaéhg’%;:Qt,SENS,PRDD»LEN-AREA,XySO,éO.150.10.AMBS,VRD,KyuuT)

1
s
.

. )

CALL DEFLN (AyLENvPRDD!NYLDODvDLCTH,CvMRED'KVUT'MUPv5091Cv1001



B2,

‘DeNRCy ISW2,ALF)
'EINMyNS,NSS)

169) NM, NS, NSS
PRV rumﬂnl(;é—'32HTlLE T;KFN FOR ABOVE STRUCTURE =/2.:X, !4.5“ MINSy 16y
* 5H SECSy1696H SSECS)
170 CONTINUE
CALL EXIT
END

$IBFTC PLOPT? '
SUBROUTINE PLOPT? (COORD,RELS,A,Q,0BI,AREANTIS.NTMBES ,NTCA,
* NRC,NMBS)
REAL COORDINTJIS,3)9RELSINTIS,31,AINTMBS \NTCA), TYPEL2),XY2(3),
* PRNAME{13),DRNCOS{3)9QJ{3))LENGTH,QI(NTMBS),AREA{NTMBS)
REAL DBJ{NTMBS) .
DATA TYPE/6H PLANE, 6H SPACE/s XYZ/1HX, 1HY, 1HZ/, FIN/GHFINISH/

o0

READ HEADER CARD
READ (5,10) PRNAME
10 FORMAT (13A6)
IF (PRNAME(1)4EC.FIN) CALL EXIT
WRITE (6,15) PRNAME
15 FORMAT (1H1, 13A6)

READ PROBLEM PARAMETERS =
JF =2 FOR TWO-CIMENSIDNAL TRUSS
JF = 3 FOR THREE~DIMENSIONAL TRUSS
NJS = NUMBER OF JCINTS IN TRUSS
NSJS = NUMBER OF SUPPORT JOINTS IN TRUSS
NMBS = NUMBER CF MEMBERS IN TRUSS
WRITE (6,20)
20 FORMAT {1HO, 10X, GHDATA =)
READ(5425) JFy NJS, NSJSs NMBS
25 FORMAT {2014)
NFJS = NJS = NSJS

OoO0OOOO0

C OUTPUT PROBLEM PARAMETERS
WRITE (6,30) TYPE(JF = 1), -
30 FORMAT (iHO,ZOX.ZOHTYPE OF STRUCTURE -=,A6+27H TRUSS WITH THE CRJISS-S
®#S=-SECTION/42X+27THAREA OF EACH MEMBER VARYING)
WRITE (6,35) NJIS, NSJS, NMBS
35 FORMAT (iHO,?CX,;OHNUMHER 0OF JOINTS =9 14/31X4 12HSUPPORTS =,14/3
*1Xs 10HMEMBERS =,14)

(o
C READ JOINT NUMBERS AND COORDINATES -
C FREE JOINTS MUST BE NUMBERED FIRST, THEN SUPPORTS
C IF RELSIN,1) = 1. eeos RESTRAINT AT N IN X-DIRN.
C IF RELS(N;3) = 1. oo RESTRAINT AT N IN Z-DIRN,
DO 39 1 = 1,KJS
DN 39 J = 1,JF

39 RELS(1,J) = 0,

DO 4C 1 = 1,NJS -

READ (5,45) Ny, (COORDIN;J)ed = 1,JF)
45 FORMAT (14, 3F8.4)

IF {N,LE.NFJS) GO TO 40



B3.

READ (5y46) (RELS(NyJ)yd = 1,JF)
46 FORMAT (3F4,.1)
40 CONTINUE

: HEN
C OQUTPUT JOINT NUMBERS AND COORDINATES = FIRST FOR FREE JOINT AND T
C SUPPORT JOINTS ,
WRITE (6450) (XYZ(1)sI=14JF -
50 FORMAT (iHo,zsx,z:HJblnr COURDINATES =//28X, SHIOINT,1EX,3(AL1,11X))
*)
WRITE (6,55)
55 FORMAT (23X,4HFREE)
DO 60 I = 1,NJS
WRITE (6465) I, (COORD(I,J)yd=14JF)
60 IF (1.EQ.NFJS) WRITE (6,70)
65 FORMAT(LIH 413142X+6F12.4)
70 FORMAT (23x,7HSUPPORT)
NFJSP 3 NFJS + 1 .
WRITE (6,47) ((RELS(I9J)sd = 13JF),1 = NFJSP,NJS)
47 FORMAT (1HQ.20X,6HRELS -,E7XE:6FS.1’)
WRITE (6,75) (XYZ(I1),1 = 1,4
75 FORMAT (fuozzox.17nnénasa DETAILS -//31X.6HW[MBE?;6X.SHSTAQT,7X.
% 3HEND»5Xy 6HLENGTH 6Xy4HAREA 42X, 3(3X, THDRNCOS -, Al
c _
C LOOP ENTERED FOR ALL MEMBERS
NRC = JFaNJS
DO 79 I = 1,NRC
00 79 4 = 1,NM8S
79 All,4) = 0,
NC = NMBS + 1

(e Xa N el

READ MEMBER INCIDENCES AND PROPERTIES
DO 120 MB = 1,NMBS
READ (5980) M, INTST,JNTEND, AREAM
° igRTAr (3l4s Fr2.4) (INTENDCLE«NJS) e ANDS(JINTST.LT.INTEND)) GO
* T0 90
WRITE {6 M .
85 FUéMAT‘(igE:ZOH INCIDENCE OF MEMEER T4, 39H INCORRECTLY SPECIFIED.,
* JOB TERMINATEC) .
CALL EXIT
90 CONTINUE
IF (AREAM,EQ,0.) AREAM = 1,
AREA(M) = AREAM
C CALCULATE MEMBER LENGTHS
TLGTH = 0,
0n 9s = 1 oJEF
95 TLGTH i TLG;H + (COCRDIJNTEND,1I) = CCORD(JINTST,[))es2
LENGTH = SQRT(TLGTH)
0BJ(M) = LENGTH

C CALCULATF MEMBER DIRECTION COSINES
DO 100 1 = 1,JF
100 DRNCCS(]) = ;COORD(JNTENDqI) = CONRDIINTST,L ) )/LENGTH

OUTPUT MEMBER INCIDENCES AND PROPERTIES N
‘ HR[TE (2.1;5) My INTST, INTENDy LENGTH,AREAM, (DINCNOS(I) 41 = 1,JF)
105 FORMAT (1H , 23X, 3111,2F12.4, 6EL11.3)

[a N el

ADD MEMBFR DIRECTION COSINCS INTO THF CONNEXION MATRIX



LROCS = JFeJNTST
IRDCS = LRDCS = JF + 1
DD 110 I = 1ROCS, LROCS
. J =1 - [ROCS + 1

110 A{I,M) = -DRNCGS(J)
LRDCE = JFe#JNTEND
IRDCE = LRDCE = JF +1
DO 115 1 = IRQCE, LROCE
J =1 - IRDCE + 1

115 A{1,¥) = DRNCDSI(J)

120 CDNTINUE

READ SIZFS QOF LDAD CIMPONENT AT EACH JOINT
MUST NUMBER IN DRDER X, Y, 7, AT EACH JOINT
NLJTS = NUMBER DF LCADED JDINTS
READ (5,160) NLJTS
140 FDRMAT (1614)
DO 145 [ = |,NRC
145 Q(I) = 9.
DD 155 NO = 1,ALJTS
READ (54150) Ny (QJ(I)y I = 1,JF)
150 FDRMAT (14 ,9F8,4)
DO 155 I = 1,JF
J = JFe(N-1) ¢+ I
155 Q(J) = Qitn)

[aNaNalalNgl

C TD CDRRECT MATRICES C AND Q FOR SUPPORTS

NFJSP 2 NFJS + 1
M =9
DO 157 I = NFJsP, NJS
DD 157 9 = 1, JF
IF (RELS(14J)aNE.le) GD TO 157
K= JFe(]l = 1) ¢+ J =M
NRC = NRC - 1
DD 156 L = K, NRC
N=1 +1
QlL) = QiIN)
DD 156 Il = 1, NMBS
AlLy11) = A(N,ID)

156 CDNTINUE
M= M4

157 CDNTINUE

(2 X%

DUTPUT CDNNEXIDN MATRIX
WRITE (6 5)
125 FDRMAT(('i:-. 18HCONNEXION MATRIX C/)
DO 130 I = 1,NRC
130 WRITE (6,135) (A{1,J),J = 14NMBS)
135 FDRMAT (1H , 10E12.3)
170 CONTINUE
RETURN
END

‘IEFrcsﬁggguilqE RAMK 2 (ASMREDyKNUT ¢MOPyNTMBS NTCAZNTIV,,NR¢NCCyNRD)
REAL A(NTMBS,NTCA)

B4 .
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INTEGER MREDINTIV) ,KNUT(NTIV)MOP(NTMES)

C SET UP UNIT SURMATRIX
NCP = NCC + 1
NC = NCC + NR

00 4 1 = 1,NR
D0 3 J = NCP,NC
3 AlI,J) = 0,

K=1 + NCC
4 All.K) =1,

C JORCAN ELIMINATION
DD 25 I = 1,NR
DEN = 0,
D0 5 J = 1,NCC
AB = ABS{A(I1,J))
ON = ABS[NDEN)
IF (4B,GT.DN) JJ = J
IF [AB.GT.DN) DEN = All,N)
S CONTINUE
IF (DEN.EQ.0.) GO TO 25
DO 10 K = 1,NC
10 Af{I,K) = A{I,K)/DEN
DO 220 L = 1,NR
IF {L.EQ.1) GO TO 20
FAC = AlL,JJ)
DO 15 M = 1,NC
15 A{LeM) = A(L,M) = A{I,M)*FAC
20 CONTINUE
25 CONTINUE
301 FORMAT (1H /(20F6.2))
c
C CHECK FOR INCONSISTENCY AND DEPENDENCE
NDF = 0
DO 65 I = 1,NR
J=0n
45 J = J + 1
- IF tJsGT.NC) GO TO S5
IF (A(14J).EQe0.) GC TO 45
1F {J.LEL.NCC) GC TQ 65
NOF = NDF + 1
GO 1O 65
55 NR = NR
DO 60 K
L = K ¢+
DO 60 M 1+NC
60 A{KyN) = A{L,M)
65 CONTINUE
IF (NDF.EQ.O0) GO TQ 66
50 ?Sé:ir‘?{ﬁfizﬁﬁiﬁg STRUCTURE IS A MECHANISM/30HNUMBLCR OF DEGREES OF
*F FRFEDUM =,13)
66 CONTINUE

TaNR

TR I |

c
C ISOLATE REDUNDANCIES
NRD = 0
no 75 4
KOUNT =
DO T0 1 = 1,NR '
70 1F (AL1,J) .NE.C.) KOUNT = KOUNT + 1

14NCC

noin



I[F (KOUNT.LEL1) GO TO 75
NRD = NRD + 1
MREDINRD) = J
75 CONTINUE
c
C REDUNDANCIES +.. CHECK, CQUTPUT -
1 = NCC - NR
IF {1.NE.NRO) WRITE (6480}
80 FORMAT {1lH-,22HICOLS - ROWS) «NE. NRD)
IF (MRD) 85,85,95
W
gg FggxiT(?Izg:32HSTRUCTURE 1S ALREADY DETERMINATE)
GO TN 10%
95 WRITE {6,107} NRD,(MREOD{1),s1
100 FORMAT {1HC,13HSTRUCTURE IS »
# 22H REDUNDANT MEMBERS ARE 49
105 CONTINUE

