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i. 

SYNOPSIS  

This report considers the development of computer 

programs to carry out plastic analysis and design, using the 

techniques of mathematical optimisation. 
A survey of the literature dealing with plastic 

analysis and design is made. The theoretical bases of four 

computer programs are reviewed. The four programs are suited 

to two- or three-dimensional pin-jointed trusses. They carry 

out, respectively, 

i. a load factor analysis; 

ii. a deflexion analysis at any stage of loading 

up to collapse; 

iii. a design for minimum weight under one or 

several loading cases; 

iv. an efficient weight design under one or 

several loading cases, considering the self- 

weight of the structural members. 

Use of the programs is explained with examples, and 

some results obtained from their use are discussed. 



Fig. I 

ii. 

LIST OF FIGURES 

18a. Ideal rigid-plastic load-deformation 

behaviour. 

Fig. II Ideal elastic-plastic load- 

deformation behaviour. 

18a. 

Fig. III Actual stress-strain relationship for 

mild steel. 

18b. 

Fig. IV Actual load-deformation behaviour of 

pin-jointed struts and the "lower 

limit" idealisation. 

18b. 

Fig. V Flow diagram of RANK PLASTICITY OPTIMIS- 27a. 

ATION. 

Fig. VI Collapse load factor analysis of truss 1. 29a. 

Fig. VII " 	It 	 It 	 ► r 	 " 	It 	2. 29b. 

Fig. VIII rr 	rr 	n 	n 	n 	rr 	3. 29c. 

Fig. IX Flow diagram of MINIMUM COMPLEMENTARY 38a. 

ENERGY. 

Fig. X Elastic deflexion analysis of truss 4. 39a. 

Fig. XI " 	" 	It 	 It 	" 	2. 39b. 

Fig. XII " 	" 	" 	If 	" 	3. 39c. 

Fig. XIII Flow diagram of MULTI-LOAD PLASTIC 46a. 

DESIGN. 

Fig. XIV Flow diagram of SELF-WEIGHT PLASTIC 47a. 

DESIGN. 

Fig. XV Plastic design of truss 5. 48a. 

Fig. XVI It 	 II 
	 " 	" 	6. 48b. 



'SYMBOLS  

a 	vector of member areas 

a* 	vector of area ratios 

A 	reference area, (Gy A is reference tensile yield force) 

A 	diagonal area matrix 

A r 	diagonal area matrix corresponding to redundant members 

A* 	diagonal area ratio matrix 

b 	 lower limit on estimated possible values of y 

Bo 	force transformation matrix 	= B Q + B x 
6 It 	 ►► 	 It 	

q 	0 	1 
1 

e 	number of loading cases 

C 	complementary energy 

C 	connexion matrix 

C_ 	submatrix of C, corresponding to the unloaded, 

unsupported joints 

C 	square augmented connexion matrix, extra rows 

opposite redundants 

d 	number of degrees of freedom of collapse mechanism 

d 	vector of member deformations 

D 	 vector of joint displacements 

E 	Young's modulus 

E 	force transformation matrix 

F 	structure flexibility matrix 

F%'c 	"dimensionless" structure flexibility matrix 

g 	 load vector (g = Go  P) 

G 	.force transformation matrix 

G 	dimensionless force transformation matrix Go 	 = 
G 	 n 	 ►► 	 n 	 ►► 

 p 	G o + G 1  r 
1  

unit matrix 

j 	number of joints of pin-jointed truss 
k 	transformed load matrix 
L 	unit load matrix: specifies load ratios and joints of 

application 
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m 	 number of members of pin-jointed truss 

m 	 vector of coefficients of actual load factor 

Mi 	flexural section of i th beam 

M 	 diagonal member length matrix 

n number of members at yield force 

vector of ratios of member forces to member tensile 

yield forces 
P 	 dimensionless load matrix 

P.' 	the i th correction load matrix 

q 	 member force vector 

Q 	 actual load vector 

✓ number of internal redundants (lost during collapse) 

✓ vector of ratios of redundant member forces to member 

tensile yield forces 

Rmax 	vector of greatest tensile member loads due to the 

external-loading cases only 
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T 	 transformed unit matrix 

u vector of relative redundant displacements 

U dimensionless complementary energy 

U' 	proportional to dimensionless complementary energy 

U" 	 " 	tt 	 it 	 it 	 it 

U 	transformed connexion matrix 

v* 	vector of member volumes 

✓ volume of structure 

V* 	"dimensionless" volume of structure 

V 	 submatrix of U 

weight density of flexural members 

w determinate member force system vector 

W weight of structure 

We 	weight of minimum weight design (m.w.d.) 

x 	vector of redundant member forces 
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y 	vector of ratios of redundant forces to reference 

tensile yield force 

z 	positive redundant member force ratio vector, 
a 	ratio of compressive to tensile yield stress; 

power in w cc Ma  

actual load factor for unit load vector 

Y 	vector of ratios of actual member strains to tensile 

yield strains 

ey 	tensile yield strain 

X 	"dimensionless" load factor for unit load vector 

ac 	collapse load factor 

a 	tensile yield stress 

null matrix 

0 	null vector 

unit vector 

vector of member length 
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1. 

CHAPTER 	I. INTRODUCTION  

The advent of the digital computer and the develop-

ment of Operations Research have revolutionised many aspects 

of engineering. In structural engineering their development 

has coincided with that of methods of design and analysis 

based on the plastic theory.of ductile structures. These 

methods combine simplicity of formulation with a rationality 

in description of the behaviour of such structures. 

One of the first applications in structural 

engineering of the mathematical optimisation techniques of 

Operations Research came with the realisation that some 

formulations of analysis based on plastic theory led to 

optimisation problems and it was not long before plastic 

analysis had been automated. A few years later plastic 

design was similarly treated. 

In the analysis of ductile structures, the ideal 

rigid-plastic models of behaviour can be treated either 

from a kinematic or mechanism approach or from a static or 

equilibrium approach to obtain the plastic collapse loads. 

The former corresponds to a linear programming maximisation, 

and the latter to a linear programming minimisation. 

The plastic theory of design and analysis is form-

ulated in terms of the strength of the material only - it 

can be assumed to exhibit rigid-plastic behaviour. But the 

ductile materials which can be analysed and designed using 

plastic theory are elastic-plastic in behaviour and undergo 

elastic deflexions before collapse. These deflexions are 

not given by plastic theory but may well be critical. 

(Elastic analysis gives the deflexion behaviour of the 

structure while ignoring the reserves of strength inherent 

in redundant, ductile structures.) 

However, assuming perfectly elastic-perfectly plastic 

behaviour, the elastic deflexions at collapse may be estimated, 

as long as the correct member force distribution is known. 
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In cases of complete or overcomplete collapse the correct 

distribution is given by the equilibrium and yield criteria 

of plastic theory. But when the collapse is partial, as is 

common in complex structures, the rigid-plastic distribution• 

attained is not unique: compatibility must be considered 

in order to obtain the correct elastic-plastic distribution. 

Compatibility must be considered also if the deflexions are 

required before incipient collapse: either in the fully 

elastic region or in the elastic-plastic region after yielding. 

has first occurred. 

Compatibility can be considered by solving additional 

virtual work or slope-deflexion equatiorß,but the correct 

force distribution is also that distribution which leads to 

the minimum structural complementary energy. This can be 

treated as a quadratic programming problem with linear 

yield constraints. 

Design usually aims to achieve a minimum total cost 

of materials, construction and maintenance. If the cost can 

be expressed in terms of the independent design variables 

and if the behaviour constraints are quantifiable then solution 

for the minimum cost design (m.c.d.) is possible. This 

formulation is not at all easy. But formulation of the 

minimum volume or weight design (m.w.d.) problem is simple: 

using strength constraints only this is the plastic design 

problem. Deflexion constraints (i.e. elastic-plastic design) 

lead to non-linearities. In general one can either minimise . 

weight for constant strength-plastic (linear), or minimise 

weight for constant strain energy-elastic (nonlinear). 

But what is the relevance of m.w.d. to m.c.d? 

In some structures the total cost is more dependent on the 

cost of the materials in the structure, while in other 

structures the cost of fabrication and maintenance are far 

more costly than the materials. In large office buildings 

the materials cost is but a small part of the total cost 
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and a saving of a few percent in structural material costs 

is insignificant overall: the time and effort spent in 

attempting to achieve m.w.d. may even offset the savings in 

materials cost. 

For any but the simplest structures, then, m.w.d. 

is hardly a practical economic objective. But it can 

help in understanding the most (structurally) efficient way 

of supporting loads. In this sense the designer can use it 

as a guide in attempting more rational design of structures. 

Some might say that the aesthetic pleasure obtained in achieving 

the simplicity of the m.w.d. is justification enough. 

This thesis describes the theory and operation of 

four programs dealing with elastic-plastic and rigid-plastic 

two- or three-dimensional pin-jointed trusses. The programs 

are for determining the collapse load factor, for obtaining 

the elastic-plastic deflexions at any loading to collapse, 

and for obtaining the minimum weight design under one or 

several loading conditions and taking into account the self- 

weight of the bars. 



CHAPTER II. LITERATURE SURVEY  

2.1* Plastic Analysis  

Following work done in England in the thirties and 

forties searching for simple yet rational procedures of 

design, interest was aroused in the so-called plastic 

behaviour of ductile materials, in particular, of mild steel. 

VAN DEN BROEK (1948) published "The Theory of Limit Design" 

in 1948 and in the following year BAKER (1949)  published the 

results of his group in England. 

These studies were concerned with the flexural behaviour 

of rigid-jointed frameworks, but several assumptions had to 

be made in order to be able to obtain results. The assumption 

of elastic-perfectly plastic moment-curvature behaviour, 

characterised by a sharply defined yield point and no strain 

hardening, was the most important. Also, it was assumed 

that plastic "hinges" formed at points where the bending 

moment reached yield - these hinges were capable of large 

angles of rotation at constant moment of resistance: the 

plastic moment. The effect on the plastic moment of axial 

loads and shear forces was neglected, and the elastic 

deformations of the structure were assumed to have no effect 

on the equilibrium equations. 

It was found that to obtain the collapse load 

factor, a complete elastic-plastic analysis was not 

necessary. Upper and lower bounds for the factor were 

easily obtained and these could be narrowed without much 

difficulty (HORNE (1950), GREENBERG & PRAGER (1951)). 

Apart from the simplicity of the technique, it was a more 

realistic approach to structural behaviour: elastic design, 

with onset of yielding anywhere in the structure as the 

failure criterion, disregarded the reserves of strength 

inherent in redundant, ductile structures (NEAL & SY ONDS 

(1950)). 

The bounds on the collapse load are obtained from 
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the following three theorems: 

Static Theorem: if, for a given set of external 

loads Qs, an internal stress distribution can be found that 
satisfies equilibrium and doesn't violate the condition that 

yield nowhere be exceeded, then Qs< Qc, the collapse load. 
Such a state of stress is known as statically admissible. 

This theorem provides a necessary and sufficient condition 

for the structure to carry the loads (HORNE (1950), 

GREENBERG & PRAGER (1951)). 

Kinematic Theorem: if, for a given set of external 

loads, Qk, a collapse mechanism can be found consistent with 

equilibrium requirements, then Qk. > Qc , the collapse load 
(GREENBERG & PRAGER (1951), NEAL (1956)). 

Uniqueness Theorem: if, for a given set of external 

loads Q, a collapse mechanism can be found consistent with 

an internal stress distribution that satisfies equilibrium 

and nowhere exceeds yield, then Q = Q and the mechanism is 

the actual mechanism of collapse (HORNE (1950)). 

Similar theorems have been established for the general 

case of solid bodies of perfectly plastic material 

(DRUCKER et al (1951)). 

Early workers were more interested in design than 

analysis, but failing a direct method of design, they 

developed iterative analysis. Methods were at first based on 

trial-and-error, but later one or both of the first two 
theorems: 

HEYMAN (1951) (1) proposed a trial-and-error 

method but this was not suitable for partial collapse; 

NEAL & SYMONDS (1952) suggested the "method of 

combining mechanisms" based on a kinematic approach, suitable 

for partial collapse; 

GREENBERG & PRAGER (1951) suggested a method of upper 

and lower bound approaches successively, but this was awkward 
for partial collapse; 
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BAKER et al. (1956) suggested a trial-and-error approach; 

NEAL & SYMONDS (1950) suggested a "method of in- 

equalities" based on a static approach but this was tedious 

for complex structures; 

Heyman and Nachbar suggested an alternating upper 

and lower bound approach but this required arbitrary cuts in 

the structure; 

HORNE (1954) proposed a method of "plastic moment 

distribution", successively modifying the lower bound of the 

static approach; 

HEYMAN (1968) described an extension of the method 

of combination of mechanisms to generate automatically a 

statically admissible bending moment distribution, but by 

hand only. 

All these methods depended to some extent on the 

intuition and experience of the person making the calculations. 

In 1951 CHARNES & GREENBERG (1951) showed that 

linear programming can be applied to the limit analysis of 

pin-jointed trusses. Their approach was based on the static 

theorem. They were able to develop systematic algebraic 

procedures for computation of collapse states, and to show 

that the kinematic approach leads to the dual problem. 

FOULKES (1953), (1954), (1955) showed how the 

kinematic approach could be considered as a linear programming 

problem, and LIVESLEY (1956) analysed several frames by 

computer using a non-linear approach of the static theorem. 

DORN & GREENBERG (1957) suggested that the equations 

ß L = C q 	 ..(2.1) 

-- clay A l< q < ay A l 	 ..(2.2) 

(which ensure that the equilibrium and yielding conditions 

respectively are not violated) form the constraints of a limit 

analysis of a pin-jointed truss by the static approach; 

the greatest lower bound on ß would be the actual collapse 

load factor ß 
c
. Further, they suggested putting the bar 



forces in terms of the r redundant forces x: 

maximise [ 1 . Or] 
l 
 Ll ..(2.3) 
x J 

subject to B0  L 	B1 	ß 	A 1 	 ..(2.4) 

	

-Bo  L;-B1 	x 	a A 1 cY 

where 	q = ß Bo  L + B 1  x 	 ..(2.5) 

They also showed that the dual of this problem corresponds 

to the kinematic approach to the limit analysis problem. 

They mentioned an alternative problem which had non-negative 

variables and the equations 2.1 as explicit constraints. 

CHARNES et al. (1959) extended the equivalence of 

dual linear programming problems with the static and kinetic 

plastic collapse principles to rigid-jointed frames, and 

showed, using virtical work, that a necessary and sufficient 

condition for collapse is that there is at least one solution 

to the static and at least one to the kinematic problems. 

LIVESLEY (1964) showed how, for a rigid-jointed 

frame, the equilibrium equations could be modified so that 

the bending moments only were considered as significant. 

Elsewhere (LIVESLEY (1966), (1967)), he showed how the 

selection of redundants could be automated and how the collapse 

mode could be plotted by the computer. WRIGHT & BATY (1966) 

used Liversley's theory (LIVESLEY (1956)) to obtain both limit 

analysis and minimum weight design by computer. 

KOOPMAN & LANCE (1965) extended the linear programming 

approach of the lower bound or static method to continuous 

structures. 

The above approaches were mainly concerned with 

rigid-perfectly plastic material. PRAGER (1959) showed that 

the yield limit of a rigid-perfectly plastic continuum 

coincides with the load-carrying capacity of the corresponding 

elastic-perfectly plastic continuum. 

HEYMAN (1959) (1), after HEYMAN & PRAGER (1958), 

making alternate use of equilibrium and yield, and equilibrium 
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and mechanism criteria, described a program to obtain the 

collapse load factor automatically. 

TOCHER & POPOV (1962) described a method, suitable 

for both proportional and variable repeated loading conditions, 

similar to linear programming, but not giving a lower bound 

ß directly. WANG (1966) described an automated elastic-
plastic analysis, following the loading history, using the 

displacement method. JENNINGS & MAJID (1965) described a 
similar program, taking axial load effects on the plastic• 

moment into account. DAVIES (1967) described a method similar 
to Tocher and Popov's, but allowing for frame instability, 

strain hardening, and hinge reversal. 

KORN & GALAMBOS (1968) compared analyses of first 
and second order accuracy, with and without axial deformations. 

They found that the analyses of some frames were not accurate 

using first order terms: these frames have many hinges, and 

almost level load-deflexion characteristics. 

2.2 An Energy Principle for Elastic-Plastic Structures 
In 1909 HAAR & VON KARMAN (1909) stated their well- 

known principle: "in the analysis of an elastic-perfectly 

plastic structure, of all the stress distributions which satisfy 

the equilibrium and yield conditions, that which actually occurs 

is that which minimises the elastic strain energy" (SAATY & 
BRAM (1964)). 

SYMONDS & PRAGER (1950) (1) were able to prove the 
principle for the condition that no temporary unloading of 

the bars of the pin-jointed truss occurred, and they later 

(SYMONDS & PRAGER (1950) (2)) spoke of minimising the 
"fictitious residual energy" corresponding to the "fictitious 

state of residual stress" reached if complete unloading were 

a fully elastic process. PRAGER (1959) later showed that 
the principle was true even if temporary bar unloading occurred, 

as long as there was no decrease in the load factor. 

In discussing Symonds & Prager, CHARLTON (1951) 
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pointed out that the Haar-Karman principle was a particular 

case of Engesser's principle of minimum complementary energy 

for non-linear elastic systems: "since energy is a mathematical 

concept, application of (Engesser's) principle is valid in 

the non-conservative plastic range provided that a given 

static loading is applied only." Elsewhere, (CHARLTON (1950), 

(1952)), he showed that Engesser's principle depended on 

"the conservation of complementary energy", which excludes 

gross geometric distortions. 

WESTERGAARD (1942) had shown how Engesser's principle 

could be applied to elastic, non-linear structures to account 

for settlement, temperature gradients, and displacement 

boundary conditions. 

MATHESON (1959) showed how all the energy principles 

of Castigliano and Engesser, described by WILLIAMS (1938) 

and CHARLTON (1950), (1952) were related. ARGYRIS & KELSEY 

(1960) showed that the principle of stationary complementary 

potential energy was a generalisation of Castigliano's 

principle of minimum strain energy: "for given forces, the 

complementary energy of total deformation and the complementary 

work are minimum when equilibrium and compatibility are 

satisfied." 