= 14NRD}
12,161 TIMES REQUNCANT/
131

c
C MOVE ALL RECUNDANT COLUMNS TO RHS OF MATRIX A
" IF (NRD.LE.O) 6O TO 135
DD 110 K = 14NRD
110 KNUTIK) = 0
DO 130 1 = 1,NRD
IF (MRED(I).GTLNR) GO TO 130

J = NR
115 U =) + 1
K =29
120 K = K + 1

IF (MRED(K).FC.J) GO TQ 115
IF (K. LT.NRD) GO TQ 120
K = MRED(I)
BO 125 L = 1,NR
BLAC = A(L,J)
AlLyJ) = A(L,K)
AfL,X) = BLOC

125 CONTINUE
KNUT(T) = MRED(I)
MRED(II= J.

13C CONTINUE

135 CONTINUE

C FORM UNIT MATRIX IN A{NRsNR)

DO 155 LAQ = 112
DG 140 I = 14NR
00 140 J = 1.NR
IF (A({l,J).EQ.0.) GC TO 140
MOPLI) = J

140 CONTINUE
00 155 1 = 1,.NR
IF (MOP(1).EQ.I) GO TQ 155
D0 145 K = 1I,4NR
IF {MDPIK)LEQ.T) L=K

145 CONTINUE
00 150 J = 1,NC
BLOC = A(I,J)
A(I4J) = AlL,.J)
AfL,J) = BLOC

150 CONTINUE
MOPLLY = MOP(I)

155 CDONTINUE
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c
C INCREASE A TO GET CCMPLETE INTERNAL LOAC SYSTEM
K= NR +1
IF {NRD.LE.O) GO TN 170
DO 165 I = x,NCC
D0 160 J = K,NC
160 A(I,J) = O,
165 AlI,1) = -1,
170 CONTINUE
c

C BACK TO DRIGINAL ORCER OF ELEMENT FORCES
IF (NRO.EQ.O) GO TO 174
00 173 [ = 1,NRD
IF (KNUT(1).EQ.C) GC TO 173
J = KNUT(I)
M = MRED(])
MRED (1) = J
DO 172 L = K,NC
BLOC = A(J,L)
AlJel) = A(M,L)
- A(MyL) = pLOC

172 CONTINUE

173 CONTINUE

174 CONTINUE
RETURN
END

s!BFTCSUg::UTlNE HAAR (QvAREAvA;QLvSENSvXo”REDvNTMBSvNTCAvNTRDvVﬂasvNRD'
* NRCoALF,ISW) _
REAL'Q(N;MBS).A(NTMBS'NTCA),OL(NTMBS),SENS{NTMBS,NTQD)'
d AREA(NTMBS )y X(NTRD)

INTEGER MRED(NTRD)
C

C FORM SENSITIVITIES
DO 10 I = 1,NRD
K 3 AMBS -~ NRD + 1
L = MRED(1])
DO 19 J = 1,NMBS
10 SENS({Jys1) = A(JsK)*AREA(L)/AREA(J)
g INCLUDE LOAD FACTOR FAC - READ IT IF SSWTCH 5 ON
IF (ISW.EQ.2) GO TQ 12
READ (5,11) FAC
11 FORMAT (10F844)
GO 10 13
12 FAC =],
13 00 14 I = 1,NRC
14 QUI) = Q(I)=FAC

(g X gl

FORM QL MATRIX
DO 15 1 = 1,NMBS

LIy = o,
DO 15 J = 1,NRC
K = J + NMBS
15 QLUT) = QLII) + A(I,K)*QUJ}/AREA(T)



B8.

C FORM XCINITIAL), LHS, RHS
D0 25 1 = 1,NRD
25 xX(I1) = 1,
C
WRITE (646100 (Q(I1),1 = 1,NRC)
610 FORMAT {1H0,10HG MATRIX ~/(10E12.3))
WRITE (8,611) (CL(I),1 = 14NMBS)
611 FORMAT {1HO,11HGL MATRIX -/{10FE12.3))
wRITE(b.eOZ)((SEMS(I.J).I 1,NMBS15J=1,NRD)

602 FORMAT(1HO,6HSENS -/(13E12 31}
RETURN
END

$IBFTC KARMAN - A
SUBROUTINE KARMAN (LEM,AREA,QLy SENS,0BJ, Xy LHS yRHS,NTMBS, NTRD,NRD,
® NMBS, ALF)
REAL LENINTMRS) ,AREAINTMBS) +CLINTMBS) ,SENSINTMES,NTRD),GBI(NTRE ),
c . X(NTRD)yLHS(NTNBS)oRHS(NTMBS)
C FORM OBJECTIVE COEFFICIENTS
DO 15 I = 1,NRD
0BJ(1) = O,
DO 15 J = 1,NMBS
BLOC = 0,
. DD 10 K = 1,NRD NS (J0K)
C BLOC = BLOC + (X(K) = 1.)%SE ’ _
15 OBJ", = 0BJ(I) = 2.¢(QL{J) + BLOC)®LEN{J)»SENS{JyI)=ARCALY)
IF L(NRD.EQa1)sANN. (OBJ(1)eGELDL)) 0BILL) = +1.
IF (INRD.EQal)oANDO.{0ORJ(1).LT.0.)) ORBJILD) ~1l.

C COMPUTE CONSTRAINTS

DO 25 [ = 1,NMBS
BLOC = O,
00 20 4 = 1,NRC

non

20 BLOC = BLOC + SENS{IsJ)e(le=~ X(J))
LHS{I) = BLOC - ALF - GL(I)

25 RHS(I} = BLOC + 1. - GLI{I)
RETURN
END

$IBFTC OUALPS . .
SUBRNUTINE QUALPS (SENS,O0BJsLHS yRHS 9 XsZ 9 IPRNT, CHS yKUT, I1DEG s NAME ¢ MARK
® RX¢BOXy ADAP ¢NTRSyNTMBSyNRZyNCZ, My N, OPT1,0PT2, INDEX)

C

c LINEAR PROGRAMMING BY SOLUTION OF DUAL

Cc

c QUTPUT INCEX ?'IPRNT® FOR THIS SUBROUTINE

C IPRNT = ¢ NO OUTPUT

o IPRNT = 1 QUTPUT IFAS,MOVE LIMITS

c IPRNT = 2 QUTPUT IFAS,MOVE LIMITS,Z~ARRAYS ETC,
c IPRNT = 3 AS FOR 2 PLUS D-R0W OJTPUT FROM KRSIMP
c

REAL SENS(NTRS,NTMBS), OPJ(NTMBS)'LHS(NTRS),RHS(NT&S)'L(V&Zoﬂyl)-
* CHSINTMOS) (X(NTMBS),BOX(NTMBS) ,OPT2



100

110

113

114

115
116

119

118

121

122
123

125
130

132
133

135

B9.

INTEGER KUTINCZ), IDEGINCZ) s NAME[NC2)MARK(NRZ) 9 ADAP[HTMBS,2),UPT1

. CLEAR 2-ARRAY
00 1CO0 1 = 1,NR2
00 100 § = 1,NC2
Z”'J;ET SGAL SENSITIVITIES, OBJECTIVE COSFFICIENTS
AND ACTIVITY CGDES- IN Z=ARRAY

ND = Q .
00 113 J = 1,M
NC = ND ¢+ 1

00 111 I = 1,N

ZI14J) = SENS{Js1)

KK = M + ND

ZIT4KK) = -SENS(J,1)

Z(N+1,9) = =RHS (J)

ZIN+14KK) = LHS(J)

CONTINUE

SET COLUMNS FOR MOVE LIMITS IN Z-ARRAY

GO TO (120,114,114),0PT1

IF (INDEX4NE.1) GO .TO 116

D0 115 1 = 1,N

ADAP(I,1) =2 0

BOX(1) = 1,

DO 119 [ = 1,N

T = .01%0PT2eX(1)eB30X(I)

NM = M + ND ¢ |

Z{I4NM) = 1,

ZIN+#14NM) = -T
NM =z NM ¢+ N

(T WNM) = =},

ZIN+1,NM) = =T
IF (CBTI.NE.a.CR.XPRNT.LT.I; G0 10 120
WRITE (64118) (BOX(I)yI=1,N
FORMAT(Z&HOCURREVI MOVE LIMITS,1CF10.3)
CONTINUE
SET DUAL L.H. AND R.H. SIDES AND
CONSTRAINT CODES IN lfARRAY
GO 10 (121,122,122),0PT1
NZ = M 4+ ND
GO To 123
NI = M+ ND+NGH+N
DU 130 I = 1,N
ZUL4NZ+3) = OBJ(1)
2ITaN2+1) = 3,
CONTINUE
I"Xi& ReH.SIDES OF DUAL CONSTRAINTS POSITIVE
DO 135 1 = },N
CHS(I) = -1, _
IF (ZUI,N2+3)) 1324135,135

CHS‘I) = 1,

D0 133 J = 1,N2Z

LI14Jd) = =2(1,4)

ZIToNZ+3) = =Z({1,NZ¢+3)

IF [2C¢14NZ41).EQe3.) GO TO 135

ZIT4NZ+l) =},

CONTIggEPUT Z-ARRAY BEFORE CALLING KRANTE
ML = N

MZ2 = N + 2



136
137
138
140

141
142

144
145

146

147
150

151
152
154

156

158
160

162

NZ3 = NZ + 3
IF (TPRNT.LT.2) GN TO 140
WRITE (6,136)
FORMAT{30HGCZ-ARRAY BEFORE CALLING KRANTE/)
DO 137 I = 1,M22
WRITE (6.138) (20143)0J=1.N23)
FORMAT(1H ,10E12.3)
CONTINUE
CALL KRANTE (Z,MZ,NZ,1FAS,KUT,NRZ,NC2Z)
OUTPUT Z-ARRAY ETC. BEFORE CALLING KRSIMP
M22 = M2 + 2
NZ1 = NZ + 1
IF (IPRNT.LT.2) GO TO 145
WRITE (64141)
FORMAT(30HO§ -ARRAY BEFORE CALLING KR%IMP/)
DO 142 I = 1,M22
WRITE (6.138) (Z(1,J),J= 1;N§1{ NZ)
WRITE {64144} IFAS,(KUTULJ), '
FORMAT(?HéIFASl=.l4/12H”KUT ARRAY =/(1H 42415))
COMT INUE

CALL KRSIMP (Zy1FAS,MZyNZyNAME, IDEG,KUT)NRZ4NCZyIPRNT,MARK])

IF (IFAS.EC.3) GO TO 162
OUTPUT Z-ARRAY ON RETURN FROM KRSIMP
MZ1 = M2 + 1
IF {IPRNT.LT.2) GO TO 150
WRITE (6,146)
FORMAT (3éHOZ-ARRAY CN RETURN FROM KRSIMP/)
DO 147 | = 1,M321
WRITE (645138) (Z(1,J),J=1,N21)
CONTINUE
IF (IPRANT.LT.1) GO TO 152
WRITE (6,151) IFAS
FORMAT (T7HOIFAS =,14)
CONTINUE
SET VALUES OF PRIMAL VARIABLES IN FIRST RGW
OF 2-ARRAY, PRIMAL OBJECTIVE IN Z(2,1)
D0 154 J = 1,MZ
Zl1ed) = CHS(J) » Z(MZ1.J)
I(251) = ~2{2,1)
CHECK éoi ADAPTION OF MCVE LIMITS
GO TO {1604160,156),0PT1
DO 158 | = 1.N
ADAP(I,2) = ADAP{I,1)
?OAP(l'l) Tt AP(1,1) 1
F Z( .GT-O.) AD 1 ] =
1f foééfloAp(x.x) - ADAP(I1,2)).6T41) BOXUI) = G5 ® BOUX(I)
CONTINUE
RETURN
Z(2,1) = 0,0
RETURN
END

IRFTC DEFLN
: SUBROUTINE DEFLN {A,0BJ,PRODyNYLD,DyDLGTH,CoMRED, KNUT 4MOP{NTMBS,
NTIVeNTCA,NMBSsNRD«NRCs ISHsALF) )
.REAL AtNgnés.NrEA),6aJ(NTMBS),PROD(NTMBS).D(vrMBS).OLurH(VTMUS).
*= CINTMBS,NTMBS)

BloO.



c

oo

aooon

INTEGER NYLDINTMBS) MRENINTIV) KNUTINTIV),M0OP (NTMBS)

SET UP SET OF YIELCED MEMRERS
13}, 1SW

GO 710

NY

(4,6
3 NRD = 0

0

GO 10 11
4 READ (5,5)
5 FORMAT (1614)

NROy NY,

GO TC 11

6 J =20
DO 17 I = 1,NMBS
APRQ = PROD(1)

(NYLD(I) 1 = 1,NY)

IF (APRO.LT.0.) GO TO 8

IF {(APRO.LT..5999),0R. (APROLGT.1. ﬁOOl)l GO T0 19

- GO TO 9
8 1F ((APRO.LT.(~ ALF=.0001)).0R.{APRDGTo(~ -ALF+,C001))) GO TO 10
93 =J+1
NYLD(J) = 1
10 CONTINUE
NY = )
IF INY,LT.MNMRD)} NRD = NY
11 CONTINUE

CALCULATE THE YIELCED MEMBERS TO BE ELIMINATED

NIV = NRD + 1

NZL = NY = NRD

WRITE (6415) NEL
15 FORMAT (1H~,SHNEL =,13)
(NEL.GT.4) - RETURN

IF

16
1€
10
IC

DO
IF

IH
0o
IF

I8
0o
IfF

1A
Do

70

{T4.GE.ID) GG TC

NRD
NRD
NROD
NRD

14

+ + ¥+ <+

N WS

1216

2 NRD + 3 - |4

55

{I3.GEe IH)

I3

1

+1E

= NRD ¢+ 4 - [3 -

40

(12,Ge.13) GO TO

i2

1

«IC

= NRD ¢ 4 - ]2 =~
25 11 = 1.1A

PUTTING NYLD(1 TO NRD)
MA = 12 ¢+ [3 + (4 - 3
MB = MA + 1
IF [MA,EQ.0) GO TO 215

00 210 11 = 1,MA
BLOK = NYLD(1}

0O 205 JJ = 24NRD
KK = JJ - 1

ce 10

60

45

14

13 - 1ea

INTC ASCENDING ORDER

B11l.



205

210
215

216

217
218

NYLD(KK) = NYLC(JJ)
NYLD(NRD) = BLCK
CONTINUE

CONTINUE

JE = 11 - ) _

IF (MB.GE.NRD) GO TO 218
1F (JF.EQ.0) GC TO 218
DO 217 JG = 1,4F

BLOC = NYLD(1)

JH = NRD -~ MA

D0 216 JJ = 2,4H

JK = gg -

NYLO(JK) = NYLC(JJ)
NYLD(JH) = BLOC
CONTINUE

CONTINUE

C FORM DETERMIMATE C MATRIX

300

DD 3C0 1 = 1,NRC
00 370 g = 1,NMBS
Alls0) = Cl1,44)

C ELIMINATING YIELDEC MEMBERS

219

322

323

324
330

335

340

325
c

FORMAT (1H /({2CF6.2))
NM = NMBS
NMM = NMBS - 1

IF (NRD.EQ.0) GU TO 325

00 324 11 = 1,NRD

JJ = NYLD(II) - 11 + 1
NM = NM = )

00 322 MM = 1,NRC

DO 322 KK = JJ,NM

LL = KK + )
ALMMJKK) = A{MM,LL)

BLOA = PRAD(JJ)

BLOB = QBRJ(JJ)
DO 323 KK = JJyNMM
LL = XK + 1
PROO(KK) = PROC{LL)
OBJ(KK) = 0BJ{LL)
PRODILL)} = BLDA
08J(LL) = gLOB
CONT INUE
WRITE 30) (NYLDI{IG),1Q = 1,NRD)
FUR;AT(?iaO?ZZHELIMINATED MEMBERS ARE,1614)
IF (NY.LE.NRD) GO TO 340

IQQ = NRD + 1

RITE 5 NYLO(IQ),1Q = IQN,4NY)
:g;;Ar(?{:gf;séLAsr TO YIELD ARE MEM3ERS,1614)
CONTINUE
CONTINUE

C FORM BO MATRIX

c

NRCE = NRC
NEM = NM

CALL RANK 2 (A,MRED;KNUT,MOP4NTMESyNTCA,NTIVyNRCE4NEM, NOO)

C CALCULATF DEFLECTIONS
C QUTPUT DEFLEXIONS

Bl2,



KK = 11 + NM
DI1I) = o,
D ? &
225 n?x§§5=Jé(xx%'t”A(JJ.KK)-uBJ(JJ)-PRUDlJJ3/10-
245 FORMAT (1HQ,15HVECTOR NYLD IS +1614)
WRITE (64250) (D(1Q),IC = 1,NRC) A
25C FORMAT (1HO,18HJDINT CEFORMATIONS/(13€1243))

CALCULATE DISTORTEC MEMBER LENGTHS
DC 275 N1 = 1,NMBS
DLGTHINL) = 0,
DO 275 N2 = 1,NRC )
275 DLGTHIN1) = DLGTH(NL) + CIN2,N1)sD(N2)
WRITE (6,270) (DLGTH(N3),N3 = 1,NMBS)

270 FORMAT (1H ,22HCISTGRTED LENGTHS ARE /(10F7.3))

CHECK ON JOINT DEFLEX1ONS
IF (NOD.EQ.0) GO TG 285
DG 279 I1 = },NCO
KK = NM ¢+ | - 11
DUIT) = O,
DO 279 JJ = 1,NM
279 pUII) = S(Il}'o A{JJ,KK)*0BJ(JJ)*PROC(JI)I/ 10,
WRITE (6,280) (C(II),II = 1,NOC)

280 FORMAT (1M ,32HRELATIVE REDUNDANT DISPLACEMENTS/(10E11.3))

285 CONTINUE

RETURNING MATRICES SENS, PROD, 0OBJs TO INITIAL ORDER
IF

(NRND.EQ.0) GO TO 350
DD 349 11 = 1,NRD
JJ = NRD ¢+ 1 = 1I1I
KK 2 NYLD(JJ) = JJ + 2
NM = NM 4+ 1
BLOA = PROD(NMBS)
BLOB = DBJ(NMBS)
DO 348 LL = KK,NMBS
ITA = NMBS ¢ KK - LL
118 = 1A -}
PROD(ITIA) = PRCC(IIB)
348 0BJ(11A) = ORJ(IIB)
PROD(IIB) = BLOA
08J(I1B) = BLOB
349 CONTINUE
350 CONTINUE

'~
COMPUTE THE RATINS OF ACTUAL STRAIN TO YIELD SYRAIN

DO 290 N1 = 1,NMBS

DLGTHINL) = SIGN(DLGTHINL), PRODINIY)
290 DLGTHINL) = DLGTH(N1}10,/08J(N1)

WRITE (6,295) (DLGTHIN3), N3 = 1,NMBS)

B13.

295 FORMAT (1H ,52HRATIC OF ACTUAL MEMBER STRAIN TO MEMRER YIELD STRAI

*N/(LINFT,3))

PUT NYLDI1 TU NRD} INTC FORMER ORDER
IF (M3,GE.NRD) GO TC 228
IF (JF.EQ.0) GC TO 228
DO 227 46 = 1,9F
BLOC = NYLOD(JH)
JI = JH - 1~



o000

226

227
228

230

235
240

20
25

30

35

40

45

50

55

60

65

70
200

00 226 Jy

= 1941
JK = JH + 1 -~ 4
JU = yx - 1

NYLD(JK) = NYLC(JL)
NYLD(1) = BLOC

CONT INUE

CONTINUE

IF (MALEQ.0) GG TO 240
DO 235 II = 1,MA

BLOK = NYLD(NRD)

IN = NRD ~ 1

DO 230 JJ = 1,IN

KK = NRD + 1 ~ 44

L = KK - 1

NYLC(KK) = NYLD(LL)
NYLD (1) = BLOK
CONTINUE

CONTINUE

IF {NEL.LE.O) GG TO 200

BLOC = NYLD(IC)

JA = 12 ¢+ 13 ¢+ 14 ~ 2
JB = 1A - 1

00 27 JC = 1,48

JD = NRD + 2 - J4C

JE = Jyp ~ 1

NYLO(JD) = NYLC(JE)
NYLD(JA) = BLOC
CONTINUE

IF (NEL.EQ.1) GO TO 200

BLOC = NYLD(ID)

00 35 kKA = 1,1C

KB = NRD + 3 ~ KA

KC = KB ~ 1

NYLC(KB) = NYLD(KC)
NYLD(1) = BLOC

CONTINUE

IF (NEL.EG.2) GO TO 200

BLOC = NYLO(IE)

00 50 LA = 1,ID

LB = NRD + 4 - LA

LC = 18 -1

NYLD(LB) = NYLD{(LC)
NYLD (1) = BLOC

CONT INUE

IF IMEL.EQ.3) GO TGO 200

BLOC = NYLD(IG)

DN 65 NA = 1,1E

NB = NRD ¢+ 5 - NA
NC = NB - 1
NYLD(NB) = NYLD(NC)
NYLD(1) = gLOC

CONT INUE

CONTINUE

B14,
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RETUON
END

SIBFTC NOWEND

C

¢ out
10
11
15

c

‘ ; NTRD
SUBROUTINE NOWEND (Z+QLySENSsPRODJLENJAREA,Xo NTUBSNRZeNCZ ’

# NMBS,NRD,KOUNT)

d NTMES)
REAL Z(NRZ,NCZ),QL{NTMBS),SENSINTMBS,NTRD),PROD(NTMBS) y LENLN ’

® AREA(NTMBS) X {NTRD)

PUT OPTIMUMM VALUES OF LAMDA .