DORN (1960) showed that the dual of the principle of 

minimum elastic strain energy for an elastic-perfectly 

plastic material was "of all elongations and displacements 

which are compatible, the actual ones are those which 

minimise the potential energy" (SAATY & BRAM (1964)) - a 

generalisation of the principle of minimum potential energy. 

In applied mechanics there are two theories of 

plasticity: the flow theory and the deformation theory. In 

the latter the relations between instantaneous states of 

stress and strain are so postulated that, when the strain is 

given, the stress is uniquely determined, or vice versa: 

as this determination may not be unique in both directions 
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the deformation theory is unsuitable for describing completely 

the plastic behaviour of a metal and should be replaced by 

the flow theory (PRAGER (1948), WASHIZU (1968)). 

GREENBERG (1949) showed that the Haar-Karman principle. 

in the deformation theory of Hencky was analogous to the 

principle of minimum stress rate intensity in the flow theory 

of Prandtl and Reuss. Assuming the Haar-Karman principle, 

Hencky obtained his stress-strain relation (elastic-perfectly 

plastic) as the Euler-Lagrange equations of the integral 

being minimised. 

WASHIZU (1968) showed that the Haar-Karman principle 

implied an absolute minimum for proportional loading. 

2.3 
 Elastic Deflexions at Tricipiént CO'llap'se  •  

In an early paper GREENBERG & PRAGER (1951) noted 

that a general, simple method for estimating the deformation 

of an elastic-plastic structure was needed. Soon after, 

KNUDSEN et al. (1953) summarised and compared the methods 

available: 

i. numerical integration of the actual moment 

curvature curve gave good agreement, but was tedious and 
empirical; 

ii. mathematical integration of the idealised 

moment - curvature curve (HRENNIKOFF (1948)) was reasonable but 
complicated; 

iiia the curvature-area method neglected spread of 

hinges and gave inaccurate results; 

iv. simple plastic theory, neglecting strain 

hardening, but considering plastic spread, gave reasonable 
results; 

v. the "plastic hinge method", based on elastic-

perfectly plastic behavio ur, was very simple and gave 

reasonable results. 

The "plastic hinge method" had been developed by 

SYMONDS & NEAL (1951), (1952) and HORNE (1950). Assuming 
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elastic-perfectly plastic behaviour of rigid-jointed frames, 

the formation of plastic hinges, and neglecting the effects 

of shear and axial forces and stability, the method was well 

suited to structures which collapsed completely. These 

structures were determinate at incipient collapse and the mode 

of collapse with the equilibrium conditions led to the 

moment distribution, using plastic analysis and statics only. 

To determine the last hinge to form, one could 

either assume in turn that each was the last, the correct 

assumption leading to the greatest deformations, or one 

could assume any to be the last and collapse the structure 

further until all but one of the calculated rotations were 

in the same sense as their bending moments, the one with no 

plastic rotation being the last hinge to form (SYMONDS & 

NEAL (1952), HORNE (1950)). 

HORNE (1950) explained that at the required deflexion 

there would be elastic continuity at the last hinge to be formed, 

while all other hinges would show rotations in the directions 

corresponding to their full plastic moments. If the assumption 

of a particular hinge to be the last were incorrect, some 

of the calculated rotations would be in the wrong sense. 

Further collapse in the correct mechanism would lead to all 

rotations being either of the correct sign or zero. One (or 

several) would be zero: the last to form. As the collapse 

deflexions had been increased to achieve this, the last hinge 

would be characterised by the largest deformations. 

SYMONDS & NEAL (1952) noted that for an r times 

redundant structure there were three types of collapse 

behaviour, characterised in part by n, the number of hinges 

i. complete collapse - n = r + 1 leading to a 

determinate structure at incipient collapse, and a collapse 

mechanism with one degree of freedom; 

ii. overcomplete collapse - n > r + 1 leading to 

a determinate structure at incipient collapse, and a collapse 

mechanism with more than one degree of freedom; 
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iii. partial or incomplete collapse - n < r + 1 

leading to a redundant structure at incipient collapse, and 

a collapse mechanism with one degree of freedom. 

Overcomplete collapse occurred when two or more 

hinges formed simultaneously at incipient collapse, leading 

to a mechanism with several degrees of freedom. Groups 

of hinges in turn must be assumed to form last, to obtain the 

correct group to form last. 
Partial collapse, Symonds & Neal pointed out, meant 

that the elastic moment distribution was not completely 

determined by the values of the moments at the plastic hinges 

together with the conditions of static equilibrium. They 

suggested using the principle of least work to minimise the 

strain energy of the frame, leading to the correct moments. 

This was a tedious process by hand. 

NEAL (1956) suggested using slope-deflexion equations 

with the condition of elastic continuity at unhinged joints, 

and LEE (1958), extended by ODEN (1967), proposed using the 

conjugate beam approach to shorten Neal's method slightly. 

HODGE (1959) also suggested minimising elastic energy:.  even 

though the frame were partially plastic at collapse the 

principle could be used, since the work done in plastic 

rotation was independent of the redundants. HEYMAN (1961), 

after STEVENS (1960), suggested using virtual work to obtain 

the redundant moment distribution, and discussing Heyman's 

paper, GREGORY (1962) suggested that the virtual work approach' 

was mathematically equivalent to the method of static 

complementary energy. 

In a paper specifically on the problem of partial 

collapse, PERRONE & SOTERIADES (1965) underlined that the 

positions of hinges in the elastic-plastic structure occurred 

where suggested by the rigid-plastic moment distribution 

only if they satisfied continuity. In discussion, GURFINKEL 

(1965) pointed out that for proportional loading the correct 
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elastic-plastic moment distribution was the solution to a 

constrained minimisation of elastic strain energy. LIND (1965) 

suggested "rotation distribution", analogous to moment 

distribution for certain cases. THODANI (1966) suggested 

using "Mohr's equation", a form of virtual work. 

In 1956 NEAL (1956) discussed certain assumptions 
necessary for the calculation of deflexions at incipient 

collapse: HORNE (1948) had concluded that the idealisations 

of no plastic spread of hinges and no strain-hardening were 

valid as the two effects cancelled each other in deflexion 

calculations. Neal pointed out that a further assumption 

was that, having formed, no plastic hinge unload. HODGE 

(1959) stated that if any hinge once formed had unloaded, then 
the predicted deformation would be an overestimate. 

NEAL (1956) stated that no limit analysis could show 
whether unloading had occurred or not, and that the only safe 

procedure was to trace the successive formation and rotation 

of hinges in a step-by-step analysis. FINZI (1957) showed 
not only that unloading might occur, but that in general it 

would. 

BERTERO (1965), in•discussing Perrone & Sateriades, 
showed that the simplification of the virtual work approach of 

HEYMAN (1961) and MARTIN (1962) could not be used when hinges 
occurred which were not involved in the collapse mechanism. 

This would happen in partial collapse and in hinge unloading, 

he said, but, for partial collapse, correct use of the virtual 

work approach of HEYMAN (1961), HORNE (1962), or MARTIN (1962),' 
or of the slope-deflexion equations (SYMONDS & NEAL (1952)) 
would lead to the discovery of these isolated hinges and 

the correct deflexions. 

2.'4'  ' Plastic Design  
Design methods based on iterative analyses are 

described above. They were indirect, and HEYMAN (1951) (2) 
and FOULKES (1953) were quick to realise that plastic theory 



could supply direct methods of design. These were concerned 

with minimum volume or weight design (m.w.d.), if not because 

this was practicable, then because it offered an ultimate 

criterion with which to assess practical designs. 

In 1904 MICHEL (1904) obtained sufficient conditions 

for pin-jointed trusses to be of minimum weight, independent 

of the stress-strain relationship. Also studying the problem 

of a single, proportional loading system, FOULKES (1953), 

(1954), (1955) wrote a series of papers on the m.w.d. of 

rigid-jointed frames. Using a geometric analogue of design, 

he was able to prove three necessary and sufficient conditions, 

(analogous to the mechanism, equilibrium, and yielding 

criteria of limit analysis), which the m.w.d. must fulfil: 

i. Mechanism condition: the design must be 

capable of failing in a mechanism (a "Foulkes mechanism") 

such that, for every design section Mi, E hinge rotation 

associated with the section design MZ 	E length associated 
i 

with M . . 

ii. Work equation: the load factor of the mechanism 

which satisfies i. must be unity; 

iii. Yield condition: there must not exist any 

other mechanism for the design with a load factor of less 

than unity. 

From these three conditions, FOULKES (1954) was 

able to prove two bounding theorems on the m.w.d., analogous 

to the static and kinematic approaches to plastic analysis 

respectively: 

1. Upper-bound theorem: if a design collapses in 

a mechanism with a load factor of unity, satisfying iii., 

then its weight is greater than or equal to that of the 

m.w.d. This is the "safe" approach. 

2. Lower-bound theorem: if a design satisfies i. 

and ii. then its weight is less than or equal to that of the 

m.w.d. This is the "unsafe" approach. 
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DRUCKER & SHIELD (1956) obtained sufficient conditions 

for continuous, three-dimensional structures. 

SVED (1954) showed that, for a single loading system, 

the m.w.d. of a pin-jointed structure is statically determinate, 

for elastic or plastic behaviour. DORN et al. (1964), in a 

study concerned with the configuration as well as the sections 

of the m.w.d. structure, and PRAGER (1965), considering the 

analogy between network flows and plastic analysis, showed 

this also. 

KICHER (1966) and SHEU & PRAGER (1968) showed 

analytically that the m.w.d. of a large class of structures 

subject to a single loading will be fully stressed and 

statically determinate. It follows that the m.w.d. of multi- 

loaded structures which are either statically indeterminate, 

or have buckling modes depending on loadings, generally 

will not be fully stressed. Structures which collapse partially 

under a single loading are not m.w.d. 

HEYMAN (1959)  (2) considered the absolute m.w.d. of 

structures with members of varying cross-section and showed 

that these could have 50% less material than structures 

with uniform sections as members. 

For rigid-jointed frames, the weight density is 
w a  Ma, where M is the plastic strength, and a a constant. 

(In practice, a = 0.6). Most methods of design take a = 1 

which simplifies the procedure, with reasonable accuracy. 

PRAGER (1956), considering the convex problem of 0 < a < 1, 

obtained necessary and sufficient conditions for such a 

m.w.d. MEGAREFS & HODGE (1963) showed how to overcome the 

problems of nonlinearity and vanishing members using a 

density function analogous to strain energy. PRAGER & 

SHIELD (1967) developed a general theory of plastic design 

with a convex density. 

Methods of solution of m.w.d. for single loadings 

were developed, usually based either on the upper ("safe") 

or on the lower ("unsafe") bounded approach. The "safe" 
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method is better suited to automatic solution, while the 

"unsafe" to manual solution. HOSKIN (1960) noted that, as 
the lower bound approach dealt entirely with kinetic qualities, 

it did not directly give the individual bar sections, although 

it gave the m.w.d. weight and collapse mode. 

The geometric analogue method of FOULKES (1953), 

a lower bound approach, had been based on an examination of 

all possible collapse modes. Later FOULKES (1955) showed how 

the problem was equivalent to one of linear programming. 

The "method of inequalities" of HEYMAN (1951) (2) 

was a "safe" method but was tedious to solve by hand, and 

HEYMAN (1953) later suggested a design method which alternated 

between the two approaches, successively reducing the bounds 

on the m.w.d. HEYMAN & PRAGER (1958) automated this method, 

claiming it to be more efficient than methods based on one 

approach only. 

LIVESLEY (1956) automated an upperbound approach, 

solving the minimisation by a method of modified steepest 

descent. This was the first automated procedure. WRIGHT & 

BATY (1966) used this procedure, expressing the moments in 

terms of the external loads and a set of redundants. 

HOSKIN (1960), by analogy with CHARNES & GREENBERG 

(1951), showed the upper and lower bound design approaches 

to be equivalent to dual linear programming problems. CHAN 

(1964) was able to show that this duality led to Michell's 

necessary and sufficient conditions for the m.w.d. of pin-
Jointed trusses. 

TOAKLEY (1967), (1968) described an automated "safe" 

approach which he solved using the dual simplex algorithm 

of linear programming. He showed that, ignoring instability 

and gross geometric distortion, the rigid-plastic assumption 

is reasonable for elastic-plastic behaviour. 

The problem of multi-load design is more difficult 

than single load design, and can lead to shakedown (not 

treated here). HEYMAN & PRAGER (1958) noted that for several 

loadings the size of calculation is doubled, tripled and 
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so on. 

PEARSON (1958) suggested using a load space, analogous 

to Foulkes' design space, to estimate the worst effect on 

each possible mechanism. LIVESLEY (1959) noted that there was 

no meaning in speaking of the "worst" system of loading, 

as the m.w.d. balanced the effects of a number of extreme 

loading states, each exciting a different mechanism. 

SAVE & PRAGER (1963), considering moving loads 

(an infinite number of loading cases), suggested a super-

position principle for single spans, although this is not 

generally suitable. SHIELD (1963) gave sufficient conditions 

for m.w.d. under multi-loading conditions. Using this theory, 

MAYEDA & PRAGER (1967) extended the method for one loading 

case of HEYMAN (1959)  (2) to multi-loading conditions. 

PRAGER (1967) showed that the usual proof of the existence of 

a Foulkes mechanism as a necessary condition for m.w.d. is 

not applicable to multi-loading. 

DORN et al. (1964) showed how for two loadings the 

number of constraints in the linear programming problem 

would be doubled and the number of design variables increased. 

Similarly for more loading cases. 

WRIGHT & BATY (1966), suggested obtaining a "design 

envelope" for all loading cases and hence getting the m.w.d. 

This is a highly inefficient method. 

CHAN (1967), (1968), considering the duality of the 

two bounds approaches to m.w.d., extended the necessary and 

sufficient conditions of single loading design (MICHELL 

(1904), FOULKES (1954)) to the multi-loading case. 

2.5 Sitriplifyin ASsûmptions  

In 1951 SYMONDS & NEAL (19 51) noted that the develop-

ment of plastic methods of analysis could take two directions: 

simple hypotheses leading to elegant mathematical theories and 

better understanding, or detailed behaviour of members, 

connexions, and frames, leading to more realistic descriptions 
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of behaviour. 

This work has been based on an ideal model of actual 

behaviour in pin-jointed trusses in the hope that this will 

lead to a better understanding of the theories attempting 

to describe realistic behaviour. 

A main assumption has been that the load-deflexion 

behaviour, in both tension and compression, is either rigid-

perfectly plastic (Fig. I) or elastic-perfectly plastic 

(Fig. II). If the load capacity is sustained over a sufficient 

deformation plateau, the simple mechanisms may be combined 

into a collapse mechanism. For mild steel in tension the 

description is a good approximation (Fig. III), but for 

compression members it may not be valid. 

NEAL (1950) noted that for a slender, pin-jointed 

strut which is perfectly straight and loaded axially, the axial 

deformation below the Euler critical load is proportional 

to the load (i.e., linear elastic). When the Euler load is 

reached, buckling occurs, and the lateral deflexion increases 

at constant load. Hence, as in ideal plastic behaviour, the 

axial deformation increases at constant load. But the 

buckling is purely elastic (for large slenderness ratios) 

and the energy stored during buckling is recoverable as, 

unlike elastic-plastic unloading, the strut unloads elastically 

at constant load. 

SYMONDS & PRAGER (1950) (1) noted that if the 

compression member had the flat yield stress-strain curve of • 

ideal plasticity, there would be instability at yield. 
•HRENNIKOFF (1965) has shown how strain hardening provides for 
instability. 

Elastic buckling, however, occurs only at uneconomically 

large slenderness ratios. STEVENS (1968) considered elastic-

plastic instability in compression members (Fig. IV). Behaviour 

depends on slenderness ratio and degree of end fixity; very 

short members exhibit good ideal plastic behaviour, but long 
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Figure I : Ideal rigid-plastic load-deformation  

behaviôur.  

Figure II : Idea:l elasti-c-plàstic load-deformation  

behaviour. 
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Figure III : Actual stress-strain relationship  

for mild steèl.  

A 

a. very short strut 
b. medium length strut 
c. still longer strut 

assumed "lower limit" curve 
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Figure IV : Actual Toad-deformation behaviour of  

pin-jointed struts, and the idealisation.  

(from STEVENS (1968)) 
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ones may have no plastic plateau at all. 

This may be overcome by lowering the working yield 

load and using a load-deflexion diagram (Fig. IV) which 

generally gives a short plateau and leads to a conservative 

answer in analysis or design for reasonable axial strains. 

However, for small axial strains the approach may well be 

grossly overconservative, and, for the large axial strains 

sometimes found as the full strength of the structure 

develops, the approach is non-conservative. 

Proportional loading is assumed: that is, the 

loading increases monotonically from zero. This does not 

ensure that no bar unloading occurs, but excludes failure 

by alternating plasticity or incremental collapse. 

It is also assumed that the value of the tensile 

yield strain (that is, the ratio between Young's modulus 

and the tensile yield stress) is sufficiently small for the 

assumption that the deflexions before collapse have no effect 

on the equilibrium equations to be valid. That is, the analysis 

is concerned with small deflexions only. 

In deflexion calculations, the further assumption 

that no bar unloading occurs is made. As noted in section 2.3, 

the only way to be sure that this doesn't happen is to 

analyse the complete loading history of the structure. 

PRAGER (1959) noted that the deflexions obtained using this 

assumption are still a good estimate, in fact are over- 

conservative. 
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CHAPTER III. GREATEST LOWER BOUND ESTIMATE OF COLLAPSE LOAD  

3.1 Introduction  

Several workers (CHARNES & GREENBERG (1951), FOULKES 

(1955), DORN & GREENBERG (1957)) have shown that the problem 

of obtaining the plastic collapse load for a structure can 

be viewed as a problem in linear programming. This chapter 

explains the theory of the static, or lower bound, approach 

to the problem for pin-jointed trusses. 

To achieve generality it is desirable to work in 

dimensionless quantities. To this end, define 

pn  = qn/aY  An 	 ..(3.1) 
where p

n  is the ratio of the actual force in the member 

n to the tensile yield force of that member 

qn is the actual force in member n 

6Y is the tensile yield stress of the material 

An  is the cross-sectional area of member n. 
Then, in matrix notation 

q = vY  A p 

	

	 ..(3.2) 
where Aii  = Ai, area of the i th member 

A2. = 0, i / j 

Also define A = ß/A a y 	 .. (3.3) 
A is the load factor for any given unit load, to give 
the actual load divided by the reference tensile 

yield force (= A a y) 

ß is the load factor for any given unit load, to give 
the actual load 

A is the reference cross-sectional area 
If Q is the actual load matrix, and L the unit 

load matrix specifying the ratios, directions, and points of 

application of the loads, then 

L = Q 	 ..(3.4) 
Define a "dimensionless" load matrix, given by 

P = A L = Q/A ay 	 ..(3.5) 
Then it is possible to work entirely in "dimensionless" 
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quantities, the only data needed being C, L, and A*, where 

A* is the area ratio matrix A*ii  = Ai/A 

A*ii = 0, i 	j 

3.2 Explicit Equilibrium Constraint Eauations  

The static approach states that if equilibrium is 

everywhere maintained and the yield force is nowhere exceeded, 

the external loads in equilibrium with the internal loads 

are equal to or less than the collapse loads. 

In matrix notation, express equilibrium equations as 

ß L= Q= C q 	 ..(3.6) 
where C is the connexion matrix, a force transformation 

matrix, generally rectangular, (square only if structure 

determinate), and comprising the direction cosines of the 
members. 

Express the yield condition as 

aay A 1<q< ay  A 1 	 ..(3.7) 
. where a is the ratio of compressive to tensile yield stress, 

1 is the unit vector. 

The greatest value of ß satisfying 3.6 and 3.7 is 
the collapse load factor. To obtain a linear programming 

problem, the rows in 3.6 corresponding to load components 

are added and divided to get 

ß = mT q 	 ..(3.8) 
where m is a coefficient vector. The remaining rows are 
expressed by 

o = c _ q 	 ..(3.9). 
where 0 is the null vector 

C. is a submatrix of C, corresponding to the unloaded, 

unsupported joint components. 

The linear programming problem is to maximise ß 
subject to 3.7 and 3.9. The independent variables are q, 
and if there is complete collapse the set of q will be 

unique; if there is partial collapse the set of q will not 

be unique, as compatibility will have to be considered to 

get the actual set of q. 

In "dimensionless" quantities, substituting 
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3.2 and 3.3, the problem becomes 

maximise 	a = mT  A* p 	 ..(3.10) 

subject to a 1 < p < 1 	 ..(3.11) 

and 	 0 = C_ A* p 	 ..(3.12) 

This problem has m independent variables, where 
there are m members, and the number of constraints is 

< 2m + 2(2j - 	4) if two-dimensional 
< 2m + 2(3j - 	7) if three-dimensional 

where there are j joints. The large size of this problem 
leads to inefficient use of computer storage and time. 

3.3 The Problem in Terms of the Redundant Forces  

As an alternative to the approach of section 3.2, 

this section deals with a more efficient formulation of the 

problem. The forces in a redundant pin-jointed truss can be 

expressed in terms of the external loads and a set of 

redundants: 

q = Bo  Q + B 1  x = ß Bo  L + B1  x 	 ..(3.13) 
where Bo  and B 1  are force transformation matrices 

x is a vector of redundant member forces. 

Given the set of redundants, x, LIVESLEY (1964) has 

shown how to obtain 3.13 from the equilibrium equation 3.6: 

add extra rows to the connexion matrix, corresponding to a 

set of "releases" or redundant forces, to obtain 

(ß L = C q 
x  

where C+  is a non-singular, square matrix 
Then 	q  = C+-1 [13 

 L 

x 

multiplying, q = E ff ß 1 	 ..(3.14) 

l.x•J 

where E, a transformation matrix, has k'columns less than 
C+-1  

where k = 2j - 4 	(two dimensions) 

3j - 7 	(three dimensions) 
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Equation 3.14 is equation 3.13 after the multiplication of 

B0  L. 

The linear programming problem is then 
•maximise ß= [1 : 0T] ß 

x 

..(3.15) 

subject to aßY 	<E  

This problem has r + 1 independent variables, where 

there are r redundant members, r = m-2,j+3 	(two dimensions) 

= m-3j+6 	(three dimensions) 

and the number of constraints is 2m. This represents a 

great saving of storage and time over the previous method, 

especially for structures with low redundancy. 

Analogous with equation 3.2, define vector r such 

that 

x = ciY  A r  r 	 ..(3.17) 

where r is the vector of the ratios of redundant member 

forces to their tensile yield forces 

A r  is the area matrix corresponding to the set of 

redundants. 

Then equation 3.13 becomes 

p = Go  P + G1 r = X Go  L + G1 r 	 .. (3 .18) 
where 	Go  = A*-1 B0 	 .. ß .18a) 
and 	 G1 = A*-1 B1  A*r 

multiplying, p = G 	A 	 ..(3.19) 

r 

The linear programming problem is 

maximise X = [1 : OT] .. (3 .20) •a .1 

r 
subject to a 1 < G1 	a < I 	 ..(3.21) 

r 

In the program described in section 3.5, r has not 
been used, but a quantity y, given by 

y = x/A ay 	 ..(3.22) 

A I 	 oA 1 [ r3 1 < 

x 

..(3.16) 



24. 
that is, y is the actual redundant force in terms of the 

reference tensile yield force. The problem becomes 

maximise 	a =[1 ' 0T] [ A ] 	 1 	..(3.23) 
Y 

subject to 	L 	A-'c- B ] 1 < 1 

Y 
.................... 

3.4 Automatic Selection of Redûndants  

The method of the previous section (LIVESLEY (1964)) 

suffers from the fact that a set of redundants must be supplied 

to the program and must be consistent and reasonably well-

conditioned, so that the cut structure is not a mechanism. 

Algebraic procedures for automatic selection of 

redundants have been developed by DENKE (1965), ROBINSON 

(1966), and LIVESLEY (1966), (1967). In a survey of the 

literature, ROBINSON (1968) noted that the best set of redundants 

is that which leads to a "cut", determinate structure as 

close as possible to the indeterminate structure. To achieve 

this, knowledge of the applied loading system and the relative 

flexibilities of members is needed. DENKE (1965) showed how 

to consider the relative flexibilities by dividing columns 

of the connexion matrix C and multiplying rows of the force 

vector q, but this procedure is not used here as the author 

wished to develop a "modular" set of subroutines, suitable 

for both analysis and design. 

The method described below is based, as are all of 

the algebraic methods, on the well-known Gauss-Jordan method 

of solving simultaneous equations. It is virtually identical 

to the methods of ROBINSON (1966) and LIVESLEY (1966). As 

well as selecting a consistent, well-conditioned set of 

redundants x, the method generates the force transformation 

matrices Bo  and B I  of equation 3.13, analogous to the matrices 
Go  and G I  of equation 3.18. 

The first stage of the process is the transformation 

of equation 3.6 from the form. 
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ß I L= C q 

where I is a unit matrix, to the equivalent form 

ß T L= U q 

where U consists of a unit matrix and other columns: the 

structure is redundant, having more members than degrees of 

freedom at its joints, so the number of columns of C > 

number of rows of C. For each row in turn, the largest 

element in C is determined and the row in I and C normalised 

with respect to this element. Multiplies of this row of C and 

I are added to the other rows of C and I respectively, in 

such a way as to make all other elements in the column of 

the largest element equal to zero. 

If C is of full rank, the process may be applied 

to all rows without a complete row of zeros in both C and 

I occurring. If such a row does occur, it corresponds to a 

dependent equilibrium equation and may be neglected. Thus 

I and C are transformed respectively into T and U, U having 

(m - r) columns with a single 1 as the only non-zero element. 

If the structure is a mechanism, one or more of the 
rows of U will be entirely zeros, while the corresponding 

row(s) of T will have one or more non-zero elements. The 

number of degrees of freedom of the mechanism equals the 

number of such rows. 

The columns of U are rearranged to form 

T L = 	[1 : V] [wl 	 ..(3.24) 

x 

where w is the vector of member forces associated with the 

columns of I : the determinate system 

x is the vector of member forces associated with the 

columns of V: the redundant system. 

Rearranging equation 3.24 

w= ß T L - V x 

and 	x = 	 I x 
• 

..(3.25) or, combining, wx 

x 
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where 	is a null matrix. Returning to the original order 
of q involves an interchange of the rows of the transformation 

matrix in equation 3.25, opposite to the interchange of columns 

of U made previously. 

Thus is obtained the required result, equation 3.13 

q = 	[Bo 	Bi  ] C ß 
.....

L x  
or knowing L, equation 3.14 

q = E 	ß 
x 

If L is known from the outset, and if Bo  or B1 

are not required, the process is simpler and less demanding 

of computer storage. Operations are made directly on L 

instead of I, and equation 3.24 becomes 

ß k = 	[I 	V]f w 1 	 ..(3.26)  
ax

.  

where the vector k is equal to T L 

Hence follows 

[f3.1 ..(3.27) 
x•  

and rearranging'f or correct order of member forces leads to 

equation 3.14. 

q = E 	ß 

x 

In the programs described below, the procedure is 

carried out on an augmented matrix. C is augmented to 

[C : I] or [C : -L]. The matrices of equation 3.23 are obtained 

after the selection of the redundants and the generation of 

the matrices Bo  and Bi . 

The process of searching for the largest pivot in 

each row should ensure that the resulting set of redundants 

is well-conditioned. 

When Bo  and B/  have been generated, substitution 

in equation 3.18a yields Go  and GI, the "dimensionless" 
transformation matrices. 

w = k . -V 

.x.  o : I 
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3.5 A Program 'fdr the Cdllalose Load Factor 

This section briefly describes a program written 

to set up equations 3.23 for any two- or three-dimensional 

pin-jointed truss, and to solve the dual of this linear 

programming problem, using the two-phase Standard Simplex 

algorithm. 

The program, known as RANK PLASTICITY OPTIMISATION, 

comprises eight subroutines: 

NOINV - dimensions the arrays and calls the other 

subroutines in turn; 	
• 

PLOPT 3 - reads the data cards describing the truss, 
and forms the connexion, load, and area matrices. The 

connexion and load matrices are augmented; 

RANK using the "Rank technique" described in 

section 3.4, this generates the transformation matrix of 

equation 3.14, isolates a consistent set of redundants, and 

determines the degree of redundancy or the number of degrees 

of freedom of the structure. The load matrix is known, so 

the procedure is that of equations 3.26 and 3.27; 

FORMS - calculates A -̀1 Bo and A* 	B  ; 

DUALP 3 - sets up the equations 3.23, forms the dual 

of this linear programming problem, and calls KRANTE and 

KRSIMP. The subroutine was developed by Mr. D.W. Bennett 

of Melbourne University; 

KRANTE and KRSIMP - these solve the dual problem 

using the two-phase Standard Simplex algorithm. They were 

developed by Dr. K. Reinschmidt of M.I.T.; 

ANSWER - prints the collapse load factor and calculates 
and prints the collapse force distribution corresponding 

to the set of optimum redundants. 

To fully describe the structure, the members and 

joints are numbered, the support joints numbered last. A 

set of coordinates is decided upon, and the joint positions 

assigned coordinates. 



GET COMPLETE DIMENSION ARRAYS 

RETURN TO ORIGINAL ORDER OF 
MEMBER FORCES CALL TIME 

LL L 	 • 
READ PR OBIER TITLE CALL FORMS 

READ NUMBER OF DIMENSIONS 
JOINTS SUPPORT JOINTS MEMBERS 6 PRINT THEM 

READ JOINT COORDINATES 
RESTRAINTS AT SUPPORTS 6 PRINT THEM 

CALCULATE NIV 
FORM SENS MATRIX 

PRINT NMBS,NIV SENS 
• 

4 
INCREASE MATRIX A TO 
INTERNAL-  LOAD SYSTEM 

CALL RANK 

JORDAN ELIMINATION OF A 
CHECK FOR INCONSISTENCY 
(PRINT NUMBER OF DEGREES OF FREEDOM) 
CHECK FOR DEPENDENT EQUATIONS 
COUNT REDUNDANCIES CHECK MRD • NCC-NR PRINT NOD 6 MRED 
MOVE REDUNDANT COLUMNS TO RMS OF MATRIX A 
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CALL ANSWER 

OUTPUT OPTIMUM VALUES OF LAMDA MEMBER FORCES FIRST ROW OF Z ARRAY 

CALL TIM  

JPRINT TIME TAX 	41 

(!) 

READ MEMBER INCIDENCES 6 PROPERTIES CALCULATE MEMBER LENGTHS 
DIRECTION COSINES S PRINT THEM 

FORM CONNEXION MATRIX C FROM DIRECTION COSINES 
READ NUMBER OF LOADED JOINTS LOAD COMPONENTS FORM LOAD MATRIX Q 

CORRECT AUGMENTED MATRIX A FOR SUPPORTS 
PRINT CONNEXION E LOAD MATRICES  

CLEAR 0-ARRAY 
SET DUAL SENSITIVITIES, OBJECTIVE COEFFICIENTS, 

b ACTIVITY CODES IN Z ARRAY 
SET DUAL L.H. 6 R.H. SIDES 
b CONSTRAINT CODES IN Z ARRAY 
MAKE R.M. SIDES OF DUAL POSITIVE 
OUTPUT Z ARRAY 
CALL KRANTE (not listed) 
OUTPUT Z ARRAY 
CALL KRSIMP (not listed) 
OUTPUT Z ARRAY 
SET VALUES OF PRIMAL VARIABLES IN FIRST ROW OF Z-ARRAY (0(1,1)), PRIMAL OBJECTIVE IN 0(2,1) 

Figure V ' Flew Diagram  of RANK PLASTICITY OPTIMISATION  
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The data required for the analysis of a pin-jointed 

truss is, in order:. 

1. is the structure two- or three-dimensional? 

The number of joints, the number of supports, and the number 

of members; 

2. the joint coordinates and the directions of 

restraint of the support joints; 

3. the member cross-sectional areas and member 

incident joints; 

4. the number of loaded joints; 

5. the load components at each loaded joint. This 

method of specifying the structure (with a few modifications) 

is also used in the three programs described below. 

A flow chart for the program described above is 

presented in Fig. V, and a full listing in Appendix A. 

3.6 Analysis Examples  

Three examples are presented: one to show the solution 

for a trivial case (truss 1), one to show the solution for a 

planar truss with varying cross-sectional areas (truss 2), 

and one to show the solution for a space truss (truss 3). 

Truss 1 is a simple, once determinate planar truss 

with uniform cross-sectional areas. Clearly it must fail 

in either complete or over-complete collapse and so the 

force distribution obtained is unique, and identical in the 

rigid-plastic and elastic-plastic cases. The results can be 

seen in Fig. VI: the collapse load is 1.207 X A X ay. 

Truss 2 is a four times redundant planar truss with 

the varying cross-sectional areas shown in Fig. VII with 

the joint and member numbering system. The collapse load Is 

1 X A x a,. The force distribution given by the analysis is 

not unique as the structure may collapse partially. 

Truss 3 is a complex, three times redundant space 

truss with uniform cross-sections. The loading system, supports, 

and joint and membering systems are shown in Fig. VIII: 
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the structure has a triangular base and top, and each of 

its six joints is connected to the other five. The collapse 

load factor is 0.5000. As the structure may collapse partially, 

the rigid-plastic force distribution is not unique. 
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1 .0 

1.207 

= 1.207 

Fipure  VI : Collapse load factor analysis of truss l.  
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= [ 1.00 1.00 1 .00 1.00 0.00 -1.00 0.00 

1.00 0.00 1.00 1.00 1.00 1.00 -.999 

1.00 -1.00 -.999 0.00 -1.414 -1.00 0.00 ] 

Figure VII : Collapse load factor analysis of truss 2.  
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Y 

PLAN: 

= .500 

1.0 

z 

ELEVATION: 

x 

p = [ 	.500 	.207 	.207 -.293 	.707 

0.00 .707 -.293 1.00 -.293 

-1.00 .707 -1.00 -1.00 -.586 ] 

 

SKETCH 

Figure VIII : Collapse load factor analysis of truss 3. 
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CHAPTER IV .' ELASfiIC DEFLEXIONS AT IAICIPIENT COLLAPSE  

4.1.  Introduction  

Plastic design and analysis are essentially formulated 

in terms of the strength of structures, and may be considered 

as dealing with rigid-plastic models of behaviour. It has 

been shown (PRAGER (1959))  that the results obtained in 

dealing with the strength of rigid-plastic models are 

identical with those of elastic-perfectly plastic models. 

But an elastic-perfectly plastic structure will 

experience elastic deflexions before collapse. The deflexions 

of actual ductile structures may well be critical in their 

performance under load. It would seem very useful to have 

a method of obtaining these deflexions. 

In section 2.3 various methods were mentioned. The 

simplest of these was the "plastic hinge" method, and this 

gave reasonable results compared with more sophisticated 

methods. This section shows how this method, adapted for 

pin-jointed trusses, may be used to estimate the elastic-

plastic deformations of such trusses at collapse and at any 

stage in the loading history before collapse. 

The actual stress distribution can be found by 

minimising the complementary energy of the structure - for 

elastic-perfectly plastic behaviour, the elastic strain 
energy. 

The simplifying (and restricting) assumptions have 

been discussed in section 2.5. The assumptions are prop-

ortional loading, neglect of changes of geometry on the 

equilibrium equations, a perfectly elastic-perfectly plastic 

load-deformation relationship for both tension and compression;  

and no unloading of yielded bars as the load is increased 

from zero to the collapse load. 

The dimensionless notation introduced in section 3.1 

will be used, although the deflexions will be in the same 

units as the joint coordinates. 
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4.2 Problems of Deflexion 'C'alculations  

A main problem is the assumption, mentioned above, 

that no unloading of yielded bars occurs as the load is 

increased from zero to the collapse load. This was discussed 

in sections 2.3 and 2.5: short of a complete loading history 

of the structure, it 	reassuring that the assumption will 

lead to an over-estimate of deflexions. 