ﬁgaziT(?i;o,50H00.0oocgoooﬁoocco.oo.onocincn.ooonoinﬁuooanoocﬁcno)
-

WRITE (6,11} KCUNT

FORMAT (1HO,16HITERATICN NUMBER,14)

WRITE (6415) 2(2,1)

FORMAT (;H"ISHOPTIMUM LAMDA —41PEL12.4)

COUTPUT MEMBER FORCES

20
25

30
50

55
¢

0025 1 = ],NM8S

PRGO (1) = O,

D0 20 J = 1,NRD-

PROD(I) = PAOD(I) + SENS(I,J)#(X(J) - 1.}
PROD(I) = PROD(I} + QL(I) ,

WRITE (6430) (PROD(I),1 = 1,NMBS (6E12.4))
FORMAT (1HO, 16HPROCUCT MATRIX =/ )
WRITE (6950) (Z2(1,1),1 = X!NRDz,,

FORMAT ({1HO, THZ ROW ‘/{lzgéf'

HRITE (6455) (X(1),1 = 1, :

FORMAT (iHOvl?HX VARIABLES ARE =/(10E12.4))

C CALCULATE STRAIN ENERGY

40

45

SE'O. s

DO 40 1 1,NM8

SE = SE + LEN(II®AREA(T)*(PRCD(1)®s2)
WRITE (6445) SE

FORMAT ({HO.I&HSTRAIN ENERGY [S9E12.4)

RETURN
END

1053



55.
- APPENDIX C

Appendix C presents the listings of six of the elght
subroutines of the program MULTI-LOAD PLASTIC DESIGN. This
1s a program to determine the minimum welght designs of two-
or three—diménsional pin-jointed trﬁsses, with ideal elastic-
plastic member load-deformation behaviours, for one or‘several
loading cases.

The program is dimensioned:

maximum number of joints Jj = 1¢6
maximum number of members m = 30
maximum number of redundants r = 10

maximum number of loading cases e = 10
(Note, that in equations 5.7 and 5.8, the maximum number
of variables = 40 and the maximum number of constraints
= 60),
The relevant matrices of the program are:
COORD 1is the matrix of joint coordinates
RELS 1is the matrix of support restraints
A 1s the augmented matrix [C : i}
7 15 the Simplex tableau '
ACT 1s the vector of the signs of the variables
SENS 1s the coefficient matrix (equation 5.8)
RHS 1s the vector of right hand side constraints (equation 5.8)
OBJ  is the member length vector, augmented [¢T : o']
Q 1s the joint load vector p _
MRED 1is the vector of redundant member numbers
ENDS 1s the matrix of the member incidence joint numbers
ALF 1s the compression coefficient o
The two subroutines KRANTE and KRSIMP describe a
two-phase Standard Simplex algorithm and are not listed.



$J0B
$TIME
s
s18J08
SIBFTC

POLNAD

Cl.

357361, MARKS

6¢

MULTI-LOAO PLASTIC OESIGN  (TOAKLEY)
MAP :

NODECK

C PROGRAM FOR OETERMINING OPTIMUM (MINIMUM VOLUME) CRNSS-SECTIONAL AREAS
C OF THREF~OIMENSIONAL TRUSSES, FUR GIVEN LOAO AND CONFIGURATION

C THE PROGRAM
C THE PROGRAM

OO0

POLOAD
PLOPTS
RANK 2
MANYLD
duatre

KRANTE
FINAL

* SENSI

D
I

I + 01 1 04

ESIGNS FOR SEVERAL LOAD CASES.
S COMPRISFD OF EIGHT SUB-PRNGRAMS -

THE VARIABLE ARRAYS ANC CALL STATEMENTS
FORMS THE MATHEMATICAL MNOAL

[SCLATES THF REDUNDANTS

SETS UP THE L.P. VALUFS

FURMS THE I ARRAY

KRSIMP = THE L. P. SUB-PROGRAMS

CUTPUTS THE RESULYS

REAL CCOORD(1643),RELS{16,3),A037,62),Z( 73,16C),ACT{4),
60,40)yRHS{ 60),08J{40),CHS(42),C(30,10) _ . ) R
INTEGER KUT(160)IDEGI160) yNAME{L160),MARK( TJ) MRERIL13)MOIP(32),

* KNUT(10),ENDS(30,2)

DO 179 LOOK = 1,29 X
CALL TIME - . e
CALL PLOPTS (CGORDIRELS+A¢CoOBJoENDS 16530, 12560,40,NRCHNMBS,NLDS,

* JFaNJS,NSJIS) X

CALL RANK 2 (A,MREO,XNUT4M0OP330,60,1CyNRC,NMBS,NRD) i
CALL MANYLD (A,C)0BJ,SENSsACT,RHS60440,30,60,1C+NMBSyNRD«N[V4IiRSy

* NLOS,NRC)

CALL DUALP2 (SENS,08J)ACTRHS2,1,CHS9KUT, I0EG,NAMF,MARK, 6)44,

7041 60,NRS,NIV)

CALL FINAL (2, 70,160,NMBS,NIV)
CALL TIME (NM,NS,NSS)

WRITE (64169) NM, NS, NSS

169 FORMAT(1H-,32HTIME TAKEN FOR ABOVE STRUCTURE =/20Xs149¢5H MINS, 16,

® 5H SECS,I16,6H SSECS)
170 CONTINUE

$I3FTC PLOPTS
SUBROUTINE PLOPTS (COORD,RELSsA,Us0BJ,ENDS,NTIS,NTMAS,NTLDS,NTCA,

CALL EXIT
END

® NTIV,NRCyNMBS NLDS, JFyHJISsNSJS)

REAL COORD(NTJUS,3),RELSINTJIS$3),AINTMES,NTCA) ,TYPEL2),.XY2(3),

* PRNAME(13),0RNCOS(3)+sQJ(3),LENGTH,Q(NTMBS,NTLDS)

c

REAL

0BJI(NTIV)
INTEGER ENOSINTMRS,2)
DATA TYPE/&H PLANE, 6H SPACE/y XYZ/LHXy lHY, 1HZ/, FIN/GEHFINISH/

C READ HEADER CARD

READ

{5:10) PRNAME

10 FORMAT (13A6)

IF

(PRNAME (1).EQ.FIN) CALL EXIT
WRITE (6,15) PRNAME

15 FORMAT (1M1, 12A6)

c



o000

[aiaXesXaNalel

c

READ PRORLEM PARAMETERS -

JF = 2 FOR TWO-DIMENSIONAL TRUSS

JF = 3 FOR THREE-CIMENSIONAL TRUSS

NJS = NUMBER OF JCINTS IN TRUSS
NSJS = NUMBER OF SUPPORT JOINTS IN TRUSS
NMBS = NUMBER OF MEMBFRS [N TRUSS

WRITE (6420)
20 FORMAT (1HO, 10X, 6HDATA =)

READ(5425) JF, NJS, NSJS, NMBS
25 FORMAT (2014)

NFJS = NJS - NSJS

OUTPUT PROBLEM PARAMETERS

WRITE (6,30) TYPE(JF - 1)
30 FORMAT (1H0,20X,20HTYPE OF STRUCTURE

c2.

-3A6,29H TRUSS WITH THE CRISS-S

#S-SECTIUN/42Xy 2THAREA OF EACH MEMBER VARYING)

WRITE (6435) NJS, NSJS, NMBS
35 FORMAT {1HO0,20X,20HNUMBER OF JOINTS
#1Xy 1OHMEMBERS =,14)

READ JOINT NUMBERS AND CCORDINATES -
FREE JOINTS MUST BE NUMBERFD FIRST, THEN SUPPORTS

IF RELSIN,1) = 1, ... RESTRAINT AT N IN X-
IF RELSIN,2) = ),

00 39 1 = 1,NJS

00 39 U = 1,JF
39 RELS(I,J) = Q.

D0 40 1 = 1,MS8

READ 15,45) N, (COORDINsJ)sd = 1yJF)
45 FORMAT (14. IF844)

IF (NJLEJNFJS) GD TO 40

READ (5446) (RELSINgJ)oJ = 1,JF)
46 FORMAT (3F4.])

40 CONTINUE

=2,14/31X,10HSUPPORTS =,14/3

-DIRN.

LX) RESTA!NT AT N IN Y"DIRN.

DIRN.

C OUTPUT JOINT NUMRERS AND COORDINATES - FIRST FOR FREE JIINT AND THEN
C SUPPORT JOINTS

C

WRITE (6,5C) (XYZ{I)y1=19JF)
50 FORMAT {1H0,20X,20HJOINT COORDINATES

*)

WRITE (6,55)
55 FORMAT (23X,4HFREE)

DO 60 I = 1,MJS

WRITE (6,65) I, (COCRD{I4J)¢J=1,JF)
60 IF (1.EQ.NFJS) WRITE (6,70)
65 FDRAMAT(IH ,13192X,6F12.4)
70 FORMAT (23X, 7HSUPPNRT)

NFJSP = NFJYS & 1

=/728Xs SHIOINT, 10X ,3(A1,11X))

WRITE (6447) ((RELS{I,3)9d = 14JF),1 = NFJISP,NJS)

47 FORMAT (1HC,20X,6HRELS /27X, {6F5.1))
WRITE (6475) (XYZ{I)el = 1,JF)

75 FORMAT {1HC,20X,1 THMEMBER DETAILS =~//31X,6HMEMBER, 6X 9 SHSTART , TX,

* 3HEND,S5X, &HLENGTH, 3(3X.7HDRNCOS-|A1))

C LOOP ENTERED FOR ALL MEMBECRS

NRC = JFeNJS

L,00 79 1 = 1,NRC

‘0o 79 J = 1,NMBS
79 All1,J) = 0,



C
C
c

(n}

C
c

[aXa)

REA

80

85

90

CAL

95

CAL

100

ouT
10

C3.