In section 2.3 it was noted that an r times redundant 

structure could collapse in three basic ways: 

i. complete collapse - the number of yielded 

members n = r + 1, leading to a determinate structure at 

incipient collapse and a collapse mechanism with one degree 

of freedom; 

ii. over-complete collapse - the number of yielded 

members n > r + 1, leading to a determinate structure at 

incipient collapse and a collapse mechanism with more than 

one degree of freedom; 

iii. partial collapse - the number of yielded members 

n < r + 1, leading to an indeterminate structure at incipient 

collapse and a collapse mechanism with one degree of freedom. 

In the first and second cases the determinate set of 

forces at incipient collapse is unique and given by the 

procedure described in chapter III above. In the third 

case, considering rigid-plastic behaviour, the set of forces 

at incipient collapse is indeterminate and not unique. The 

set given by a load factor analysis, satisfying yield and. 

equilibrium, will not necessarily satisfy the compatibility 

requirements of an elastic-plastic structure. 

It must be added that, in complex structures, 

partial collapse is the most common type of collapse behaviour, 

although a combination of partial and over-complete collapse 

may occur if several bars yield together, forming a mechanism 

of more than one degree of freedom in one region of the 

structure, leaving the rest of the structure indeterminate. 
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In this case, n, the number of yielded bars, is no guide to 

the collapse behaviour, although the further knowledge of the 

number of degrees of freedom of the collapse mechanism or the 

degree. of indeterminacy of the remaining frame will help. 

If two independent mechanisms form at collapse of 

a structure, then even the additional information of number 

of degrees of freedom and the degree of indeterminacy may 

not indicate the actual behaviour. However, the assumption 

that a particular form of collapse occurs will be verified 

by the member deformations subsequently calculated. 

4.3 Minimum Complementary Energy  

The Haar-von Karman principle (as stated in section 

2.2) of minimising the elastic strain energy is identical to 

Engesser's principle of minimum complementary energy, for a 

proportionally loaded, elastic-perfectly plastic structure. 

The complementary energy C is given by 

C = 2/2 q T  F q 	 ..(4.1) 
where F is the structural flexibility matrix F22=L2/E A. 

Fi =0, i 	i 
To use the dimensionless vector p, define 

U = 1  /2  pT  F* p 	 .. (4 .2 ) 
where F*is the "dimensionless" flexibility matrix 

F 	= A L ./A 22 	2 2 
F*2i  = 0, 2  / j 

then 	U = C X EA 
2 

(av) 

Applying the principle is to minimise U 
subject to - a 1 < p < 1 	 ..(4,3) 
and 	 X L:-.= P = C A* p 	 —(4.4) 
the yield and equilibrium conditions respectively. This is 

with a definite load which is constant: 

X L = P 

Using equation 3.18 to get p in terms of P and r 
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p = Go  P + G 1  r 

where 	G = A*-1  B 
_1 

0 
G
o 
1  = A*', 	B A*r  

thus 	p= g+ G 1  r 

and the problem becomes 

minimise 	U' = 2 gTF; G 1  r + rTG1TF*G1  r 

subject to -al-g < G 1 r < + 1-g } 

..(4.5) 

..(4.6) 

Using a non-negative variable s, where 

s = r + 1 	 ..(4.7) 

the problem becomes 

minimise 	U" = 2(gT-1TG 1 T)F*G 1 s + sT G 1TF*G1s 	 (4.8) 
subject to G 11 - a 1 - g < G 1  s < G 1 1 + 1 - g 

This is a quadratic optimisation problem with linear 

constraints. As F*, and hence G I TF*G 1 , is a symmetric, 

positive definite matrix, the function U" is strictly convex. 

This means that the function has only one minimum. This is 

a global minimum. A program which minimises U" subject to 

the constraints of equation 4.8 is described below. 

4.4 Deflexion Analysis  

The problems of calculating the elastic deflexions 

at incipient collapse and of determining which is the last 

bar to yield are closely linked. There are two ways of 

determining which is the last bar to yield: one may either. 

assume in turn that each bar (or group of bars in over-

complete collapse) is the last, the correct assumption leading 

to the greatest deflexions, or one may assume any bar to be 

the last, and collapse the structure further until all but 

one of the calculated plastic strains are in the same sense 

as their axial stresses, the bar with no plastic strain being 

the last to yield. The first method has been considered 

more suitable for automation and has been used in the program 

described in section 4.5 below. 

Given the correct force distribution by minimising 
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the complementary energy of the structure, the program 

counts the n yielded members, calculates the nCr combinations 

of r different members (where r is the degree of redundancy 

lost in collapse), and forms elastic structures by eliminating 

in turn the columns or elements in the matrices C, t, and p 

corresponding to the groups of plastic members assumed 

to yield first. 

This, in effect, is reducing the elastic-plastic 

redundant structure to an elastic structure with constant 

loads replacing the first yielding members, determinate 

if failure by complete or overcomplete collapse, probably 

still redundant if failure by partial collapse. It is assumed 

that the (n - r) remaining members at yield are the last to 

yield, that is, are not strained plastically at incipient 

collapse. 

A set of elastic joint displacements and a set of 

elastic-plastic deformations of all members are calculated 

for each assumed elastic structure, as described below. 

The set of joint displacements with the largest overall values 

is the correct set and gives the correct group of members to 

yield last. The corresponding set of member deformations 

must have no elements of opposite sign to the corresponding 

elements in the set of member forces, p, and the assumed 

yielded members must have strains greater than the yield 

strain. 

If the assumed elastic structure for any group forms 

a mechanism, then the group of (n - r) members assumed last 

to yield is incorrect: the redundant structure must be stable 

until all n members have. yielded. 

The main drawback to automating this process completely 

is in determining the correct value of r: is the collapse 

partial or not? Consider the most general case of a highly 

redundant structure which collapses partially, several bars 

yielding together at final collapse. 

If d, the number of degrees of freedom of the partial 

collapse mechanism, can be found, then r, the reduction in 
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redundancy due to the partial collapse mechanism, is given by 

r = n 	d 	 ..(4.9) 
where n is the number of yielded members at collapse. This 

is so because as each member yields it reduces the overall 

redundancy by one, until the local degree of redundancy is 

zero, at incipient collapse. The number of degrees of 

freedom of the partial collapse mechanism is equal to the further 

number of bars which yield, forming the mechanism. 

In general, then, the assumed elastic structure is 

still redundant, and the transformation matrices BOe and Ble 

can be generated from the connexion matrix Ce  as described in 

section 3.3. (The subscript e implies that the structure is 

treated as wholly elastic; Ce  is reduced from matrix C as 

mentioned above). 

From the force method of analysis (LIVESLEY (1964)) 

the equations 

D = BOeT  Fe  qe 	 ..(4.10) 

u 	BleT _ F: qe 	 ..(4.11) 

are obtained, where D is the vector of joint displacements 

and u is the vector of relative redundant displacements and 

will equal zero if the structural member forces are compatible. 

(The subscript e implies that the columns or rows corresponding 

to the assumed group of r plastic members have been eliminated). 

Non-dimensionally, that is, substituting 

qe = aY Ae  pe 	 ..(4.12) 

into 4.10 and 4.11, the relationship became 

(i D = E D= BOeT  e pe 	 ..(4.13) 
eY 	

oY 1 u = E u= BleT a pe  

sY 
	(ay 

where 2,e  is the reduced vector of member lengths. 

Then D and u can be evaluated for each assumed 

group and checked to find the overall largest corresponding 
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to a zero u. A further check must be made of the member 

deformations by using 

	

d = CT D E 	 ..0.15) 

cY 	 oY 

to evaluate the member deformations d of all members even 

those assumed to have yielded. Hence, yi can be calculated 

for each member, where Y. is the ratio of actual strain to 
2 

yield strain, given by 
(É 	 .. d 	 (4.16) yi  = Ei  =. di 	= . 

EY 	EY  Qi 	aY ki  

If the member has yielded, 

IYii > 1 	 ..(4.17) 

and 	sign (yi) = sign (pi) 	 ..(4.18) 

and if the member is one of a group to yield last, 

IYZI = 1 	 ..(4.19) 

Thus yi  becomes an added check on the correct group of 

members last to yield. 
In addition, y. is a measure of the size of plastic 

plateau required in order to develop the full strength 

of a ductile structure: 

plastic plateau = yi 	1 
This section has so far been mainly concerned with 

calculating the elastic deflexions at incipient collapse: 

this•is the point of greatest load and largest deflexions before 

collapse, and for complete or over-complete collapse the 

actual force distribution can be calculated without recourse 

to compatibility considerations. But, using the Haar-von 

Kaman principle, the actual force distribution can be determined 

for any pin-jointed truss at any stage of loading. 

Hence, using the procedure outlined above of elimin- 

ating the elements of the structural matrices corresponding 

to members at yield, the elastic deflexions of the structure 

can be calculated at any stage of loading to collapse. 
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4.5 A Program to Calculate the Elastic Deflexions of Pin 

Jointed Trusses Loaded to' Collapse  

This section describes briefly a program to calculate 

the compatible force distribution at any load to collapse, 

and to calculate the elastic deflexions of the structure 

and the elastic-plastic deformations of the members. 

The programming problem of equation 4.8 is one of 

minimising a strictly convex quadratic function subject to 

linear constraints. KUNZI et al. (1968) suggest using either 

of the direct methods of BEALE (1959) or of WOLFE (1959). 

However, the problem can'be solved as an iterative linear 

programming problem, using the method of REINSCHMIDT et 

al. (1966). 

Rather than work in the actual force hyper-space 
Vr(s) they suggest working in the delta-force hyper-space 
Vr(As), using piece-wise linearisation of the quadratic 

merit function U". The problem was initially (equations 4.8) 

minimise 

subject to 

U" = 2(gT-i TG 1 T) F:tiG l s + sTG 1 T F::G I s 

G 1 1 -al-g < G
I s < G 1 1 + 1 -g 

or, more simply b < G 1 s < c 

Starting from an initial point so, the problem in 

delta-force hyper-space is 
aU" T 

minimise 	 AU" = (as  
0 s 	As 

subject to 	b-G 1 so < G I As < c-G 1 s0 

that is, 

maximise 	AU" _ -2(gT +(soT-1T)G 1 )F*GI As 

subject to 	G 1 (1-sa)-al-g < G 1 As < G 1 (1-s0)+1-g 

This gives optimum As, and the next point in the force 

hyper-space is given by 

s
1 = so + As 

and so on. Adaptive move limits are used to achieve unconstrained 

or semi-constrained optima. (Note that the substitution 

..(4.20) 

..(4.21) 
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4.7 for r was unnecessary, as the vector As may still have 

both positive and negative elements). 

The program, known as MINIMUM COMPLEMENTARY ENERGY, 

comprises ten subroutines: 

ENERGY - dimensions the variable arrays and calls 

the other subroutines in turn; 

PLOPT 7 - reads the data describing the truss and 
forms the connexion, load, member length and area matrices; 

RANK 2 - using the "Rank technique", this generates 

the transformation matrices Bo  and B1,  isolates a consistent 

set of redundants, and determines the degree of redundancy 

and/or the number of degrees of freedom of the structure; 

HAAR - forms the matrices G I , P, and g, and prints 

their values. Forms so,  the initial set of redundants; 

KARMAN - forms the objective coefficientsaU"\ 
as J s. 

and computes the left and right hand sides of the constraint 

equations 4.21, for any force point s.; 

DUALP 5 - forms the dual of the linear programming 
problem of equation 4.21 and calls KRANTE and KRSIMP; 

NOti^TEND - prints the values of the number of iterations, 

AU", p, As., s, and the "dimensionless" complementary energy U; 

DEFLN - reads the values of r and n and calculates 

the nCr  combinations. (It could have been written to count 

n, the number of yielded members, to form a reduced connexion 

matrix by eliminating all columns corresponding to yielded 

members, to calculated, the number of degrees of freedom of 

the collapse mechanism, using RANK 2, and hence to obtain r, 

the loss of redundancy of the structure at collapse from 

equation 4.9, but there was insufficient time to automate 

the process fully. As described here, it is semi-automated 

only). Forms the assumed elastic structural matrices B , oe  
B le'  Fe'`,  and qe,  checking for the stability of the assumed 

structure. Calculates D e and d and checks that u is zero 
and  computes y2, and prints these values. 



 
Q rr 

!CALL NOWENDI 

T 
CALL TIME 
PRINT TIME TAKEN 

r 

CALL DEFLN) 	

• 	 
	I t 

	,i5W2 • ? I 

READ NRC, NY, NYLD 

FA, 	COUNT NY, NYLD 
IF NY.LT.NRD, NRD • NY 

NY • NRO 	0 
3 

PRINT KOUNT 
OPTIMUM Z(2,1i 
MATRIX PROD 
FIRST ROW OF 1 
MATRIX X 

CALCULATE 6 PRINT STRAIN ENERGY 

CALCULATE THE "C r COMBINATIONS 

PUT NYLD(1 TO NRO) INTO 
ASCENDING ORDER 

STORE C IN A 

ELIMINATE YIELDED MEMBERS 
FROM A, PROD, 6 OBJ 

CALL RANK 2 TO FORM 
FORCE TRANSFORMATION MATRICES 

CALCULATE 6 PRINT JOINT 
DISPLACEMENTS D 

CALCULATE 6 PRINT MEMBER 
DEFORMATIONS DLGTH 

CALCULATE X PRINT RELATIVE 
REDUNDANT DISPLACEMENTS D 

RETURN PROD 6 OBJ TO INITIAL 
ORDER 

COMPUTE 6 PRINT MEMBER STRAIN 
RATIOS DLGTH 

PUT NYLD(1 TO NRD) INTO 
FORMER ORDER 

DIMENSION ARRAYS 
SET 1 5WI,15W2,ALFI 

  	 RESET ISWI, ISO 

(KOUNT.GE.NRD 7 

no T 

IF 1100(Z(1,1)).LT.10-0 
2(I,1) • 0.0 

X( I ) • X(I) ♦ Z(1,1) 

ALL Z(1,1) 	0.0 7 	es ►  O. 

MDD(Z(2,1)).GT  ID 	? 	Ye s 	2 

no 

yes 

)ALL HAAR 

t 	FORM SENS MATRIXI 	1 

`15W1  

INCREMENT KOUNT 

STORE A IN C 

CLEAR Z ARRAY 

SET DUAL SENSITIVITIES, OBJ-
ECTIVE COEFFICIENTS, G ACT-
IVITY CODES IN Z ARRAY 

SET COLUMNS FOR MOVE LIMITS 
IN Z ARRAY 

• 
SET DUAL L.H. 6 R.N. SIDES AND 
CONSTRAINT CODES IN Z ARRAY 

MAKE R.H. SIDES OF DUAL 
CONSTRAINTS POSITIVE 

OUTPUT 2 ARRAY 

CALL KRANTE (not 11.sted) 

OUTPUT Z ARRAY 

CALL KRSIMP (not listed) 

OUTPUT Z ARRAY 

SET VALUES OF PRIMAL VARIABLES 
IN FIRST ROW OF Z ARRAY, Z(1,1) 
PRIMAL OBJECTIVE IN Z(2,1) 

CHECK FOR ADAPTION OF MOVE 
LIMITS 

F

CALL RANK 2 
similar to RANK In FIg.V, 

`` except 1 Is IC:Ij, not (C:-1)) 

CARL TIME 

I

CALL PLOPT7 
( similar to PLOPT3 in Fig.V, 

b ut doesn't augment C 6 Q ) 

IF MOD(Z(I,I)).LT.10-- 
Z(I,1) •0.0 

X( I ) • X(1) ♦ 0.9TM1(I,1) 

3  
ANY ADAPTIVE M.L. e 10 7 	es 

READ FAC 

FORM QL MATRIX 

FORM X(INITIAL) 

PRINT Q, QL, SENS 

4CALL KARMAN 

FORM L.H.S. 6 R.H.S. CONSTRA-
INTS 

FORM OBJECTIVE COEFFICIENTS  

38a. 

Figure IX : Flow Diagram of MINIMUM COMPLEMENTARY ENERGY  
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A flow diagram of this program is presented in Fig. IX, 

and a full listing can be seen in Appendix B. 

4.6 Deflexion Calculation Examples  

Three examples are presented: a trivial case 

(truss 4), a planar truss with varying areas (truss 2), and 

a space truss (truss 3). 

Truss 4 is a simple, once redundant planar truss with 

uniform cross-sectional areas. At the load of 1.154 x A x oY 

(its collapse load), the force distribution is as shown in 

Fig. X. From the D and ï matrices it can be seen that the 

assumption that member 3 is the last to yield leads to the 

largest values of joint displacements, and also satisfies 

the conditions of equations 4.17, 4.18, and 4.19. 

Truss 2 (see Fig. VII as well) is found to have the 

compatible collapse force distribution given in Fig. XI. 

The last members to yield are 6 and 15, member 2 yielding 

first. (Note that the structure fails partially with a 

collapse mechanism of two degrees of freedom. The matrix u 

is zero so compatibility has been maintained). 

Truss 3 (see Fig. VIII also) is found to have the 

compatible collapse force distribution given in Fig. XII. 

The last member to yield is 11, member 9 yielding first. 

(Note that the structure fails partially with a collapse 

mechanism of one degree of freedom). 



FORCES: 

(Equal areas) 

DISPLACEMENTS: 

Y 

p = [ 	.187 1.00 -.999 1 

39a. 

If member 2 assumed last to yield, 
then 
	1 

sY 
and 	y = [ .187 	1.000 -.455 ] 

If member 3 assumed last to yield, 

then 	1 D = [ .o19 -.287 ] 
Y 

and 	 y = [ .187 	1.529 	-.999 1 

Thus member 3 is last to yield. 

D = [ .019 -.181 ] 

Figure X : Elastic deflexion analysis of truss 4.  
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Truss 2. : see Figure VII. 

P = [ 	.153 	1.00 	.625 	.346 -.127 -1.00 -.563 

-.307 -.127 .153 -.125 	.189 -.307 -.153 

1.00 .125 .307 .180 -.062 -.346 0.000 ] 

Members 8 and 15are found to yield last, 

giving : 

1  D = [ .015 -.399 .312 -.424 .375 -.301 	.166 .031 eY 	
.196 -.282 .253 -.436 .353 -.383 .365 -.013 

.410 	] 

Y = [ 	.153 	2.97 	.625 	.346 -.127 	-1.00 	-.563 

-.307 -.127 .153 -.125 .189 -.307 	-.153 

1.00 .125 .307 .180 -.062 -.347 0.00 ] 

u = [ 0.000 0.000 0.000 ] 
where cuts are made in 

members 18, 19, 20. 

(The load applied is the collapse load.) 

Figure XI : Elastic deflexion analysis of truss 2.  
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Truss 3. : see Figure VIII. 

P = [ 	.500 -.187 -.040 -.540 	.314 
-.000 .46o -.687 1.00 -.54o 
-1.00 .314 -.650 -.443 .320 ] 

Member 

1 0 = 
sY 

9 is found to yield last, giving : 

	

.316 	-.083 	-.042 	-.412 	-.561 	-.000 

	

-.394 	.331 	.150 	.031 	-.506 	-.737 	] 

Y = [ .500 -.187 -.040 	-.540 	.313 
-.000 .460 -.687 	1.00 	-.540 
-3.687 .313 -.650 	-.443 	.32o 	] 

u = [ 0.00 0.00 
] 

where cuts are made in 
members 13, 15 

Figure XII :'Elastic deflexion analysis of truss 3.  
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CHAPTER V.* *PhASTIC DESIGN  

5.1 'Introduct'i'on  

Within a few years of the first discussions of the 

plastic behaviour of ductile structures, various direct and 

indirect methods of plastic analysis and design were described 

(see sections 2.1 and 2.4). Plastic theory enabled the 

conditions for direct design of structures to be simply 

stated, while retaining rationality in attempting to take 

into account the reserves of strength inherent in ductile, 

redundant structures which were not allowed for in elastic 

design methods. 

In practice, good design attempts to reduce the cost 

of the materials, construction, and maintenance over the 

lifetime of the structure. This is not easily expressed 

mathematically because of the many unknown factors which 

may affect the cost. Plastic design for minimum weight, 

however, can easily be formulated mathematically, and although 

the minimum weight design (m.w.d.) may not really be practical, 

it provides an ideal for the practical designer to aim for 

as he takes into account the less easily quantifiable factors 

mentioned above. 

For the description below of the direct design of 

minimum weight, three-dimensional, pin-jointed trusses, 

the assumptions are those discussed in section 2.5. They 

include proportional loading, neglect of changes of geometry 

under load, a perfectly elastic-perfectly plastic load-

deformation relationship for both tension and compression, 

and a homogeneous material so that the weight is directly 

proportional to the volume. The weight per unit length of 

section is directly proportional to the plastic yield force 

of the section. The discussion assumes a continuous range 

of sections of uniform cross-sectional area. 
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5.2 The Linear programming Problem  

Following TOAKLEY (1968), the direct design of 

any ideal elastic-plastic three-dimensional pin-jointed truss 

is best formulated using a static or "safe" approach. The 

equilibrium is satisfied, and the yield force nowhere exceeded, 

W, the weight of the truss, is an upper limit (i.e., "safe" 

design) on W c, the weight of the m.w.d. 

For a single loading condition this can be formulated 

as follows. The equilibrium equation 3.6 

Q = C q 

or, with the member forces expressed in terms of the external 

loading system and a set of internal redundants, equation 3.13 

q = B
o 
Q+ Bl x 

The yield condition can be expressed as 

aY a > q 
a aY a > -q 

there a is the vector of member areas, a2 = A . 

Then substituting equation 5.1 into equation 5.2,• 
obtain 

aY a - B   x > + Bo Q 	
•.(5.3) 

a aY a+ B   x>- Bo Q 

The volume or weight of the structure is obtained from 

y = [ ,T 	0T1 	a 	 -(5.4) 
'X' 	 $_ 

The linear programming problem is to minimise 5.4 subject to 

5.3 
Substituting equations 3.5 and. 3.22 
Q = ay A P 

x = a
Y 
Ay 

into equation 5.3 results in 

	

a* - B I y > + Bo P 	
..(5.5) 

a a* + B
I 
y> 	Bo P 

where a-, is the vector of area ratios, a*j = Ai/A. The 

linear programming problem becomes 

} ..(5.2) 



minimise V* = [QT  :01- 1 (à-',  

Y y 
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..(5.6) 

subject to equation 5.5. 
The reduced problem of equations 5.5 and 5.6 is 

formulated in terms of A, the reference area. If P has 
elements of modulus close to unity, then a* and y are kept 

correspondingly small. The program to solve this is described 

in section 5.5. 

5.3 Design for 'Several Loading Cases  

The previous section describes the formulation of 

the design problem with a single loading case. But designing 

for a single loading system is hardly realistic as a structure 

will normally support several independent loading cases. 

They may act together or separately, loading or unloading 

independently. In elastic design and analysis this can be 

overcome by using superposition to obtain the worst possible 

situation. But the principle of superposition does not hold 

for plastic behaviour, and the added dangers of incremental 

collapse and alternating plasticity further complicate the 
problem. 

In this section, the problem of several proportional 

loading cases applied alternately is studied. Toakley, in 

a personal communication (1969), and DORN et al. (1964) 

have suggested increasing the set of independent variables 

of the linear programming problem to include a set of 

redundants for each loading condition. This will ensure the 

m.w.d. at the expense of doubling the number of.constraints 

with each loading case and increasing the number of independent 

variables. For more than a few loading cases the method 

becomes too large for any but the biggest computers. 

The problem for c loading cases becomes 
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..(5.7) minimise 	V*=[QT : 0T] 

Y 
2 

Y 
c 

subject to 

a* - B 1 y 1 	 > + BoP 1  

a a* + B
1
y

1 
	 > - BoP I  

a* - B
l y2 	

> + BoP2  

a a* 	 + B 1 y2 	 > - BoP2  

• • .. 	 : 
• • . 

..(5.8) 

a a* 	 +B 1 yc 	B P  o c 

A program using this method is described in section 5.5. 
A procedure for obtaining an "efficient" design 

which is "safe", although not the m.w.d., under many loading 

cases and which uses no more storage space than the single 

loading case problem described in section 5.2 can be 
formulated. 

The linear programming problem becomes 
minimise 	V* = [QT : OT] 	a* 	 ..(5.9) 

Y 

subject to 	a* - BI y ? +  R max 
a a-',  + B 1 y > -  R m in 

..(5.10) 

where Rmaxi is the greatest tensile load in member i due to 

any of the external loading cases only, obtained by 
4-
R 	. max.{+(Bo  P 1  )i,+(Bo  P2)...,+(Bo Pc 

)i} 	..(5.11) 

R
mini is the greatest compressive load in member i due to 

any of the external loading cases only, obtained by 
-Rmini= max.{-(Bo  P1 )i,-(B0  P2)i,...,-(B0  Pc)i} 	..(5.12) 
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Thus Rmaxiand Rmin.define an envelope of the critic.a.l 

tensile and compressive member loads due to the external 

loading cases only. 

Having obtained the optimum vector a* which minimises 
V*, the collapse load factors for the designed structure 

under each of the loading cases can be obtained. If all are 

greater than unity, then the cross-sectional areas of the 

design can be divided by the smallest collapse load factor 

obtained, leading to a modified load factor of unity for this 

loading case. The design is then about to fail in at least 

one of the loading cases. This is an efficient use of material, 

but is not necessarily the m.w.d.: in general, it will not 

be, except for the single loading case when this approach is 

identical to that of equations 5.5 and 5.6. 

A program based on equations 5.9 and 5.10 is 
described below. 

5.14 • Self-Weight" Design  

The design of structures using linear programming 

and including the self-weight of the members can be done 

iteratively. DORN et al. (1964) mentioned the problem, but 

it has not received much attention. It is merely an extension 

of the procedures described above. 

Firstly, using any of the above procedures, obtain 

the optimum vector a*, assuming no self-weight, and using the 
actual load matrix P (for one or more loading cases). 
Then calculate 

v 1 * = M a', 	 ..(5.13) 
where v 1 * is a member volume (or weight) vector 

M is the diagonal member length matrix 
b1ii - Qi 
Mid  _ 0, i 	j 

The member weight vector is obtained by multiplying 

by the specific weight of the material. The correction load 
vector P 1'is obtained by adding half the weight of each 
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member to the vertical downwards load components acting 

at each end of the member. 

The design procedure is repeated, using the load 

matrix (P + P 1 1 ), to get a new design, which has a different 

weight from the old design. The new weight leads to a new 

correction matrix P2', and the design is repeated using 

(P + P2') as the load matrix. 
The procedure is repeated until the difference

-  between the volumes of successive designs (Vn+1 	Vn) 

is sufficiently small. 
In designing for many loading cases, the corrections 

can be applied to the tensile and compressive envelopes Rmax 

and Rmin 
 • 

new Rmax = old R max + Bo P i ' 	
) .

.(5.14) 
new Rmin 	old Rmin + Bo  P i' 

A program for the design of pin-jointed trusses, 

allowing for self-weight, is described below. 

5.5 Two 'Programs 'for Design with Several Loading Cases  

In all the formulations above, (equations 5.6, 5.7, 

and 5.9), the coefficients of the merit functions, the member 

areas and structure volumes respectively, are positive or 

zero. These problems can most efficiently be solved using the 

Dual Simplex algorithm. TOAKLEY (1968) has developed such 

an algorithm for the m.w.d. of rigid-jointed frameworks 

under single loading conditions and it is this algorithm, 

modified slightly, which is used in one of the two programs 

below. 

Toakley has described two means of shortening 

the time and reducing the storage needed in solution. One 

way is applicable when, as in equation 5.5, the Bo  and B 1  

terms cancel on addition of the equations. It leads to the 

explicit consideration in the tableau of only half the 

constraints. The other way is to use non-negative variables 
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z, given by 

z = y + b 	 ..(5.15). 
where b are constant and chosen so that z are non-negative: 

b are lower limits on the estimated possible values of y. 

The Dual Simplex algorithm of Toakley, employing 

the substitution of 5.15, has been used in a program to solve 

the "efficient" multi-loading case problem of equations 5.9 
and 5.10, with self-weight iterations. The two-phase Standard 

Simplex algorithm of KRANTE and KRSIMP has been used in a 

program to solve the m.w.d. under multi-loading case, the 

equations 5.7 and 5.8. 

The latter is known as MULTI-LOAD PLASTIC DESIGN 

(TOAKLEY) and comprises eight subroutines: 

POLOAD - dimensions the arrays and calls the other 

subroutines in turn; 

PLOPT 5 - reads the data of the structure and forms 
the connexion, load, length, and member incidences matrices; 

RANK 2 - generates the matrices Bo  and B 1 , and 

isolates a consistent and well-conditional set of redundants; 

MANYLD - sets up the problem as expressed by equations 

5.7 and 5.8; 
DUALP 2 - forms the dual problem and calls KRANTE 

and KRSIMP; 

FINAL - prints the optimum member areas, values of 

the redundants, and the structural volume. 

The former is known as SELF-WEIGHT PLASTIC DESIGN 

and comprises six subroutines: 

SELFWT - dimensions the arrays, sets up the initial 

problem, and calls the other subroutines iteratively until 
convergence; 

PLOPT 5 - reads the data of the structure and 
forms the connexion, load, length, and member incidences 
matrices; 



STOP) 	I 

CALCULATE NIV, NRS, NC, NCP 

SET UP ACTIVITY CODE, ACT 

COMPLETE OBJECTIVE COEFF-
ICIENTS, OBJ 

SET UP SENS MATRIX 

FORM RHS MATRIX 

PRINT NMBS, NIV 
Q MATRIX 
SENS MATRIX 
OBJ MATRIX 
ACT MATRIX 
RHS MATRIX 

CALL DUALP2 
similar to DUALP3 in Fig.V) 

CALL FINAL 

CALL RANK 2 
as in Fig. IX, above) 

'CALL MANYLD J 

PRINT OPTIMUM MEMBER AREAS 
VALUES OF REDUNDANTS 
STRUCTURAL VOLUME  

CALL TIME 6  PRINT TIME TAKEN{ 

246a. 

DIMENSION ARRAYS  

r-- 

[CALL TIME] 

,CALL PLOPT5  

READ PROBLEM TITLE 
1   w 

LIS IT "FINISH" ?1 yes  

,Lno 

READ NUMBER OF DIMENSIONS 
JOINTS 
SUPPORT JOINTS 
MEMBERS 

6 PRINT THEM 

READ JOINT COORDINATES 
RESTRAINTS AT SUPPORTS 

& PRINT THEM 
READ MEMBER INCIDENCES 

CALCULATE MEMBER LENGTHS (OBJ) 
DIRECTION COSINES 
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FORM CONNEXION MATRIX C FROM 
DIRECTION COSINES 

READ NUMBER OF LOAD CASES 
LOADED JOINTS 

LOAD COMPONENTS 
FORM LOAD MATRIX Q 

CORRECT MATRICES C 6 Q FOR SUPPORTS 
6 PRINT MATRIX C 

Figure XIII : Flow Diagram of MULTI-LOAD PLASTIC DESIGN  
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RANK 2 - generates the matrices Bo  and B 1 , and isolates 

a consistent and well-conditioned set of redundants; 

SAG - adds the self-weight to the load matrix, 

calculates and prints the critical load envelope R 	and .max 
Rmin, completes and prints the objective coefficients, and 

prints a, the compression coefficient, and P, the load 
matrix; 

LOBIFRE - forms a contracted linear programming 

tableau and solves the linear programming problem using the 

Dual Simplex algorithm - a modification of Toakley's LIMFRAM 
program; 

ULTIM - prints the optimum areas and redundants sets, 

the minimum structural volume, and the number of iterations. 

For a pin-jointed truss with m members, r of which 

are redundant, a comparison of the size of the linear programming 
problems shows: 

1. for a single loading case (equations 5.5 and 5.6) 
using Toakley's two methods of shortening the Dual Simplex 

problem, number of independent variables = m + r 

number of constraints 	 = m 

This particular problem is not described here. 

2. for c loading cases, using the formulation of 
equations 5.9 and 5.10, and the Dual Simplex algorithm, 

number of independent variables = m + r 

number of constraints 	 = 2m 

with self-weight, this problem is iterated. 

3. for c loading cases, using the formulation of 
equations 5.7 and 5.8, to obtain the m.w.d. using the two-
phase Standard Simplex algorithm 

number of independent variables =m+ 2 x e x r 

number of constraints 	 = 2 x e x m 
Equations 5.7 and 5.8, to obtain the m.w.d. using the Dual 
Simplex algorithm with Toakley's two devices: 
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Figure XIV ; Flow Diagram of SELF•WEIGHT PLASTIC DESIGN  
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48. 

number of independent variables = m + e X r 

number of constraints 	 = e X m 

Programming for this method of solution of the m.w.d. is not 

described here. 

Flow diagrams of the two programs described above 

are presented in Figures XIII and XIV. Full listings of 

the two programs are presented in Appendices C and D. 

5.6 Design Examples  

The designs of two trusses are compared, using each 

of the programs. The trusses are both fairly simple planar 

trusses under two loading cases: the m.w.d. program, 

MULTI-LOAD PLASTIC DESIGN cannot be used for large structures 

with several loading cases, as the problem becomes too large 

for the computer to handle. 

Truss 5 is a three times redundant planar pin-
jointed truss, as shown in Fig. XV. Loading case 1 is a unit 

vertical force downwards, loading case 2 is a unit horizontal 

force to the right. The volume of the minimum weight design 

(MULTI-LOAD PLASTIC DESIGN) is 30% less than the volume of 

the "efficient" weight design (SELF-WEIGHT PLASTIC DESIGN). 

After the addition of self-weight to the loading in the 

"efficient" case, the volume has increased by 10%. 

Truss 6 is a twice redundant planar truss, as shown 
in Fig. XVI. Loading case 1 is a unit vertical downwards 

force from the bottom midspan, and loading case 2 is a unit 

horizontal force right, from the top midspan. The "efficient" 

design is over twice the volume of the m.w.d., but self-

weight consideration increases it by about 10% only. 
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Figure XV : Plastic design of truss 5.  
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DESIGN 
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DESIGN 

1.0 
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(without self-weight) 

.703 

volume = 10.659xA 

(5th iteration) 

(with self-weight) 

Figure XVI : Plastic design of truss  



49. 

CHAPTER VI. CONCLUSION  

Four algorithms have been written and programmed 

successfully, dealing with planar or space pin-jointed trusses 

of varying cross-sectional areas. The four programs, 

respectively, 

1. perform a load factor analysis; 

2. perform an elastic deflexion analysis; 

3. obtain the minimum weight design for one or 

several loading cases; 

4. obtain an "efficient" weight design for one or 

several loading cases, taking the self-weight of the members 

into account. 

A subroutine has been written using the Rank technique 

to isolate consistent and reasonably well-conditioned sets of 

redundants. It generates the force transformation matrices 
Bo  and B

1, 
 and calculates the number of degrees of freedom 

of any mechanism described. 

An algorithm has been written to complete the constrained 

minimisation of the strictly convex structural complementary 

energy, using the piece-wise linearisation technique of 

REINSCHMIDT et al. (1966) with adaptive move limits. In 

purely elastic behaviour the minimum point is entirely 

unconstrained. As the loading is increased the statically 

admissible hyper-space shrinks as the yield constraints 

close in. As the first bar yields the previously unconstrained 

minimum becomes semi-constrained. If the structure is about. 

to fail in complete or over-complete collapse, the feasible 

region is only a point at the intersection of the yield const- 

raints. In the case of partial collapse the statically 

admissible region is ,a hyper-space with as many dimensions 

as the partial collapse structure has degrees of indeterminacy 
at collapse. 