NC = NMBS + 1

D MEMRER INCIDENCES AND PROPERTIES

DO 120 M8 = 1,NMBS

READ (5,80) Mes INTST,UNTEND

EERTAT (314, F12,.4) {JNTENDWLENJS) o ANDe{ JNTSToLTo JNTEND) ) GO
= TO 90 ' . ]
WRITE {6,85) ™ B
* JO8 TERMINATED)

CALL EXIT

CONT INUE

ENDS{My1) = JINTST

ENDS(M42) = UNTEND
CULATE MEMBER LENGTHS

TLGTH = o,

N0 95 1 = 1,J4F

TLGTH = TLGTH + (COORDIJNTEND,T) = COORDIJNTST,1))es2

LENGTH = SQRTITLGTH)

DBJIMY = LENGTH

CULATE MEMBER DIRECTION COSINES
0Q 120 1 = 1,JF
DRNCOS({1) = ;CCORC(JNTENDgI) = CUURDIJINTSTsI))/LENGTH

PUT MEMBER INCIDENCES AND PROPERTIES _
WRITE (64105) MyJNTST,JIJNTFND,LENGTH, {ORNCOS(I),I = lgqF)
5 FORMAT (1M 423X,31114F1244,3E11.3)

C ADD MEMBER DIRECTICN COSINES INTO THE CONNEXION MATRIX

OO

110

115
120

REA
MUS
NLJ

LROCS = JFaJINTST

IROCS = LROCS - JF + 1
DO 110 I = IROCS. LROCS
J = I - 1ROCS + 1
AlLyM) = -DRNCOS(J)
LRCCE = JF#INTEND

IROCE = LROCE - JF +1
D0 115 I = [ROCE, LROCE
J =1 - [ROCE + 1
Al1,M) = DRNCOSI(J)
CONTINUE

D SIZES OF LUAD COMPCNENT AT EACH JUINT
T NUMBER IN ORDER Xy Ys» Zs AT EACH JOINT
TS = NUMBER OF LOADEC JOINTS

NLDS = NUMBER OF LCADING CASES

140

145

150

READ (5,140) NLDS

NO 154 LOAD = 1,NLDS
READ (5,140) NLJTS
FORMAT (1614)

DO 145 1 = 1,NRC
QlI,L0AD) = ¢,

DO 155 NO = 1,NLJTS
READ (5,150) Ny (QJUI)y 1 = 1,JF)
FORMAT (1449F844)

N0 155 1 = 1,JF

J = JFe(N=1) 4+ 1



155 ClJ,L0AD) = QJ(1)
154 CONTINUE
c

C TO CORRECT MATRICES C AND G FOR SUPPCRTS
NFJSP = NFSS + 1

M =0
DO 157 1 = NFJSP. NJS
DO 157 J = JF

IF (RELS(I, J) NE.1.) GO TU 157
K a JFa(] - 1) + Jd - M
MRC = NRC =~ |
DO 156 L = K, NRC
N =L ¢+
CO 156 11 = 1, NM8S
AlLoII) = A(N,II)
156 CONTINUE
MM+
157 CONTINUE
c
C ouTtpPuTt CONNEXION MATR1IX
WRITE {6,125)
125 FORMAT ('1H-. 13HCONNEXION MATRIX C/)
DO 130 1. 1 ,NRC
130 WRITE (6,135) (A(1sd)0d = 1,NMBS)
135 FORMAT (1M , 10E12.3)
170 CONTINUE
RETURN
END

$IBFTC RANK 2

Ch.

SUBROUTINE RANK 2 (AMREDsKNUTsMNPyNTM3SoNTCAsNTIVoNRyNCCoNRD)

REAL A(NTMBS,NTCA)
INTEGER MREQINTIV),KNUTINTIV),MOP(NTMBS )

C SET uP unIT SUBMATRIX
NCP = NCC + 1
NC = NCC + NR
DO 4 I = 1,NR
00 3 J = NCP,NC
3 Att,0) = 0,
K =1+ NCC
4 A(I’K) = lo
C
C JOROAN ELIMINATION
DO 25 1 = 1,NR
DEN = o,
b0 s J = 1,NCC
AB = ABS(A(I,4))
ON = ABS(OEN)
IF (AB.GT.DN) J4 = J
IF (AB.GT.NN) DEN = All.J)
5 CONTINUE
IF (DEN.EQ.?.) GO TO 25
00 1¢ X = 1,NC )
10 Al1,4K) = Al(,K)/DEN
DO 20 L = 1,NR
IF (L.EQ.1) 6N TO 20



FAC = AlL,J9)

DO 15 M = 1,NC
15 AlL,M) = A{LyM) = A(I,M)eFAC
20 CONTINUE
25 CONTINUE

301 FORMAT (1H /(2CF6.2))

C

C CHECK FOR INCONS(STENCY AND DEPENDENCE
NDF:O
DO 65 I = 1,NR
J =0

45 J = 9 4+
IF (J.GT.NC) GC T0O 55
IF (A(1,J).E0.0.) GO TOQ 45
1F (J.LE.NCC) GC TO 65
NOF = NDF ¢+ 1)
GO TN &5
55 NR = NR = 1]
DO 60 K = I,NR
L=K+ ]
D0 60 M = 1,NC
60 A(K M) = A{LoM)
65 CONTINUE
IF (NDF,EQ,0) GC TO 66 - .
50 :gégﬁT(?ias:zggiHE STRUCTURE 1S A MECHANISM/3Q0HNUMBER OF DEGREES
*F FREEDOM =,13)
66 CONTINUE

C ISOLATE REDUNDANCIES

NRD = 0
D0 75 9 = 1,NCC
KOUNT = ¢
CO 70 I = 1,NR

70 IF (A(140).NE.O,) KOUNT = KOUNT + 1
IF [KOUNT.LE.1) GO TO 75
NRD = NRD + ]
MRED(NRD) =

75 CONTINUE

C REDUNDANCIES oo. CHECK, OUTPUT
0 e N TE (64+8C)
IF  (1oNEJNRD) WRITE '
80 FORMAT (1H-,22H(COLS = ROWS) oNE. NRD)
IF INRD) 85,85,95
85 WRITE (6,90)
90 FORMAT (iuo.azhsraucruae IS ALREADY DETERMINATE)
GO TO 105
95 WRITE (641CG) NN, IMRED(I)4I = 1,NRD)
100 FORMAT (iHOolBHSTRUCTURE 1S #12,16H TIMES REDUNDANT/
* 22H RECUNDANT MEMBERS ARE,4013)
105 CONTINUE
C
C MOVE ALL REDUNCANT COLUMNS TO RHS OF MATRIX A
IF (NRD.LE.2) GC TO 135
DO 110 K = 1,NRC
110 KNUT(K) = 0
DO 130 I = ],NRD
IF (MRED([).CT.NR) GO TO 139
J = NR



115 0 = J + 1
K=29
120 K = K + 1

IF {MRED(K).EQ.J) GO TO 115
IF {KeLT.NRD) GC TO 120
K = MRED(1)
D0 125 L = 1,NR
BLOC = A(L,J)
AlLeJd) = AlLLK)
AlL.K) = sLaC

125 CONTINUE
KNUT(1) = MRED(I)
MRED(I)= 4

130 CONTINUE

135 CONTINUE

C FORM UNIT MATRIX IN A(NR¢NR)}
00 155 LOO = 1,2
0O 140 I = 1,NR
00 140 J = 1,NR
IF (A(1,J).EQ.0.) GO TO 140
MOP(I) =
140 CONTINUE
DO 155 I = 1,NR .
IF (MOP{I).EQ.I} GO TO 155
D0 145 K = I,NR
IF (MOPIK).EQel) Lz2K
145 CONTINUE
DO 150 J = 1,NC
BLOC = A(1,U)
ACL4J) = A(L,J)
AlL,J) = BLOC
150 CONTINUE
MOP{L) = MOP(I])
155 CONTINUE
g INCREASE A TO GET COMPLETE INTERNAL LOAC SYSTEM
K= NR + 1
" IF (NRD.LE.G) GC TO 170
DO 165 1 = K,NCC
D0 160 J = K,NC
160 A(l,43) = 0,
165 A(l'{) = "lo
170 CONTINUE

E BACK TO ORIGINAL OPDER OF ELEMENT FQRCES

IF (NRD.EQ.Q) GC TO 174
DO 173 I = 1,NRD
IF (KNUT{I).EG.0) GO TO 173
J = KNUTI(I)
M = MRED{1)
MRED(1) = J
DO 172 L = K.NC
BLOC = A(J,L)
AfJyL) = A(M,L)
AlM,L) = BLOC

172 CONTINUE

173 CONTINUE

174 CONTINYE
RETURN



CT.

END

MAN A
"B"CSUQEStQ,N2°2§§$LD (A3Qy0BJySENS)ACTRHS g NTRSyNTIV,NTMBS,NTCA,
* NTLDSoNMBSsNRD NIV ,NRS,NLDS,NRC)

ACTI(INT
REAL A(NTMBS'NTCA),Q(NTMBS,NTLDS)'OBJ(VTIV):SENS(NTRS:NTIV’:
* IV)RHS{NTRS)

NIV = NMBS + NLOS*NRD
NRS = NMBSe2sNLDS

NC = NMBS + 1

NCP = NM3S + NR(C

0O 10 T = 1,NMBS
0BJ(1) = -0BYtI)

10 ACT(I) = -1e
IFINRD.EQ.0) GO TO 20
00151 = NC NIV
08J(1) = Oe

15 ACT(I) = 1,

20 CONTINUE

C SET UP SENSITIVITIES
DO 30 [ = 1,NRS
D0 30 J = ]1,NMBS
30 SENS(I,J) = o,
D0 31 [ = 1,NLCS
0G 31 J = 1,NMBS
K = 2¢eNMBSe(] ~ 1) + J
L = X + NMBS
SENS(KyJ) = 1,
31 SENS(L,J) = 1,
IF (NRD.EQ.0) GO TO 40
00 32 1 = 1,NRS '
00 32 § = NC,NIV
32 SENS(1,4) = 0,
D0 35 | = |,NLDS
D0 35 J = 1,NMBS
L = 28NMBSe(] = 1) + J
M = L + NMBS
DO 35 K = ]1,NRD
N = NRO#(I = 1) + K + NMBS
Il = NRC + K
SENS(L,N) = «A(J,II)
35 SENS(HvN) = A(J,11)
40 CONTINUE
c .
C SELECT CRITICAL LOAD
DO 55 1 = 1,NMBS
M = NMBS + 1
DO 55 K = 1,NLDS
BLOC = 0,
DO 45 J = 1,NRC
L = NMBS + J
45 BLOC = BLOC + A(I,L)*Q(J,K)
M = 28NMBSe(K - 1) + I
N = M + NMBS



c8.

RHS(M) = sLOC
RHS{N) = =-BLOC
55 CONTINUE

C OUTPUT THE OPTIMISATION SUBROUTINE ARGUMENTS
WRITE {6,601 )NMBS,NIV
601 FORMAT (1H , SHNMBS=,14/6H NIV~ I4)
WRITE {646CC) ((QUI,J)y1 = 14NRC)yJ = 14NLDS)
600 FORMAT {1HC,13HLOAD MATRIX ~/{20F6.2))
WRITE(6:602)1{SENSIT3J) 9 1=1,NRS 19J=1,NIV )
602 FORMAT{1HO,6HSENS =/{10E12.3))
WRITE (6,603) (0RJ{I)y I=14NIV )
603 FORMAT (1HO,5HCBJ =/{10E12.3))
WRITE (64604) (ACTUI)y I=1,NIV }
604 FURMAT (1HO,SHACT -/{10C12.3))
WRITE (6,607) (RHS{I), I=1,NRS }
607 FORMAT {1H0,5HRHS =/{10E12.31})
RETURN
END

SIBFTC DUALP2
SUBROUTINE DUALP2({SENS,0RJ,ACT, RHS, 2, IPRNT,
® CHSyKUT,IDEG, NAME ¢ MARK o NTRS ¢y NTMBS,NRZy NCZy Mg N}

c
¢ LINEAR PROGRAMMING BY SOLUTION OF DUAL
c
c OUTPUT INCEX *IPRNT? FOR THIS SUBROUTINE
¢ IPRNT = 0 NO OUTPUT
¢ IPRNT = 1 OUTPUT IFAS,MOVE LIMITS
¢ IPRNT = 2 DUTPUT IFAS,MOVE LIMITS,Z=ARRAYS ETC.
¢ IPRNT = 3 AS FOR 2 PLUS D-ROW OUTPUT FRUM KRSIMP
c