The elastic deflexions at incipient collapse have 

been calculated for several different types of truss. The 
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assumption of ideal elastic-plastic load-deflexion behaviour 

for struts, discussed in section 2.5, is valid only if the 

plastic plateau required for collapse is not excessive. A 

strut of truss 3 (see Fig. XII) showed a compressive plastic 

plateau of 2.69 at collapse, (with the compression coefficient 

of a = 1.0). None but the stockiest members could exhibit 

plastic plateaus of this size. A reduced value of a in the 

analysis would lead to a lower collapse load and smaller 

elastic deflexions at incipient collapse. The plastic plateau 

required would be smaller. 

The collapse deflexions of structures are independent 

of their actual member areas: the greater the areas the 

stiffer the structure, but the greater the areas the stronger 

the structure (see equation 14.13). For a given structural 

and loading configuration, the collapse deflexions are 

dependent on, the area ratios, the compression coefficient a, 

and the tensile yield strain cY. 

The minimum weight designs obtained under several 

loading cases have generally been much lighter than the 

corresponding "efficient" weight designs. Perhaps in structures 

of low redundancy with many separate loading cases, the 

"efficient" weight algorithm may offer a real advantage, 

but for the structures considered, the designs obtained, 

although "safe", were hardly "efficient" in the same sense 
as the m.w.d. 

Designs for self-weight are about 10% greater in 

weight than the "efficient" designs without self-weight, 

assuming a specific weight of 0.10. (The designs converged 

after four to ten iterations). 

Future DeVeIo meats  

Developments suggested here are of two kinds; 

firstly, improvements in the programming techniques, and, 

secondly, program modifications to allow their application to 

structures acting flexurally. 
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The Rank technique, used in all programs, could be 

improved by selecting as pivot in the elimination the largest 

remaining element in the whole of the submatrix C, instead of 

merely the largest element in each successive row. In analysis, 

the technique described by DENKE (1965) of taking account of 

the member flexibilities could give a better set of redundants 
(see section 3.4). 

The deflexion analysis could be further automated 
by calculating d and n, to obtain r from equation 4.9. 
The nCr  combinations could then be calculated automatically, 

and hence the corresponding D, d, and y matrices. 

The program MULTI-LOAD PLASTIC DESIGN could make 

better use of computer storage and time by using a modified 

version of the subroutine LOMFRE to solve the equations 5.7 
and 5.8. Both of the methods described by TOAKLEY (1968) 

to reduce the computer time and storage could be used (see 
section 5.5). (LOMFRE was twice as fast as KRANTE and KRSIMP 

for a case of single loading). 

The most important future development, however, is 

the possible modification of the load factor and deflexion 

analysis programs for use with flexurally-acting structures. 

(This has already been done for design (TOAKLEY (1967), 

(1968)).) A simplified method for considering the bending 

moments only has been described by LIVESLEY (1964), but the 

more general case of structures, some of whose members may 

fail in bending, some in tension or compression, could easily 
be formulated. 
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" APPEND'IX A  

Appendix A presents the listings of six of the eight 

subroutines of the program RANK PLASTICITY OPTIMISATION. 

This is a program to determine the collapse load of two- or 

three-dimensional pin-jointed trusses with ideal elastic-

plastic member load-deformation behaviours in tension and 

compression. 

The program is dimensioned: 

maximum number of joints 	 j = 16 

" 	" 	" members 	 m = 49 

redundant members r = 10 

The relevant matrices of the program are: 

COORD is the matrix of joint coordinates 

RELS is the matrix of support restraints 
A 	is the augmented connexion matrix [C : -L] 
Z 	is the Simplex tableau 

SENS is the coefficient matrix of equation 3.23 

PROD is the member force ratio vector p 

AREA is the member area ratio vector a* 

MRED is the vector of the redundant member numbers 
ALF 	is the compression coefficient a 
NRC 	is the number of degrees of freedom at the joints 

LAMBS is the number of members 
NRD 	is the number of redundant members 

NIV is the number of independent variables 

The two subroutines KRANTE and KRSIMP comprise a 

two-phase Standard Simplex algorithm and not shown. 
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$JOB 	 356379, MARKS 
$TIME 	 3 
S• 	 RANK PLASTICITY OPTIMISATION 
SIBJOB 	 MAP 
SIBFTC NOINV 	NODECK 
C PROGRAM FOR DETERMINING THE CRITICAL MEMBERS OF LOADED TRUSSES, COMPOSED 
C OF MEMBERS OF VARYING CROSS-SECTIONAL AREAS. 
C PLANAR OR SPACE TRUSSES PROCESSED 
C THE PROGRAM IS COMPRISED OF EIGHT SUB-PROGRAMS - 
C 	NOINV - DIMENSIONS OF VARIABLE ARRAYS 
C 	PLOPT3 - FORMS THE CONNEXION AND LOAD MATRICES, WITH DIFFERENT AREAS 
C 	RANK 	- PROCESSES AND REARRANGES THE AUGMENTED MATRIX A. 
C 	FORMS - FORMS THE LINEAR PROGRAMMING PROBLEM 
C 	DUALP - FORMS THE. Z ARRAY 
C 	KRANTE t KRSINP - THE L. P. SUB-PROGRAMS 
C 	ANSWER - CUTPUTS THE RESULTS 
C 

REAL COORD(16.3),RELS(16 ► 3),A(50,50),Z( 60,150),SENSI50,131, 
* PROD( 50),CHS(1C),AREA(5;) 
INTEGER KUT(150),IDEG(150),NAME(150),MARK( 60),MRED(10), 
* MOP(50),KNUT(10) 

DO 170 LOOK = 1,20 
CALL TIME 
CALL PLOPT3 (CCORD,RELS,A,AREA,16,50,NRC,NMBS) 
CALL RANK (A,MRED,KNUT,MOP1 50,10,NRC,NMBS,NRD) 
CALL FORMS (A,SENS,AREA,1?,50,NMBS,NRD,NIV) 
CALL DUALP3 (SENS,Z,I,CHS,KUT,IDEG,NAME,MARK,50,10, 60,150,NMBS, 
+ NIV,1.) 
CALL ANSWER (SE'JS•Z,PRODr53, 60,150,NIV,NMBS,NRO) 
CALL TIME (NM,NS,NSS) 

WRITE (6,169) NM, NS, NSS 
169 FORMAT(1H-,32HTIME TAKEN FOR ABOVE STRJCTURE -/2GX,I4,SH Mj:NS,I6, 
• 5H SECS,16,6H SSECS) 

170 CONTINUE 
CALL EXIT 
END 

$IBFTC PLOPT3 
SUBROUTINE PLOPT3 (COORU,RELS,A,AREA,NTJS,NTMBS,NRC,NMBS) 
REAL COORO(NTJS,3),REIS(NTJS,3),A(NTMBS,NTMBS),TYPE(2),XYZ(3). 
• PRNAME(13),DRNC?S(3)•QJ(3),lENGTH,ARE4(NTMBS) 
DATA TYPE/6H PLANE, 6H SPACE/, XYZ/1HX, 1HY, 1H1/, FIV/6HFINISH/ 

C 
C READ HEADER CARD 

READ (5,10) PRNAME 
10 FORMAT (13A6) 

IF (PRNAME(1).EC.FIN) CALL EXIT 
WRITE (6,15) PRNAME 

15 FORMAT (1H1, 13A6) 
C 
C READ PROBLEM PARAMETERS - 

C 

C 
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C 	JF = 2 FOR TWO—DIMENSIONAL TRUSS 
C 	JF = 3 FOR THREE—DIMENSIONAL TRUSS 
C NJS = NUMBER OF JOINTS IN TRUSS 
C NSJS = NUMBER OF SUPPORT JOINTS IN TRUSS 
C NMBS = NUMBER OF MEMBERS IN TRUSS 

WRITE (6,20) 
20 FORMAT (1HO, 10X, 6HCATA —) 

READ(5125) JF, NJS, NSJS, NMBS 
25 FORMAT (2014) 

NFJS = NJS — NSJS 

C OUTPUT PROBLEM PARAMETERS 
WRITE (6,30) TYPE(JF — 1) 

30 FORMAT (1H0,2CR,2CHTYPE OF STRUCTURE —,A6,29H TRUSS WITH THE CROSS—S 
*S—SECTION/42X127HAREA OF EACH MEMBER VARYING) 
WRITE (6,35) NJS, NSJS, NMBS 

35 FORMAT (1H0.20X.2OHNUMBER OF JOINTS 	=,I4/31X,1CHSUPPORTS =,I4/3 
*1X,10HMEMBERS =,I4) 

C READ JOINT NUMBERS AND COORDINATES - 
C FREE JOINTS MUST BE NUMBERED FIRST, THEN SJPPORTS 
C IF RELS(N•l) = 1. ... RESTRAINT AT N IN X—DIRN. 
C IF RELS(N,2) = 1. ... BESTAfNT AT N IN Y—DIRN. 
C IF RELS(N,3) = 1. ... RESTRAINT AT N IN Z—DIRN. 

DO 39 I = !,NJS 
DO 39 J = 1,JF 

39 RELS(I,J) = O. 
DO 40 I = i,NJS 
READ (5.45) N, (G00R0(N,J)•J = 1,JF) 

45 FORMAT (I4, 3F8.4) 
IF (N.LE.NFJS) GO TO 40 
READ (5,46) (RELS(N.J),J = 1,JF) 

46 FORMAT (3F4.1) 
40 CONTINUE 

C 
C OUTPUT JOINT NUMBERS AND COORDINATES — FIRST FOR FREE JOINT AND THEN 
C SUPPORT JOINTS 

WRITE 16,50) (xYZ(I),I=1,JF) 
50 FORMAT 11H0,20X,20NJOI'JT COORDINATES —//28X,5HJOINT,1OX,3(41,1lX)) 
*) 
WRITE (6,55) 

55 FORMAT (23X,4HFREE) 
00 60 I = 1•NJS 
WRITE (6,65) Is (COORD(I,J),J=1,JF) 

60 IF (I.EO.NFJS) WRITE (6,70) 
65 FORMAT(1H ,131,2X,6F12.4) 
70 FORMAT (23X,7HSUPPORT) 

NFJSP = NFJS + 1 
WRITE (6.47) ((RELS(I.J),J = 1,JF),I = NFJSP,NJS) 

47 FORMAT (1H0,20X,6HRELS —/27X,(6F5.1)) 
WRITE (6,75) (xYZ(f)rT = 1,JF) 

75 FORMAT (1H0,20X,17HMF.MBER DETAILS —//31)(r6HNEMRER,6X,5HSTART.lX. 
* 3HEND,5X.6HLENGTH,6X.4NAREA,2X•3(3X•7öDRNCOS—,41)) 

C 
C LOOP ENTERED FOR ALL MEMBERS 

NRC = JF*NJS 
DO 79 I = I,NRC 
DO 79 J = 1,NMBS 

79.  A(I,J) = 0. 
NC = NMBS + 1 
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C 
C 

C READ MEMBER INCIDENCES AND PROPERTIES 
no 120 MB = 1.NMBS 
READ (5,80) M,JNTST,JNTEND,AREAM 

80 FORMAT (3I4, F12.4) 
IF ( 	 UNTEND.EE.NJS).ANO.(JNTST.LT.JNTE9D)) GO 
• TO 90 
WRITE (6,85) M. 

85 FORMAT (1H-,23H INCIDENCE OF MEMBER,I4,39H INCORRECTLY SPECIFIED. 
• JOB TERMINATED) 
CALL EXIT 

90 CONTINUE 
IF (AREAM.EQ.0.) AREAM = 1. 
AREA(M) = ABEAM 

C CALCULATE MEMBER LENGTHS 
TLGTH = 0. 
DO 95 I = 1,JF 

95 TLGTH = TLGTH + (COORO(J9TEND,I) - CUORDlJNTSTJ)1*•2 
LENGTH = SCR7(TLGTH1 

C 
C CALCULATE MEMBER DIRECTION COSINES 

DO 1C0 I = 1,JF 
100 DRNCOS(I) _ (COORD(JNTEND.I) - COOZ0(JNTST.I))/LENGTH 

C 
C OUTPUT MEMBER INCIDENCES AND PROPERTIES 

WRITE (6,105) M,JNTST,JNTENDrLENGTH,AREAM,(DRNCOS(IbI = 1.JF) 
105 FORMAT (1H . 23X. 3I11•2F12.4, 6E11.3) 

C 
C ADD MEMBER DIRECTION COSINES INTO THE CONNEXION MATRIX 

LROCS = JF•JNTST 
IROCS = LROCS - JF + 1 
DO 110 I = IP.00S, LROCS 
J = I - )ROCS + 1 

110 A(I,M) = -ORNCCS(J) 
LROCE = JF•JNTEND 
IROCE = LROCE - JF +1 
DO 115 I = IRCCE, LROCE 
J = I - IROCE + 1 

115 A(I.M) = ORNCOStJ1 
120 CONTINUE 

C 
C 
C READ SIZES OF LOAF) C3MPONENT AT EACH JOINT 
C MUST NUMPER IN ORDER X, Y, Z, AT EACH JOINT 
C NLJTS = NUMBER OF LOADED JOINTS 

READ (5,140) NUTS 
140 FORMAT (1614) 

00 145 I = 1,NRC 
145 A(I,NC) = 0. 

DO 155 NO = 1,NLJTS 
READ (5,1501 N, (QJ(1)r I = l•JF) 

150 FORMAT (I4,9F8.4) 
DO 155 I = 1,JF 
J = JF•(N-1) + I 

155 A(J,NC) = QJ(I) 
C 
C TO CORRECT MATRICES : AND C FOR SUPPORTS 

NFJSP = NFJS + 1 
M = 0 



DO 157 I = NFJSP, NJS 
DO 157 J = 1, JF 
IF (REIS(I,J).NE.1.) GO TO 157 
K = JF.(I - 1) + J - M 
NRC = NRC - 1 
DO 156 L = K. NRC 
N = L + 1 
A(L,NC) = A(N,NC) 
DO 156 II = 1, NMBS 
A(L,TI) = A(N,II) 

156 CONTINUE 
M = M + l 

157 CONTINUE 
C 
C OUTPUT CONNEXION MATRIX 

WRITE (6,125) 
' 	125 FORMAT ( 1H-, 18HCONNEXICN MATRIX C/) 

DO 130 I = 1,NRC 
130 WRITE (6,135) (A(I,J),J = 1,NMBS) 
135 FORMAT (1H , 10E12.3) 

fIBFTC RANK 
SUBROUTINE RANK ( A,MREDrKNUT,M3P,NTM3S,NTIV,NR,NCC,NRO) 
REAL A(NTMBS,NTMBS) 
INTEGER M,REO(NTIV)rKNUT(NTIV)rMOP(NTMBS) 

C 
C SET UP UNIT SUBMATRIX 

NC = NCC + 1 
DO 4 I = 1,NR 

4 A( I,NC) _ -A(I,NC) 
C 
C JORDAN ELIMINATION 

DO 25 I = 1,NR 
DEN = 0. 
DO 5 J = 1,NCC 
AB = ABS(A(I,J)) 
DN = ABS(DEN) 
IF (AB.GT.DN) JJ = J 
IF (AB.GT.DN) CEN = A(I,J) 

5 CONTINUE 
IF (0EN.E4).0.) GO TO 25 
DO 10 K = 1,NC 

10 A(I,K) = A(I,K)/DEN 
DO 20 L = 1,NR 
IF (L.EQ.I) GO TO 20 
FAC = A(L,JJ) 
DO 15 M = 1rNC 

15 A(L,M) = A(L r M) - A(I,M)•FAC 

A4 . 

C 
C OUTPUT THE LOAD MATRIX 

WRITE (6,160) 
160 FORMAT (1H-,13HIOAD MATRIX (a) 

WRITE (6,165) (A(i,NC),l = 1,NRC) 
165 FORMAT (1H •(20F6.3)) 
170 CONTINUE 

RETURN 
ENO 
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20 CONTINUE 
25 CONTINUE 

301 FORMAT (1H /(2CF6.2)) 
C 
C CHECK FUR INCONSISTENCY AND DEPENDENCE 

NDF = 0 
DO 65 I = 1,NR 
J = n 

45 J = J + 1 
IF (J.GT.NC) GO TO 55 
IF (A(I,J).EQ.O.) GO TO 45 
IF (J.LE.NCC) GU TO 65 
NOF = NDF + 1 
GO TO 65 

55 NR = NR - 1 
DO 60 K = I,NR 
L = K + 1 
DO 60 M = 1,NC 

60 A(K,M) = A(L,N) 
65 CONTINUE 

IF (NDF.E0.0) GO TO 66 
WRITE (6,50) NOF 

50 FORMAT (1H -,28HTHE STRUCTURE IS A MECHANISM/3GHNUMßER OF DEGREES OF 
+F FREEDOM =,I3) 

66 CONTINUE 
C 
C ISOLATE REDUNDANCIES 

NRD = 0 
DO 75 J = 1,NCC 
KOUNT = 0 
DO 70 I = 1,NR 

70 IF (A(I,J).NE.O.) KOUNT = KOUNT + 1 
IF (KOUNT.LE.1) GO TO 75 
NRD = NRD + 1 
MRED(NRD) = J 

75 CONTINUE 
C 
C REDUNDANCIES ... CHECK, OUTPUT 

I = NCC - NR 
IF (I.NE.NRD) WRITE (6,80) 

80 FORMAT (1H-,22H(COLS - ROWS) .NE. NRD) 
IF (NRD) 85,85,95 

85 WRITE (6,90)  
90 FORMAT (1H0,32HSTRUCTURE IS ALREADY DETERMINATE)   

GO TO 105  
95 WRITE (6,100) NRD,(MRED(I),I = 1,NR0) 
100 FORMAT (1H0,13HSTRUCTURE IS ,I2,16H TIMES REDUNDANT/ 

+ 22H REDUNDANT NEMOERS ARE,40I3) 
105 CONTINUE 

C 
C MOVE ALL REDUNDANT COLUNNS TO RHS OF MATRIX A  

IF (NRD.LE.J) GO TO 135 
DO 110 K = 1,NRD 

110 KNUT(K) = O 
DO 130 I = 1,NRC 
IF (NRED(I).GT.NR) GO TO 130 
J = NR 

115 J = J + 1 
K = 

120 K = K + 1 



IF (MRED(K).rC.J) GO TO 115 
IF (K.LT.NRC) GC TO 120 
K = MRED(I) 
DO 125 L = 1,NR 
BLOC = A(L,J) 
A(L,J) = A(L,K) 
A(L,K) = BLOC 

125 CONTINUE  
KNUT(I) = MRFD(I) 
MRED(I)= J 

130 CONTINUE 
135 CONTINUE 

C 
C FORM UNIT MATRIX TN A(NR,NR) 

DO 155 LOO = 1,2 
DO 140 I = 1.NR 
DO 140 J = 1,NR 
IF (A(I,J).E0.0.) GO TO 140 
MUP(I) = J 

140 CONTINUE 
DO 155 I = 1,NR 
IF (MOP(I).En.() GO TO 155 
DO 145 K = I,NR 
IF (M0P(K).E0.I) L=K 

145 CONTINUE 
DO 153 J = 1,NC 
BLOC = A(I,J) 
A(I,J) = A(L,J) 
A(L,J) = BLOC 

150 CONTINUE 
MOP(L) = MOP(I) 

155 CONTINUE 
C 
C INCREASE A TO GET COMPLETE INTERNAL LOAD SYSTEM 

K = NR + 1 
IF (NRD.LE.)) GG TO 170 
DO 165 I = K,NCC 
DO 160 J = K,NC 

160 A(I,J1 = 0. 
165 A(I,I) = -1. 
170 CONTINUE 

C 
C BACK TD ORIGINAL ORDER OF ELEMENT FORCES 

IF (NRD.EQ.J) GO TO 174 
DO 173 I = 1,NRD 
IF (KNUT(I).E0.0) GO TO 173 
J = KNUT(I) 
M = MREO( I ) 
MRED(I) = J 
DO 172 L = K,NC 
BLOC = A(J,L) 
A(J,L) = A(M,L) 
A(M,L) = BLOC 

172 CONTINUE 
173 CONTINUE 
174 CONTINUE 

RETURN 
END 

A6. 



A7. 

C 
C 
C 
C 
C 
C 
C 
C 
C 

$IBFTC FORMS 	NODECK 
SUBROUTINE FORMS (A,SEMS,AREA,NTIV,NTMBS,NMBS,NRD,NIV) 

C 
	REAL A(NTMPS,NTMBS),SE'IS(NTMBS,NTIV),AREA(NTMBS) 

C FORM ACT, CON, OPT, X(INITIAL), LHS,RHS,OBJ 
NIV = NRD + 1 

C 
C FORM SENSITIVITIES 

DO 20 1 = 1,NIV 
K = NMBS + 2 - I 
DO 2^ J = I,NmBS 

20 SENS(J,I) _ -A(J,K)/AREA(J) 
IF (NIV.EQ.1) GO TO 30 
DO 25 I = 2,NIV 
00 25 K = 1,NMBS 

25 SENS(K,I) = SENS(K,I) 
30 CONTINUE 

C OUTPUT THE OPTIMISATION SUBROUTINE ARGUMENTS 
WRITE 16,601)NM8S,NIV 

601 FORMAT (1H , 5HNMI3S-,I4/6H NIV- ,I4) 
WRITE(6,602)((SENS(I,J),I=1,NMBS),J=1,NIV ) 

602 FORMAT(1H0,6HSENS -/(10E12.3)) 
RETURN 
END 

tIBFTC DUALP3 
SUBROUTINE DUALP3 (SENS,Z,IPRNT,CHS,KUT,IDEG,NAME,MARK,NTRS, 

* NTMSS,NRZ,NCZ,M,N,ALF) 

LINEAR PROGRAMMING BY SOLUTION OF DUAL 

OUTPUT INDEX 'IPRNT' FOR THIS SUBROUTINE 
IPRNT = 0 NO OUTPUT 
IPRNT = 1 OUTPUT IFAS,MOVE LIMITS 
IPRNT = 2 OUTPUT IFAS,MOVE LIMITS,/-ARRAYS ETC. 
IPRNT = 3 AS FOR 2 PLUS D-R3W OUTPUT FROM KRSIMP 

REAL SENS(NTRS,NTMBS)1Z1NRZ,NCZ),CHS(NTMBS) 
INTEGER 	OPTI,KUT(NC2),IDEG(NCZ),NAME(NC2),MAPK(NRZ) 

CLEAR 2-ARRAY 
DO 100 I = 1,NRZ 
DO 100 J = 1,NCZ 

100 Z(I,J) = 0. 
C 	 SET DUAL SENSITIVITIES, OBJECTIVE COEFFICÎENTS 
C 	 AND ACTIVITY CODES IN Z-ARRAY 

NO = 0 
DO 113 J = 1,M 

110 ND = NO + I 
00 111 I = 1,N 
Z(I,J) = SENS(J11) 
KK = M + ND 

111 Z(I,(K) = -SENS(J11) 
Z(N + 1,J). = -1. 
Z(N + 1,KK) = -ALF 



113 CONTINUE 
C 	 SET DUAL L.H. AND R.H. SIDES AND 

CONSTRAINT CODES IN Z-ARRAY 
121 NZ = M + ND 
123 DO 133 I = 1,N 

Z(I,NZ + 3) = 0. 
125 Z(I,NZ+1) = 3. 
130 CONTINUE 

Z(1,NZ + 3) = 1. 
C 	 MAKE R.H.SIDES OF DUAL CONSTRAINTS POSITIVE 

DO 135 I = 1,N 
CHS(I) _ -1. 

135 CONTINUE 
C 	 OUTPUT Z-ARRAY BEFORE CALLING KRANTE 

MZ = N 
M22 = N + 2 
N13 = NZ + 3 
IF (IPRNT.LT.2) GO TO 140 
WRITE (6.136) 

136 FORM4T(30H0Z-ARRAY BEFORE CALLING KRANTE/) 
DO 137 I = 1,MZ2 

137 WRITE (6,138) (Z(I,J),J=1,NZ31 
138 FORMAT(1H .10E12.3) 
140 CONTINUE 

CALL KRANTE (Z,MZ,NZ,IFAS,KUT,NRT.,NCZ) 
C 	 OUTPUT 2-ARRAY ETC. BEFORE CALLING KRSIMP 

MZ2 = MZ + 2 
NZ1 = NZ + 1 
IF (IPRNT.LT.2) GO TO 145 
WRITE (6,141) 

141 FORMAT(30H0Z-ARRAY BEFORE CALLING KRSIMP/) 
DO 142 I = 1,M12 

142 WRITE (6,136) (Z(I,J),J=1,NZ1) 
WRITE (6,144) IFAS,(KUT(J),J=1,NZ) 

144 FORMAT(7HOIFAS =,I4/12HOKUT ARRAY -/(1H ,24I5)) 
145 CONTINUE 

CALL KRSIMP (Z,IFAS,MZ,NZ,NAME,IDEG,KUT,NRZ,NCZ,IPRNT,MARK) 
IF (IFAS.E0.3) GO TO 162 

C 	 OUTPUT Z-ARRAY ON RETURN FROM KRSIMP 
M11 = MZ + 1 
IF (IPRNT.LT.2) GO TO 150 
WRITE (6,146) 

146 FORMAT (30HOZ-ARRAY ON RETURN FROM KRSIMP/) 
DO 147 I = 1,MZ1 

147 WRITE (6,138) (Z(I,J1,J=1,NZ1) 
150 CONTINUE 

IF (IPRNT.LT.1) GO TO 152 
WRITE (6,151) IFAS 

151 FORMAT (7H0IFAS =,I4) 
152 CONTINUE 

C 	 SET VALUES OF PRIMAL VARIABLES IN FIRST ROW 
C 	 OF Z-ARRAY, PRIMAL OBJECTIVE IN Z(2,1) 

DO 154 J = 1,MZ 
154 Z(1,J1 = CHS(J) • Z(MZ1,J) 

Z(2,1) =  
160 CONTINUE 

RETURN 
162 Z(2,1) = 0.0 

RETURN 
ENO 
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WRITE (6,15) Z(1, 
15 FORMAT (1H -,15HCP 

1) 
TIMUM LAMCA -,E16.8) 

SIBFTC ANSWER NOCECK 
SUBROUTINE. ANSWER (SENS.Z,PRED.NTMBS,NRZ,NCZ.NIV,NMBSpNRD) 
REAL SENS(NTMBS,NTM3S), Z(NRZ,NCZ), PROD(NTMBS) 

C OUT PUT OPTIMUMM VALUES CF LAMDA 
WRITE (6,10) 

10 FORMAT (1H-,50H 	  

C 
C OUTPUT MEMBER FORCES 

DO 20 I = 1,NMBS 
PROD(I) = 0. 
CO 20 J = 1,NIV 

20 PROO(I) = PROD(I) + SENS(I,J)+Z11.J) 
WRITE (6,30) CPPOO(I),I = 1,NMBS) 

30 FORMAT (1H0, 16HPROCUCT MATRIX -/( 6E12.4)) 
WRITE (6,50) (Z(10)0 = 1,NIV) 

50 FORMAT (lHO, 7HZ ROW -/(10E12.4)) 
RETURN 
END 

A9. 
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53. 
APPENDIX B  

Appendix.B presents the listings of eight of the ten 

subroutines of the program MINIMUM COMPLEMENTARY ENERGY. 

This is a program to determine the elastic deflexions of 

two- or three-dimensional pin-jointed trusses, with ideal 

elastic-plastic member load-deformation behaviours, at any 

loading up to collapse load. Members, having yielded, are 

assumed not to unload. 

The program is dimensioned: 

maximum number of joints 	 = 16 

maximum number of members 	 m = 50 

maximum number of redundant members r = 10 

The relevant matrices of the program are: 

COORD is the matrix of joint coordinates 

RELS is the matrix of support restraints 
A 	is the augmented matrix [C : I] 
Q 	is the joint load vector L 

LEN 	is the member length vector 2 

AREA is the member area ratio vector a* 

SENS is the coefficient matrix G I  
OBJ 	is the vector of objective coefficients (equation 4.21) 
LHS 	is the vector of the left hand side constraints 

(equation 14.21) 
FHS 	" the vector of the right hand side constraints 

(equation 4.21) 
X 	is the vector of positive redundant force ratios s 
Z 

 
is the Simplex tableau 

QL 	is the member load vector g 

PROD is the member force ratio vector P 
D 	is the joint displacement vector D, and alsou 

DLGTH is the member deformation vector d, and also y 
C 	is the connexion matrix C 

MRED is the vector of the redundant member numbers 

NYLD is the vector of the yielded member numbers 

ALP 	is the compression coefficient a 
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The two subroutines KRANTE and KRSIMP describe 

a two-phase Standard Simplex algorithm and are not listed. 
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SJOB 	 357531, MARKS 
STIME 	 3 
S• 	 MINIMUM COMPLEMENTARY ENERGY 
SIBJOB 	 MAP 
SIBFTC ENERGY NODECK 
C 
C PROGRAM WHICH, USING THE HAAR-VON KARMAN PRINCIPLE, MINIMISES THE STRAIN 
C 	ENERGY OF REDUNDANT STRUCTURES TO OBTAIN THE CORRECT STS OF FORCES ONDE 
C ELASTIC - PERFECTLY PLASTIC BEHAVIOUR. EQUILIBRIUM AND YIELD CRITERIA 
C 	ARE SATISFIED. 
C 

REAL CCORD(16,3).RELS(16.3),A(5D,100).0(50).LE"J(50).ARFA(50),  
• SENS(50,10),OBJ(1D),IHS(50),RHS(50),X(10),Z( 60,150)tQL(50), 
• CHS(10),PR00(5C),D(5C),OLGTH(50),C(50,50),BJX(1D) 
INTEGER MREO( 1C),KNUT(10),MOP(50),KUT(150),IDEG(150),NAKE(150)1 
• MARK (60),NYLO(50).ADAP(10,2) 
EQUIVALENCE (Z,A) 
ISW1 = 2 
ISW2 = 2 
ALF = 1. 

C 
00 170 LOOK = 1,20 
CALL TIME 
CALL PLOPT7 (COORD,RELS.A.Q,LEN,AREA.16,50,13C.NRC.NMOS) 
DO 5 I = 1,NRC 
DO 5 J = 1,NMBS 

5 C(I,J) = A(I,J) 
CALL RANK 2 (A,MREO,KNUT,MOP,50.10C,10.NRC.NMBS.NRD) 
IF (NRD.EQ.0) GO TO 30 

C 	IF ISW1 = 1 READ LOAD FACTORS 
C 	 IF ISW2 = 1 READ NRO,NY, (NYLD(I),1 = I,NY) 
C 	 IF ISW2 = 2 SEARCH FOR NY AMONG MEMBERS 
C 	 IF ISW2 = 3 NO ELIMANATION OF MEMBERS - NY = NRO = C 

ISWi = 1 
ISW2 = 1 
CALL HAAR W,AREA,A,QL,SENS,X.MRE0.50,100.10,NM8S.NRD.NRC.4LF.ISW1) 
• ) 
KOUNT = 0 

10 KOUNT = KOUNT + 1 
CALL KARMAN (LEk.A REA,QL,SENS,OBJ,X,IHS.RHS,50,1C,NRD.NMBS,ALF) 
CALL OUALP5 (SENS,t1BJ,LHS,RHS,X,Z,I,CHS,KUT,IDEG,NAMS,MARK,i'OX, 
• AOAP,50,10, 6C,151,NMBS,NR0,3,100.,KUJNT) 
IF (KOUNT.LE.NRD) GO TO 16 
DO 15 I = 1,NRO 
IF ( A8S(I( 1,I)).LT.1.E-06) Z(1,I) = C. 

15 X(I) = X(I) + Z(1,I) 
GO TO 20 

16 00 17 I = 1,NRD 
IF (4BS(Z(1,I)).LT.1.E-06) Z(1,I) = 0. 

17 X(I) = X(I) + 1.(1,!)•.9 
20 CONTINUE 

NET = 0 
DO 21 I = 1,NRD 
IF (BOX(I).LE.1.E-35) GO TO 25 

21 IF (7(1,I).EQ.0.) NET = NET + 1 
IF (NET.EQ.NRO) GO TO 25 
IF (ABS(I(2,1)).GT.1.E-08) GO TO 10 

25 CALL NOWEND (Z,QL,SENS,PROO,LEN,AREA,X,5Q,60,150,10,NMEtS,NRD,KI=UNT) 
s ) 
CALL DEFLN (A,LEN.PROr).NYLD,D,DLGTH,C.MRED,KVUT,M0P.50.1C.I03. 
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.O,NRCrISW2,ALF) 

C 
	 !E (NM,NS,NSS) 

∎.169) NM, NS, NSS 
•"7 UU I1  l itH-,32HTIME TAKEN FOR ABOVE STRUCTURE -/2:0(04,5H MI''1S,I6, 
+ 5H SECSrI6,6H SSECS) 

170 CONTINUE 
CALL EXIT 
END 

SIBFTC PLOPT7 
SUBROUTINE PLOPT7 (COORD,RELS,A,O,OBJ,AREA.NTJS.NTMBS,NTCA. 
• NRC,NMBS) 
REAL COORD(NTJS,3),RELS(NTJS,3),A(NTMBS,NTCA),TYPE(2),XYZ(3), 
• PRNAME(13),DRNCOS(3),QJ(3),LENG7H,Q(NTM8S),4REA(NTMNS) 
REAL OBJ(NTMBS) 
DATA TYPE/6H PLANE, 6H SPACE/, XYZ/1HX, 1HY, 1H1/, FIN/6HFINISH/ 

C READ HEADER CARD 
READ (5,10) PRNAME 

10 FORMAT (13A6) 
IF (PRNAME(1).EC.FIN) CALL EXIT 
WRITE (6,15) PRNAME 

15 FORMAT (1H1, 13A6) 
C 
C READ PROBLEM PARAMETERS - 
C 	JF = 2 FOR TWO-CIMENSIONAL 	TRUSS 
C 	JF = 3 FOR THREE-DIMENSIONAL TRUSS 
C 	NJS = NUMBER OF JCINTS IN TRUSS 
C NSJS = NUMBER OF SUPPORT JOINTS 	IN TRUSS 
C NMBS = NUMBER CF MEMBERS IN TRUSS 

WRITE (6,20) 
20 FORMAT (1110, 10X, 6HOATA -) 

READ(5,25) JF, NJS, NSJS, NMBS 
25 FORMAT (2014) 

NFJS = NJS - NSJS 
C 
C OUTPUT PROBLEM PARAMETERS 

WRITE (6,30) TYPE(JF - 1). 
30 FORMAT (1HO,20X,20HTYPE  OF STRUCTURE -,A6.2?H TRUSS WITH THE CUSS-S 
•S-SECTION/42X.27HAREA OF EACH MEMBER VARYING) 
WRITE (6,35) NJS, NSJS, NMBS 

35 FORMAT (1HO,2CX,2OHNUMHER OF JOINTS 	=,14/31X,10HSUPPORTS =,I4/3 
•1X,LOHMEMBERS =,I4) 

C 
C READ JOINT NUMBERS AND COORDINATES -  
C FREE JOINTS MUST BE NUMBERED FIRST, THEN SUPPORTS 
C IF RELS(N,1) = 1. ... RESTRAINT AT N IN X-DIRN. 
C IF RELS(N,2) = 1. ... RESTAINT AT N IN Y-DIRN. 
C IF RELS(N,3) = 1. ... RESTRAINT AT N IN Z-DIRN. 