REAL SENS{NTRS,NTMBS),D3J(NTMBS) 4 ACTINTMBS),

* RHSINTRS), Z(NRZyNCZ)yCHSINTMBS)

INTEGER CPT1KUTINCZ)y IDEGINCZ)) NAME(NCZ) s MARKINRZ)
c
c CLEAR Z-ARRAY

DO 100 I = 1,NRZ
DO 100 J = 1,NCZ
100 Z(1,4) = 0.

c SET DUAL SENSITIVITIES, OBJECTIVE COEFFICIENTS
c AND ACTIVITY CCDES IN Z-ARRAY
ND =
DO 113 J = 1,¥
104 DO 105 [ = 1,N
105 Zl1,J) = =SENS(J,1)
ZIN+#1,J) = RHS(J)
113 CONTINUE
c SET DUAL L.H. AND R.H. SIDES AND
c CONSTRAINT CODES IN Z-ARRAY

121 NZ =2 M + N§D
123 00 130 I = 1,N
ZUI,NZ+3) = nBJL(I)
IF (ACT(1)) 124,124,125
124 ZU14NZ + 1) = 2,
GO TO 130
125 Z{14NZ+1) = 3,



130 CONTINUE
MAKE R.H.SIDFS OF NDUAL CONSTRAINTS POSITIVE
00 135 1 = 1 ,N
CHS(1) = -1,
IF (201,NZ+3)) 132,135,135
132 CHSI(I) = },
DO 133 § = },N2
133 2(1,J) = =2(1,d)
ZUT4NZ#3) = ~2(14NZ¢+3)
IF (2(1,NZ+41).ECQ.3.) GU TO 135
Z{1,NZ+1) = 1,
135 CONTINUE
OUTPUT 72-ARRAY BEFORE CALLING KRANTE
MZ = N
MI2 = N + 2
NZ3 = NZ + 3
IF (IPRNT.LT.2) GO TO 140
WRITE (6,136)
136 FORMAT(36HOZ-ARRAY BEFORE CALLING KRANTE/)
00 137 1 = 1,M22
137 WRITE (6,138) (Z(1,J),d=14N2Z3)
138 FORMAT(1H ,10€12.3)
140 CONTINyUE
A )
CALL KRANTE (Z,MZ4NZ,1FASyKUT,NRZ,NC2 ‘
ouUTPUT z—ZRRRv ETC. BEFORE CALLING KRSIMP
MI2 = M2 &+ 2
NZ1 = NZ + 1
IF (IPRNT.LT.2) GO TO 145
WRITE (64141)
141 FORMAT(36HOZ-ARRAY BEFORE CALLING KRSIMP/)
D0 142 1 = 1 ,M22
142 WRITE (6,138) (ztt.i).g75;N3i; NZ)
WRITE (64144) I[FAS, (KU ’ ’
144 FDRMAT(?QOIFAS 2, 14/12HOKUT ARRAY =/(1H +2415))
143 EETI'QS?pr (ZyIFASIMZyNZyNAME,, IDEGyKUTyNRZyNCZ, IPRNT ,MARK)
IF (TFAS.EQ.3) GO TOU 162
OUTPUT Z-ARRAY ON RETURN FROM KRSIMP
M2l = M2 + }
IF (IPRNT.LT.2) G0 TO 150
WRITE (64146)
146 FORMAT (;OHOZ-ARRAY ON RETURN FROM KRSIMP/)
DO 147 1 = 1,M21
147 WRITE (6,138) (Z(14J)9J=1,4NZ1)
150 CONTINUE
IF (IPRNT.LT.1) GO TO 152
WRITE (6.151) IFAS
151 FORMAT (7HOIFAS =,14)
152 CONTINU
ss$ VALUES OF PRIMAL VARIABLES IN FIRST ROW
OF 2-ARRAY, PRIMAL OBJECTIVE IN 2(2,1)
D0 154 J = 1,M2
154 2(14J) = CHS(J) « Z2{MZ1,d)
Zl241) = ~21(2,1)
160 CONTINUE
RETURN
162 2(2,1) = 0,9
RETURN
END



C10.

SIBFTC FINAL NODECK

SUBROUTINE FINAL (Z,NRZyNCZyNMBS,NIV)
REAL Z(NRZ,NCZ)

C ouTPUT OPTIMUM AREAS AND VCLUNE
10 :S;;if(?i'}{o)SOHlll.lil!i!!b.!ll.l.l.ll’!'&li..ll.llllllOQl...llQl)
“9
WRITE (6415) (Z(1,1),1 = l.NMBSl
FORMAT(IA-.ZZHCPTIHUM MEMBER AREAS ~/(6E12.4))
J = NMBS + ) Lol JINIV)
WRITE {6420) (Z(1,1),1 = J, - .
20 FORMAT (iH-.ZZHVALUES OF REDUNDANTS -/(10E12.4))
WRITE (6,25) Z(2y1)

25 FORMAT (1H=-, 19HSTRUCTURAL VOLUME ,1PE12.4)
RETURN ‘

END

15



56.

" APPENDIX D

Appendix D presents the listings of the six subroutines
of the program SELF-WEIGHT PLASTIC DESIGN, This is a program
to determine "efficient" wéight désigns of two- or three-
dimensional pin-jointed trusses, with ideal elastic-plastic
member load-deformation behaviours, for one or several
loading cases, taking self-welght into account.

The program is dimensioned: '

maximum number of joints J =16
maximum number of members m = &§0
maximum number of redundant members r = 10
maximum number of loading cases ¢ =10

(Note that in equations 5.9 and 5.10 maximum number of varilables
=.60 ).
The relevant matrices of the program are:
COORD is the matrix of joint coordinates
RELS 1s the matrix of support re§traints

A 1s the augmented matrix [C : 1]

B is the force transformation.matrix Bl

Q 1s the joint load matrix P .

OBJ  is the augmented member length matrix [27 : o]

Z 1s the Simplex tableau .

X 1s the vector of optimum area ratios a%

R 1s the vector of optimum redundant force ratios r

QU i1s the matrix of the member force envelope [RmaxERmin]
EO 1s the force transformation matrix ?o

*]

i+l
MRED 1s the vector of redundant member numbers

VOL 1s the member volume matrices [vi* MY

ENDS 1s the matrix of the member incidence joint numbérs
ALF 1s the compression coefficient «



D1.

$J0B 357206, MARKS

STIME 50

$e SELF=-WEIGHT PLASTIC DESIGN
s$18J0B MAP

$IBFTC SELFWT NODECK

C PROGRAM FOR D

OO0

SEVERAL LOAD CONDITIONS

TH

22
S6

40
45
10

11
12
13
15

25

E PROGRAM CONSISTS OF SIX SUBRIUTINES =
SELFWT - VARIABLE DIMENSIONS AND SELF-WEIGHT ITERATIONS

PLOPTS5 -~ FORMS MATHEMATICAL MODEL . .
RANK 2 = PRNOCESSES AND REARRANGES THE Aucmeergo g;g:{éMA
SAG ~ SELF-WEIGHT INCREMENTS IN, FORMS L. P.

X)
LIMFRA - FORMS THE TABLEAU AND SOLVES THE L.P. PROBLEM (DUAL SIMPLE

ULTIM - QUTPUTS THE RESULTS

REAL cooao(ls.s).aELS(lo.al.A(50.1001.B(50.13);g;ieét?és?g:‘b°"
* ZU110,70)4X(160)4R(10)4AMI50),QU(5042)4BD(50 PL60l, IXPLILD)
INTEGER MRED(10),MOP{50) ,KNUT(10),1Z(160), IXXP(601},
* ENDS{50,2)
EQUIVALENCE (Z,A)

D0 170 LOGK = 1,20

CALL TIME

CALL PLOPTS5 (COURDyRELSyA3QeDBJI,ENDS+16+¢50+105100,609NRC+NU3S,
* NLDSy JFyNJS,NSJS) ,

CALL aANL 2 :A,NRED,KNUT'MOP1501lOOvlC,NRC.NNBS'NRD)

KDUNT = )

D0 22 1 = 1,NMBS

D0 22 J = 1,NRC

K = J + NMBS

BDO(I1+d) = A(I,K)

WRITE (6,56) {(0D(1+d)ed = LaNRC)+1 = 1,NMBS)

FORMAT (14 /(20F642))

IF (NRD.EQ.D) GC TD 45

DO 40 I = 1,NMBS

DO 40 J = 1,NRD

K= NMBS + 1 = g

B(IsJd) = A(I,K)

CONT .
CELLn;LAJ(E; ( Q+RELSyVDLIENDS+0OBJI+BoQUBD+50+10+60+10,100416,N43S,
* NRDyNLD FeNJSyNSJISHALFKDUNT)

CALL’LDHéag {8, QG:DBJ:Z:X,Y ReIZ2IXXPsIXP35096C112,704104160,
* NMBS,NRD, ALF)

DD 11 I = 1,NMBS

vottr,2) = o.

IF (KDUNT.LT.2) GO TD 13

DD 12 I = 1,NMBS

VOL(I1,2) = vOL(1s1)

CONTINUE

D0 15 1 = 1,NMBS

VOLU{T,11=0BJ(1)ex(1)/10.

XXX = y

IF (KDUNT.LT.2) GD TO 25

IF IXXX.LT.YYY) GO TD 25

IF [KOUNT.GT.20) GD TO 30

YYY = XXX

CALL ULTIM (X,Y.,R,AM, 50+ 10+ 60, NMBSyNRDy KOUNT)

KDUNT = KOUNT + 1

GO TN 10

ESIGNING SPACE TRUSSES PLASTIZALLY, INCLUDING SELF-WEIGHT AND
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30 CALL ULTIM (XyYoRyAMy50,10460¢¥MBSsNROyKOUNT)
CALL TIME (NM,NS,NSS)

WRITE (64169) NM,NS,NSS ; ; 16
169 FORMAT (;H-.BZHT;ME’TAKFN FOR ABOVE STRUCTURE =/23X414,5H MINS, 16,
® SH SECS,16,6H SSECS)
170 CONTINUE
CALL EXIT
END

SIBFTC PLOP A

Csuk&n&?xns PLOPT5 (CCORDyRELSsA:1Qs0BJIENDS, NTIS,NTHMBS,NTLOS, NTCA,
* NTIV,NRCyNMBS,NLOS s JFyNJSyNSJS) .

REAL EOORE(NTJ§Z3).5EL§(NTJS.3).A(NTMQS.NT»Q}{EE?E(Z"XY’(3"

* PRNAME(13),CRNCOS(3),GQJ(3),LENGTH,QINTMBS,

REAL OBJINTIV) )

INTEGER ENDS(NTMBS,2

DATA’TYPSIEH PLANE, 6H SPACE/s XYZ/1HXs 1HY, 1HZ/, FIN/GHFINISH/

C READ HEACER CARD
READ (5,10) PRNAME
10 FORMAT (1346)
IF (PRNAME(1).EQ.FIN) CALL EXIT
WRITE (6,15) PRNANE
15 FORMAT (1H1, 13A6)

READ PROBLEM PARAMETERS =
JE = 2 FOR TWO-DIMENSIONAL TRUSS
JF = 3 FOR THREE~CIMENSIONAL TRUSS
NJS = NUMBER OF JOINTS IN TRUSS
NSJS = NUMBER OF SUPPCRT JOINTS IN TRUSS
NMBS = NUMBER OF MEMBERS IN TRUSS
WRITE (6,20)
20 FDRMAT (1HO, 10X, 6HDATA =)
READ(5,25) JF, NJS, NSJS, NMBS
25 FOPMAT (2014)
NFJS = NJS « NSJS

oocoo0000

C OUTPUT PROBLEM PARANETERS 0
WRITE TYPE(JF =~ - _
30 Fo;MAT(?igg:ZCx,ZOHTVPE OF STRUCTURE =-,A6y23H TRUSS WITH THE CR20SS-$S
#S-SECTION/42X,27HAREA OF FggH MEMBER VARYING)
WRIT 358) NJS, NSJIS, NM .
35 Fonaﬁr(?iuo:zox§50HNUMésR OF JOINTS  =414/31X, 10HSUPPORTS =,[4/3
81Xy 10HMEMBERS =,14)

AD JOINT NUMBERS AND CCORDINATES =~
gsEg JOIN;S :UST :E NUMBERED FIRST; THEN SUPPORTS
IF RELSINs1) = 1, oo. RESTRAINT AT N IN X=DIRN.
IF RELS{N,2) = 1., ... RESTAINT AT N IN Y-DIRN,
IF RELS(NI3) = le see RESTRAINT AT N IN Z-DIRN,
O 39 1 = 1,NJS
DO 39 J = 1yJF
39 RELS(IWJ) = 0.
D0 40 I = 1 ,NJS
READ (5,45) N, (COORD(NsJ)¢d = 1,JF)
45 FORMAT (14, 3F8.4)

(s XaRaNalalgl
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IF (N.LEJNFJS) GO TO 40

READ (5446) (RELSIN,J),J = 1,JF)
46 FORMAT (3F4.1)
40 CONTINUE

NT AND THEN
C OUTPUT JOINT NUMBERS AND COORDINATES - FIRST FOR FREE JOINT
C SUPPORT JOINTS 3F)
WRITE XY Ve 1=14JF X))
50 Fgén:r(?iagzzéx,gééJanr'coonoxNArss =7728Xe SHJOINT,10X,3(A1,11X)
»)
WRITE (6,55)
55 FORMAT (23X,4HFREE)
00 69 1 = 1,NJS
WRITE (6465) 1, (COORD(I,J)yJd=1,JF)
60 IF [1.EQ.NFJS) WRITE {6470)
65 FORMAT(1H ,131,2X+6F1244)
70 FORMAT (23X,7HSUPPORT)
NFJSP = NFJS + 1|
©_ WRITE (6,47) ((RELS{I,J)yd = 14JF),1 = NFJSP,NJS)
47 FORMAT (1HO,20X+6HRELS -/273;;6F5.1)) ‘
WRITE {6,75) (XYZ(1),1 = 1, X
75 FORMAT (iHo.zox.17HMEMSER DETAILS ~=//31Xy 6HMEMBERy6Xy SHSTART » TX,
* 3HEND+5Xy 6HLENGTH, 3 (3X, THORNCOS-,A1))
c
C LODP ENTERED FOR ALL MEMBERS
NRC = JFaNJS
DO 79 1 = 1,NRC
DO 79 J = 1,NMBS
79 A{l4J) = 0,
NC = NMBS 4+ )
c
c
C READ MEMBER INCIDENCES AND PROPERTIES
DO 120 MB = ]1,NNMBS
READ (5,80) My JINTST,JINTEND .
80 TER?AT (3144 F12.4%) (INTENDoLENJS) « AND o { JNTST.LT<JNTEND)) GO
e TO 90
WRITE (6,85) M PR TR
85 FoRnAT((iH-.zou INCINENCE OF MEMBER, 14, 39H INCORRECTLY SPECIFIED
* JOB TERMINATED)
CALL EXIT
96 CONTINUE
ENDS(My1) = JNTST
ENDS{M,2) = JNTEND
CALCULATE MEMBER LENGTHS
TLGTH = 0-
DO 95 t = 1,JF
95 TLGTH = TLGTH + (COORDI(JINTEND,1) = CODRDIJNTSTo1))es2
LENGTH = SQRT(TLGTH)
0BJIM) = LENGTH

o

oo

CALCULATE MEMBER DIRECTION COSINES
DD 100 I = 1,JF
100 DRNCOS(1) = ;CCCRD(JNTENDoI) = COORDUJINTST,I))/LENGTH

o0

DUTPUT MEMBER INCIDENCES AND PROPERT{ES _
WRITE (64105) M JNTSTyINTENDGLENGTH, {DRNCOS{I),1 = 1,JF)
105 FORMAT (1H ,23X,3[111,F12+4¢3E11.3)



C ADD MEMBER OIRECTICN COSINES INTO THE CONNEXION MATRIX

LROCS = JFeJNTST
IROCS = LROCS -~ JF + 1
00 110 1 = IROCS, LROCS
J =1 - JROCS + 1

110 A(I,M) = -0RNCOS(J)
LROCE = JFeJNTEND
IROCE = LROCE - JF +1
00 115 1 = IROCE, LROCE
Jd =1 - IROCE + 1}

115 A(I,M) = DRNCOS(Y)

120 CONTINUE

READ SIZES OF LOAD COMPONENT AT EACH JOINT
MUST NUMRER IN ORDER X, Y, 2, AT EACH JOINT
NLJTS = NUMBER OF LGCACED JOINTS
NLDS = NUMBER OF LOADING CASES
READ (5,140) NLOS
D0 154 LOAD = 1,NLDS
READ {5,140) NLJTS
140 FORMAT (1614)
00 145 1 = },NRC
145 Q(1,L0AD) = 0O,
D0 155 NO = 1,NLJTS
READ (54150) Ny (QJII), I = 1,J4F)
150 FORMAT (14,9F8,4)
DO 155 1 = 1,4F
J = JFe(N-1) + I
155 QUJ4LOAD) = CJ(I)
154 CONTINUE

OO

C TO CORRECT MATRICES C AND Q FOR SUPPORTS
NFJSP = NFJS + 1
M= O
D0 157 I = NFJSP, NJS
00 157 4 = 1, JF
IF (RELS(I4J)eNEele) GO TO 157
K= JFa(]l =« 1) ¢+ J - M
NRC = NRC = 1
00 156 L = K, NRC
N=1L+1
D0 156 11 = 1, NMBS
AL, 11) = AN, ID)
156 CONTINUE
M=M4+]
157 CONTINUE
c
C OUTPUT CONNEXION MATRIX
WRITE (6,125)
125 FORMAT ( 1H-, 18HCONNEXION MATRIX C/)
DO 130 I = },NRC
130 WRITE (6,135) (A{1,J),J = 1,NMBS)
135 FORMAT (1H , 10E12.3)
170 CONTINUE
RETURN
END

D4.
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NRD)
slBFTCsEQ:gungE RANK 2 (A,MRED,KNUT,MOP,NTHMBS ,NTCA,NTIV,NR,NCC,
REAL A(NTMBS,NTCA)
INTERER MRED;NTIV).KNUT(NTIV).MOP(NT“BS‘

C SET uP UNIT SUBMATRIX

NCP = NCC + 1
NC = NCC + NR
DD 4 1 = 1,NR
DO 3 J = NCP,NC

3 A(1,J) = 0.
K = ] ¢+ NCC

4 All'K) = 1,

C JORDAN ELIMINATION
DO 25 I = 1,NR
DEN = 0.
DO 5 J = 1,NCC
AB = ABS(A(1,J))
ON = ABS{DEN)
IF (AB,GT.DN) JJ =
IF (AB.GT.NN) DEN = All,J).
S CONTINUE
I1F (DEN.EQ.Q.) GO TO 25
00 1C X = 1,NC
10 All4¥) = A{I,K)/DEN
DO 20 L = 1,NR
IF (L.EQ.1) GO TO 20
FAC = A(L,J3))
DO 15 M = 1,NC
15 AlLyM) = A{L,M) = A(I,M)eFAC
20 CONTINUE
25 CONTINUE
301 FORMAT (1H /(20F6.2))
c
C CHECK FOR INCONSISTENCY AND DEPENDENCE
NDF = Q
00 65 I = 1,NR
J=0
45 J = 3 ¢+ )
IF (J«GT.NC) GO TO 55
IF (A{1,J).EQ.0.) GO TO 45
IF (JJLE.NCC) GC TO 65
NDF = NDF + 1
GO 1O 65
55 NR = NR
DO 60 X
L =K +
00 60 M 1,NC
60 AlK,V) = AlL,M)
65 CONTINUE
IF {NDF.EQ.0) GO TO 66
50 :gg;zT(?iggzzggﬁHF STRUCTURE IS A MECHANISM/30HNUMBER OF DEGRELS OF
#F FREEDOM =,13)
66 CONTINUE

14NR

"o 4 0

C
C ISOLATE REDUNDANCIES
NRD "= ¢



70

75

D6.

0O 75 J
KOUNT =
CO 70 1 1,NR

IF (A(I,J).NE.O.) KOUNT = KOUNT + 1
IF (KOUNT.LE.1) GO TO 75

NRD = NRD + |

MRED(INRD) =

CONTINUE

14NCC

"o

C REDUNDANCIES ... CHECK, OUuTPUT

80

85
90

95
100

105

110

115
120

125

130
135

140

145

I = NCC - NR 601

IF (1.NE.NRD) WRITE (6,

FCRMAT (1H=-422H{COLS = ROAS) «NE. NRD)

IF {NRD) 85,85,95 :

WRITE (6,90)

FORMAT (IHo.aszrRucrune 1S ALREADY DETERMINATE)

GO TD 1¢5 (1ol 1.NRD)

WRITE {6,100) NRD, (MRED ol = 1y

FORMAT «iuo,lausr&ucruae IS »12416H TIMES REDUNDANT/

® 22H REDUNDANT MEMBERS ARE,4013)

CONTINUE

C MOVE ALL REDUNDANT COLUMNS TQ RHS OF MATRIX A

IF INRD.LE.O) GO TO 135
00 110 K = 1,NRD
KNUT(K) = o

00 130 [ = 1,NRD

IF (MRED(I).GT.NR} GO TO 130
J = NR

Jg=J e

K =0

K= K + 1

IF {MRED(K)LEQ.J) GO TO 115
IF {K.LT.NRD) GC TO 120
K = MRED(I)

DO 125 L = 1,NR

BLOC = AtL,J)

AlLsJ) 3 A(L,LK)

AlL4,K) = BLOC

CONTINUE

KNUT(1) = MREDI(I)
MRED(I)= J

CONTINUE

CONTINUE

C FORM UNIT MATRIX IN A{NR,NR)

DO 155 L0o0 = 142

DO 140 1 = 1,NR

00 140 J = ]1,NR

IF {A(1,9).EQ.0.) GO TO 140
MOPLTI) =

CONTINUE

DO 155 1 = 1,NR

IF {MOPLI).EQ.T) GO TO 155
D0 145 K = Iy NR

IE {(MOPIK) EQ.I) L=K
CONTINUE

DN 190 9 = 1,NC

B8LOC = AlI,J)

AlI4J) = A(L,d)



D7.

AfL+J) = BLOC
150 CONTINUE

MOP(L) = MOP(T)
155 CONTINUE

C INCREASE A TO GET COMPLETE INTERNAL LOAD SYSTEM ’

K = NR # 1
IF INRD.LE.O) GO TO 170
DO 165 [ = K,NCC
00 160 J = K,NC

160 Al1,4) = 0,

165 All 1) = -1,

170 CONTINUE

C BACK TO ORIGINAL QRDER OF ELEMENT FORCES

IF {NRD.EQ.O) GC TO 174
DO 173 I « 1,NRD
IF (KNUT(I).EQ.0) GO TO 173
J = KNUT(1)
M = MRED(])
MRED(I) = J
DO 172 L = K,NC
BLOC = A(J,L)
AlJsL) = A(M,L)
AlM,L) = BLOC

172 CONTINUE

173 CONTINUE

174 CONTINUE
RETURN
END

AG ECK : \
sxarrcsaaRnUTlN:ogAg { Q-RELS.VOL.ENDS.OBJ'B.OU.BQENISSS;?TQO'NTIV'
* NTLDSoNTCAYNTISeNMBSoNRDeNLDSoJFoNJISINSJISsALF, TMBS,2)
REAL Q(NTMBS.NTLDS).QELSlNTJS.3).Vg;;? 12),
® ORJINTEV) 4BINTN3S,NTRO) yQUINTMBS 2} ¢BI(NTMBS NT

INTEGER ENDSINTMBS,2)
c
"C CONSTANTS
NFJIS = NJS - NSJS
NFJSP = NFJS ¢+ 1
c
C INCREASE LDAO MATRIX TO INCLUDE SUPPORTS
IF {KOUNT.LT.2) GC TO 10
DO 4 I = NFJSP,NJS
NO 4 J = ]1,JF
IF (RELS(1,4).NEsle) GO TO 4
K = JFe{] = 1) + 4
L =K+
NRC = NRC + 1
o]a] N = L'NRC
1J NRC + L = N
1K 1J -1
DO Il = 1,NLOS
2 QUIJ,I1) = QUIK,ID)
4 CONTINUE

N

N



C ADD

S
C

D8.

SELF-WEIGHT TO LOAQ MATRIX
DO 5 I = 1,NMBS
J = JFeENDS(I,1)
K = JFoENDS(1,2)

DO S L = 1,NLDS 272
QlJsl) = QUJyL) - VCLIT,1)/2. ¢ VOL(1,2)12~
ClKsL) = Q(K,L) - vOL(I,1)/2. ¢ VOL(I, .

C CORRECT LOAO MATRIX FOR SUPPORTS

10

15
20

NRC = JFaNJS$S

M =0

D0 20 1 = NEJSP,NJS

DO 20 J = 1,JF

IF (RELS(I,J).NEele.) GO TO 20
K= JFe(] - 1) ¢+ §J - M
NRC = NRC - 1

DO 15 L = K,4NRC

N= L+

D0 15 Il = 1,NLCS
QILsIL) = QIN,II)
M=M4+ )

CONTINUE

C SELECT CRITICAL LOAD PATTERN

25

30

35
C

NIV = NMBS + NRC

NCP = NMBS + 1

NC = NMBS + NRC

0O 35 1 = ,NMBRS

D0 35 K = 1,NLDS

BLOC 2 Qe

00 25 J = 1,NRC

BLOC = BLOC + S0(1,J)*Q(J.K)

IF (K.GT.1) GO TO 30

QUlI,l) = Broc

QU(T,2) = aLnC

GO TO 35

IF (BLOC.GT.QU(Is1)) QUEI,1) = BLOC
IF {BLOC.LT.OU(T1,2)) Qu(I,2) = BLOC
CUNTINUE

C CALCULATE OTHER COEFFICIENTS

11

45

602
50

55

60

601

:géxﬁT(?i&l:SOHGIGGICICQIQIIGGQD!GGQQ’.""'“"""""""'."")
IF (NRD.EQ.0) GC TN 50

DO 45 1 = 1,NRC

J = NM3S + |

0B8J(J) = Q.

IF (KQUNT.GT.1) GO 1O 50

WRITE (6,602) {(B(1,J)s1 = 14NMBS},J = 1,NRD)

FORHAT(IHO 6HSENS -/(10512 3N

CONTINUE

ALF = 1,

FORMAT (Fl12.4)

IF (KOUNT.GT.1) GO YO 65

WRITE (64,60) ALF

FORMAT (iHO,ZbHCOHPRESS[UN COEFFICIENTY IS,F12.4)

WRITE (6,601 )INMBS NIV
FORMAT (1H , SHNMDS=414/6H NIV~ ,14)
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WRITE (64,603) (CBJLI), I=1,NIV )
€03 FORMAT {1HO,SHCBY ~/(10E12.3))
65 CONTINUE ~
WRITE (6,607)((QUIT,J),1 = 1,NMBS),J = 1,2)
607 FORMAT {1HO,SHRHS =/{10F12.3)) -
c

C WRITE LOAD MATRIX G
WRITE (6,160)
160 FORMAT (1HO,15HLOAD MATRIX Q =)
D0 163 J = 1,NLDS
163 WRITE (6,165) (ClIsd)s1 = 1,NRC)
165 FORMAT(IH ,18F6.3)
RETURN
END

$IBFTC LONERE NRZ
SUBROUTINE LOMFRE (£3Q,08J,2Z9XsY¢Re1ZyEXXPy IXPyNTMBS,NTIV,NRZ,
: - NRD, ALF ) , RD)
'Rzﬁf'SIS?;SQTL;QS??E(NTQHS,z,.naJ(erV).z(NRz.ucz».x(Nerx.a(Nr
INTEGER TZUINTNL),IXXP(NTIV),IXPINRZ)

SET UP TABLEAU

OO0

CALCULATE SI12E LIMITS
NP = NMBS + NRD
NPl = NP ¢ |
NO = NMBS»?2
Ml = ND ¢+ )
Nl = NP + ND
IH = NMBS + 1

C CLEAR *2' TApLEAU
DO 5 1 = 1,M1
B0 5 4 = 1,NP]

S 2(lyJd) = 0.

C SENSITIVITIES, RHS, AND 08J IN
DO 20 I = ],NMBS
K = Je2
J=K -1
Z(M1,I) = -nBJL])
Z{J,1) = -1,
ZIKyI) = =ALF
JJ = NP + g
KK = NP ¢ K
IXP(d) = gy
IXPIK) = KK
[zty) =
1Z(KK) = K
XX = -Q(i,1)
YY = +Q(1,2)
IF (NRD.EQ.O) GC TN 16
DO 15 L = [H,nP
M =L - NMBS

Y = B{I,M)
Zt3L) = v
ZIKyt) = -y



e X2Xa] o0

(2N alXgl

OO0 (e NeXel

XX = XX + Yel0O0.
15 YY = vY - veiCC.
L6 2Z(J4NPY) = xx
20 ZI(KyNP1) = vy

POINTERS SET yrp
D0 25 J = 1,NP
IXXP(JY =
12(3) = ~y

25 x{J3) = o,
NUM = ]

START ITERATIONS TG ORTAIN OPTIMUM TABLEAU

30 CONTINUE
DO 35 1 = 1,ND
J = IXP(])

35 x43) = 2(1,NP1)

CALCULATE PIVOT RCW

Y = 0,

00 65 1 = 1,ND

Al = ABS(Z(1,NP1))

IF (A1.GT.Y) Y = Al
65 CONTINUE

XX = 0,
IXX = 0
Y = 1./7Y

00 75 1 = 1,ND
Al = Z(I,NP1)
AlY = Aley
AAl = ABS{AlY)
IF ((AAL.GTe14E-6)4AND,(A1.LToXX)) GO TO 70
GC T0O 75
70 XX = Al
tL = |
IXX = 1
75 CONTINUE

IS PIVOTING COMPLETE

TF {IXX.EQ.0) GO TO 200
CACLULATE PIVOT COLUMN

Y=0,

D0 80 4 = 1,NP

Al = ABSLZILL,J))

IF (A1.GT.Y) v = A1
80 CONTINUE

XX = 1,£30
Y = le/Y
KK = 0

DO 85 J = 1,NP
All = Z(LL,J)

D10.
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AY 2 Alley
AAY = ABS(AY)
1f ((AAY LT 1.E-6).CR.(AL14GT.0.)) GO TO RS
Al = 7{M1,4)7A11
IF (A1.GT.XxX) GO To 85
XX = Al
KK =
85 CONTINUE

C INFEASIBLE SOLUTION
c

IF IKK.NE.O) GC TQ 95 CRITICAL R
N CR
% gg;;ﬁr(?i39:61H11FEASIBLE SOLUTION -~ NO NEGATIVE COEFFICIENT [N
*ITICAL ROW)
RETURN *

PIvOoTING

95 Al = 1./Z(LL,KK)

o o000

D0 105 4 = 1,NP]

IF (J.EQ.KK) GO TO 105
LILLyd) = AleZ(LLy )
All = Z(LL,d)

D0 100 I = 1,M]

IF (1.EQ.LL) GC TO 100

Z(1,3) = 2(1,4) = AlleZ([,KK)
100 CGNTINUE

105 CONTINUE

00 110 I = 1,Mm
110 Z(l,KkK) = =AleZ(],KK)

ZILL,KK) = A}
CHANGE POIMTERS ANC REITERATE

o000 o

NN = IxXP(LL)
MM = IXXP(KK)
[ZINNY = ~kK
TZIMM) =
I[XPILL) = MM
IXXP(KK) = NN

X{NN) = Q, )
c
NUM = NUM + 1
GO T0 30
c
C CALCULATE CORRECT VARTADLE VALUES
c

200 CONTINUE
WRITE (6,36) NUM

36 FORMAT (1HO,15HTABLEAU NUMBER 1270
CO 205 J = [H,NP
K = J - NMBS
R{K) = 9,
IF (NRD.EQ.O) GO TO 205
RIK) = X{J) - 100,

205 CONTINUE



210
c

D12.

Y= 0,
D0 210 J = 1,NMBS
Y= ¥ ¢ 0BI(J) » X(J)

RETURN
END

$IBFTC ULTIM NCDECK

SUBROUTINE ULTIM (X,Y,RyAMJNTMBSNTRDNTIV,H4BS ¢ NRDsKOUNT)
REAL X{NTIV),RINTRD),AM{NTMBS)

C OUTPUT OPTIMUM AREAS AND VOLUME

10
15
20

25
30

35

WRITE (6,10) o e )
FORMAT (IHO.SOH--------““EE; -----

WRITE (6415) (X(1)y] = 1,NM

FORMAT (1HO, 2 2HCPT IMUM MEMBER)AREAS ~/{6E12.4))
WRITE (6,20) (R{I),1 = 1,NRD

FORMAT (1H0,22HVALUES OF REDUNDANTS =/(10E12.4))
WRITE (6,25) v

FGRMAT (1HO, 19HSTRUCTURAL VOLUME "PEliiﬁ'q)r
FORMAT (1H0,21HACTUAL AREAS NEEDED =/{ 6E12.
WRITE (6,35) KQUNT

FORMAT {1HO,16HITERATION NUMBER,!3)

RETURN

END

689
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