DO 39 I = 1,NJS 
00 39 J = 1,JF 

39 RELS(I.J) = D. 
DO 4C I = 1,NJS 
READ (5,45) N, (COORO(N,J),J = 1,JF) 

45 FORMAT (14, 3F8.4) 
IF (N.LE.NFJS) GO TO 40 
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READ (5,46) (RELS(N,J),J = 1,JF) 
46 FORMAT (3F4.1) 
40 CONTINUE 

C 

C OUTPUT JOINT NUMBERS AND COORDINATES - FIRST FOR FREE JOI!IT AND THEN 
C SUPPORT JOINTS 

WRITE (6,50) (XYZ(I),I=1.JF) 
50 FORMAT (1H0,20X,2_HJOINT COORDINATES -//28X,5HJOINT,I:X,3(A1,11X)) 
•) 
WRITE (6,55) 

55 FORMAT (23X.4HFREE) 
DO 60 I = 1,NJS 
WRITE (6,65) I, (COORD(I,J),J=1,JF) 

60 IF (I.EQ.NFJS) WRITE (6,70) 
65 FURMAT(IH .I31.2X,6F12.4) 
70 FORMAT (23X,7HSUPPORT) 

NFJSP = NFJS + 1 
WRITE (6,47) ((RELS(I,J),J = 1,JF),I = NFJSP,NJS) 

47 FORMAT (1H0.20X,6HRELS -/27X.(6F5.1)) 
WRITE (6,75) (XYZ(I),I = 1,JF) 

75 FORMAT (1H0,20X,17HMEMBER DETAILS -//31X,6HMEMBER,6X,5HSTAST,TX, 
• 3HEND,5X,6HLENGTH,6X,4HAREA,2X,3(3X,7RORNCOS-,A1)) 

C 
C 
C READ MEMBER INCIDENCES AND PROPERTIES 

DO 120 MB = 1,NMBS 
READ (5,80) M,JNTST,JNTEND,AREAM 

80 FORMAT (314, F12.4) 
IF ( 	 (JNTEND.LE.NJS).AND.(JNTST.LT.JNTENO)) GO 
• TO 90 
WRITE (6,85) M 

85 FORMAT (1H-,20H INCIDENCE OF MEMBER0(4,39H INCORRECTLY SPECIFIED. 
* JOB TERMINATED) 
CALL EXIT 

90 CONTINUE 
IF (AREAM.EC.0.) AREAM = 1. 
AREA(M) = AREAM 

C CALCULATE MEMBER LENGTHS 
TLGTH = C. 
DO 95 I = 1,JF 

95 TLGTH = TLGTH + (COCRD(JNTEND,I) - CCORO(JNTST,I))•*2 
LENGTH = SORT(TLGTH) 
OBJ(M) = LENGTH 

C 
C OUTPUT MEMBER INCIDENCES AND PROPERTIES 

WRITE (6,105) M,JNTST,JNTEND,LENGTH,APEAM,(02NCi)S(I),I = 1,JF) 
105 FORMAT (1H , 23X, 3111,2F12.4, 6E11.3) 

C 
C ADD MEMBFR DIRECTION COSINES INTO THE CONNEXION MATRIX 

C 
C LOOP ENTERED FCR ALL MEMBERS 

NRC = JF•NJS 
DO 79 I = 1,NRC 
DO 79 J = 1,NMBS 

79 A(I,J) = 0. 
NC = NMBS + 1 

C 
C CALCULATE MEMBER DIRECTION COSINES 

DO 100 I = 1,JF 
100 DRNCCS(I) = (COORD(JNTEND,I) - CODRD(JNTST,I))/LENGTH 



LROCS = JFsJNTST 
IROCS = LROCS - JF + 1 
DO 110 I = IROCS, LROCS 
J = I — IROCS + 1 

110 A(I,M) _ —DRNCOS(J) 
LROCE = JFsJNTEND 
IROCE = LROCE — JF +1 
DO 115 I = IROCE, LROCE 
J = I — IROCE + 1 

115 A(I,M) = DRNCOS(J) 
120 CONTINUE 

C 
C 
C READ SIZES OF LOAD CDMPONENT AT EACH JOIAT 
C MUST NUMBER IN ORDER X. Y. 7, AT EACH JOINT 
C NLJTS = NUMBER OF LCADED JOINTS 

READ (5,140) NLJTS 
140 FORMAT (16I4) 

DO 145 1 = 1,NRC 
145 QUIZ = 0. 

DO 155 NO = 1,r,LJTS 
READ (5.150) N. (CJ(I). I = 1.JF) 

150 FORMAT (14,9F8.4) 
DO 155 I = 1,JF 
J = JF*(N-1) + I 

155 Q(J) = QJ(I) 
C 
C TO CORRECT MATRICES C AND Q FOR SUPPORTS 

NFJSP = NFJS + 1 
M = 0 
DO 157 I = NFJSP, NJS 
DO 157 J = 1, JF 
IF (RELS(1,J).NE.1.) GO TO 157 
K = 'Fall — 1) + J — M 
NRC = NRC — 1 
DO 156 L = K, NRC 
N = L + 1 
Q(L) = Q(N) 
DO 156 II = 1, NMBS 
AIL,II) = A(N,II1. 

156 CONTINUE 
M = M + 1 

157 CONTINUE 
r 

C OUTPUT CONNEXION MATRIX 
WRITE (6.125) 

125 FORMAT ( 1H—, 18HCONNEXION MATRIX C/) 
DO 130 I = 1,NRC 

130 WRIT2 (6,135) (A(I,J),J = 1,NMBS) 
135 FORMAT (1H . 10E12.3) 
170 CONTINUE 

RETURN 
ENO 

SIBFTC RANK 2 
SUBROUTINE RANK 2 (A,MRED,KNUT,MOP,NTMBS,NTC4,NT1V,'JR,NCG,NRO) 
REAL A(NTMBS,NTCA) 

B4. 
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INTEGER MREO(NTIV),KNUT(NTIV),M0P(NTM3S) 
C 
C SET UP UNIT SURMATRIX 

NCP = NCC + 1 
NC = NCC + NR 
DO 4 I = 1.NR 
DO 3 J = NCP,NC 

3 AII,J) = O. 
K = I + NCC 

4 A(I,K) = I. 
C 
C JORDAN ELIMINATION 

DO 25 I = 1,NR 
DEN = 0. 
DO 5 J = 1,NCC 
AB = ABS(A(ItJ)) 
DN = ABS(DEN) 
IF (AB.GT. DN) JJ = J 
IF (AB.GT.DN) DEN = A(I,J) 

5 CONTINUE 
IF (OEN.EQ.0.) GO TO 25 
0O 10 K = 1.NC 

10 A(I,K) = A(I,K)/DEN 
DO 20 L = 1,NR 
IF (L.EQ.I) GO TO 20 
FAC = A(L,JJ) 
DO 15 M = 1,NC 

15 4(L,M) = A(L,M) - A(I,M)*FAC 
20 CONTINUE 
25 CONTINUE 
301 FORMAT (lli /(20F6.2)) 

C 
C CHECK FOR INCONSISTENCY AND DEPENDENCE 

NOF = 0 
DO 65 I = 1,NR 
J = 7 

45 J = J + I 
IF (J.GT.NC) GO TO 55 
IF (A(I,J).E0.0.) GC TO 45 
IF (J.LE.NCC) GC TO 65 
NOF = NDF + 1 
GO TO 65 

55 NR = NR - I 
DO 60 K = I,NR 
L - K + 1 
DO 60 M = 1.NC 

60 A(K,N) = A(L,M) 
65 CONTINUE 

IF (NDF.EQ.0) GO TO 66 
WRITE (6.50) NCF 

50 FORMAT (1H-,2BHTHE STRUCTURE IS A MECHANISM/30HNUMBER OF DEGREES OF 
•F FREEDOM =,13) 

66 CONTINUE 
C 
C ISOLATE REDUNDANCIES 

NRO = 0 
DO 75 J = 1,NCC 
KOUNT = 0 
DO 70 I = 1,NR 

70 IF (A(I,J).NE.O.) KOUNT = KOUNT + 1 



IF (KOUNT.LE.1) GO TO 75 
NRD = NRO + 1 
MRED(NRD) = J 

75 CON T I NUE 
C 
C REDUNDANCIES ... CHECK, OUTPUT. 

I = NCC - NR 
IF (1.NE.NRO) WRITE (6,80) 

80 FORMAT (1H-.22H(COLS - ROwS) .NE. NRD) 

IF (NRD) B5,85,95 
85 WRITE (6,90) 
90 FORMAT (1H0,32HSTRUCTURE IS ALREADY DETERMINATE) 

GO TO 105 
95 WRITE 16,101) NRO,(MRED(I),I = 1,NR0) 
100 FORMAT (1HC,13HSTRUCTURE IS .12,16H TIMES REDUNDANT/ 

+ 22H REDUNDANT MEMBERS ARE,4013) 

105 CONTINUE 
C 
C MOVE ALL REDUNDANT COLUMNS TO RHS OF MATRIX 

A 

IF (NRD.LE.0) GO TO 135 
DO 110 K = 1,NRO 

110 KNUTIK) = 0 
DO 130 I = 1.11110 
IF (MREU(I).G7.NR) GO TO 130 
J = NR 

115 J = J + 1 
K =   

120 K = K + 1 
IF (MRGD(K).FC.JI GO TO 115 
IF (K.LT.NRO) GO TO 120 
K = MRED(I) 
DO 125 L = 1,NR 
BLOC = A(L,J) 
A(L,JI = A(L,K) 
A(L,K) = BLOC 

125 CONTINUE 
KNUT(I) a MRF_D( I) 
MRED(I)= J . 

130 CONTINUE 
135 CONTINUE 

C 
C FORM UNIT MATRIX IN A(NR,NR) 

DO 155 LO0 = 1,2 
DO 140 I = 1,NR 
DO 143 J = 1.NR 
IF (A(I,J).E0.0.) GC TO 140 
MOP(I) = J 

140 CONTINUE 
DO 155 1 = 1,NR 
IF (MOP(I).EO.I) GO TO 155 
DO 145 K = I,NR 
IF tH0P(K).EQ.I) L=K 

145 CONTINUE 
DO 150 J = 1,NC 
BLOC = A(I,J) 
A(I,J) = AtL,J) 
A(L,J) = BLOC 

150 CONTINUE 
MOP(L) = MOP(I) 

155 CONTINUE 

B6. 
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C 
C INCREASE A TO GET CCMPLETE INTERNAL LOAD SYSTEM 

K = NR + 1 
IF (NRO.LE.0) GO TO 170 
DO 165 I = K,NCC 
DO -160 J = K, NC 

160 A(I,J1 = O. 
165 A(I,1) _ —1. 
170 CONTINUE 

C 
C BACK TO ORIGINAL ORCER OF ELEMENT FORCES 

IF (NRD.EQ.0) GO TO 174 
DO 173 I = 1,NRD 
IF (KNUT(I).EQ.C) GC TO 173 
J = KNUT(I1 
M = MREO(I) 
MRED(I1 = J 
DO 172 L = K,NC 
BLOC = A(J,L) 
A(J,L) = AIM,L) 
A(M,L) = BLOC 

172 CONTINUE 
173 CONTINUE 
174 CONTINUE 

RETURN 
END 

SIBFTC HAAR 
SUBRnUTINE HAAR (Q,AREA,A,0L,SENSr X0REO,NTM3S,NTCA,NTRD,NM3Ss NRC, 
+ NRC,ALF,ISW) 
REAL Q(NTMBS),A(NTMBS,NTCA),OL(NTMBS),SENS(NTMBS,NTRO), 
• AREA(NTMBS),X(NTRD) 
INTEGER MREO(NTR01 

C 
C FORM SENSITIVITIES 

DO 10 I = 1,NR0 
K = NMBS — NRO + I 
L = wREO(I) 
DO 10 J = 1,NMBS 

10 SENS(J,I) = A(J,K)+AREA(L)/AREA(J) 
C 
C INCLUDE LOAD FACTOR FAC — READ IT IF SSWTCH 5 ON 

IF (ISW.EQ.2) GO TO 12 
READ (5,11) FAC 

11 FORMAT (10F8.4) 
GO TO 13 

12 FAC = 1. 
13 DO 14 I = 1,NRC 
14 C(I) = Q(I)+FAC 

C 
C FORM QL MATRIX 

DO 15 I = 1,NMBS 
QL(I) = O. 
DO 15 J = 1,NR.0 
K = J + NMBS 

15 QL(I1 = QL(I) + A(I,K)+Q(J)/AREA(I) 
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• 

C FORM X(INITIAL), LHS, RHS 
DO 25 I = 1,NRO 

25 X(I) = 1. 
C 

WRITE (6,610) (Q1I),Z = 1,NRC) 
610 FORMAT (1H0,10HC MATRIX -/(10E12.3)) 

WRITE (6,611) (CL(I),I = 1.NNBS) 
611 FORMAT (1H0,11HQL MATRIX -/( 10E12.3)) 

WRITE(6,602)(ISENSII,J),I=1,NMBS).J=1.4R0) 
602 F ORMAT(IHO,6HSENS -/(10E12.3)) 

RETURN 
END 

tIBFTC KARMAN 
SUBROUTINE KARMAN (LEN,AREA,QL,SENS,OBJ,X,LNS,RHS,NTNBS,NTRD,NRD, 
• NMBS,ALF) 
REAL LEN(NTMBS),AREA(NTMBS),CL(NTMBS),SENS(NTMBS,NTRD),OBJ(NTRO), 
• X(NTRD).LHS(NTNBS/IRHS(NTMBS) 

C FORM OBJECTIVE COEFFICIENTS 
DU 15 I = 10RD 
OBJ(I) = 0,. 
DO 15 J = 1,NMBS 
BLOC = 0. 
DO 10 K = 1.NRD 

10 BLOC a BLOC + (X(K) - 1.)•SENS(J,K) 
15 OBJ(I) = OBJ(I) - 2.*(QL(J) + BLOC)*LE4(J)*SrNS(J,I)*AREA(J) 

IF ((NRD.EQ.1).ANO.(OBJ(1).GE.0.)) OBJ(1) = +1. 
IF ((NRD.EQ.1).ANO.(OBJ(1).LT.0.)1 OBJ(1) = -1. 

C COMPUTE CONSTRAINTS 
DO 25 I = 1,NMBS 
BLOC = O. 
DO 20 J a 1,NRC 

20 BLOC = BLOC + SENS(I,J)'(1.- X(J)) 
LHS(I) = BLOC - ALF - GL(I) 

25 RHS(I) = BLOC + 1. - CL(I) 
RETURN 
END 

C 
C 	 LINEAR PROGRAMMING BY SOLUTION OF MAL 
C 
C 	 OUTPUT INCEX 'IPRNT' FOR THIS SUBROUTINE 
C 	 IPRNT = C NO OUTPUT 
C 	 IPRNT = 1 OUTPUT IFAS.MOVE LIMITS 
C 	 IPRNT = 2 OUTPUT IFAS,MOVE LIMIT.S,Z-ARRAYS ETC. 
C 	 IPRNT = 3 AS FOR 2 PLUS 0-ROW OJTPUT FROM KRSIMP 
C 

REAL SENS(NTRS,NTMBS),OI:J(NTMBS),LHS(NTRS),RHS(NTrtS).L(NRZ•NCL), 
• CHS(NTMBS),X(NTMBS),ROX(NTMBS),0PT2 

SIBFTC DUALP5 
SUBROUTINE DUALP5 (SENS,OBJ,LHS,RHS,X,Z JPRNT,CHS,KUT,IOEG,NAME,MARK 
* RK,BOX,ADAP,NTRS,NTMBSsNRZ,NGZ,M,N,OPT1,0PT2,TNDEX) 
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INTEGER KUT(NCZ),IDEG(NCZ),NAME(NC2),MARK(NKZ),ADAP(MTMISS,2),UPTI 

CLEAR Z-ARRAY 
DO 100 I = 1,NRZ 
DO 100 J = 1,NCZ 

100 Z(I,J) = 0. 
C 	 SET DUAL SENSITIVITIES. OBJECTIVE C05FFICIENTS 
C 	 AND ACTIVITY CODES IN Z-ARRAY 

NO = 0 
DO 113 J = 1,M 

110 ND = ND + 1 
DO 111 I = 1,N 
ZII,J) = SENS(J,I) 
KK = M + ND 

111 ZII,KK) _ -SENS(J.I) 
Z(N+1,J) _ -RHS(J) 
ZIN+1,KK) = LHS(J) 

113 CONTINUE 
C 	 SET COLUMNS FOR MOVE LIMITS IN Z-ARRAY 

GO TO (12C,114,114),OPT1 
114 IF (INDEX.NE.1) GO TO 116 

DO 115 I = 1,N 
ADAP(I,1) = 0 

115 PDX(I) = 1. 
116 DO 119 I = 1,N 

T = .01,OPT2aX(I)•BOX(I) 
NM = M + ND + I 
ZtI,NM) = I. 
ZlN+1,NM) = -T 
NM = NM + N 
Z(I,NM) _ -1. 

119 Z(N+1,NM) = -T 
IF (CPT1.NE.3.CR.IPRNT.LT.1) GO TO 120 
WRITE (6,118) (BOX(I),1=1,N) 

118 FORMAT(20HOCURRENT MOVE LIMITS.10F10.3) 
120 CONTINUE 

C 	 SET DUAL L.H. AND R.H. SIDES AND 
C 	 CONSTRAINT CODES IN Z-ARRAY 

GO TO (121.122.1221.(lPT1 
121 NZ = M + ND 

GO TO 123 
122 NZ = M + ND + N + N 
123 DU 130 I = 1,N 

Z(I,N2+3) = OBJ(I) 
125 2(I,NZ+1) = 3. 
130 CONTINUE 

G 	 MAKE R.H.SIDES OF DUAL CONSTRAINTS POSITIVE 
DO 135 I = 1,N 
CHS(I) = -1. 
IF (Z(I,NZ+3)) 132,135,135 

132 CHS(I) = 1. 
00 133 J = 1,N2 

133 Z(I,J) _ -Z(I,J) 
Z(I,NZ+3) _ -Z(I,NZ+3) 
IF (1(I.NZ+1).E0.3.) GO TO 135 
Z(IO2+1) = 1. 

135 CONTINUE 
C 	 OUTPUT 2-ARRAY BEFORE CALLING KRANTE 

MZ = N 
MZ2 = N + 2 
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NZ3 = NZ + 3 
IF (IPRNT.LT.2) Gn TO 140 
WRITE (6,136) 

136 FORMAT(30HCZ-ARRAY BEFORE CALLING KRANTF/) 
DO 137 I = 104Z2 

137 WRITE (6.138) (Z(I.J).J=1.N13) 
138 FORM4T(1H ,10E12.3) 
140 CONTINUE 

CALL KRANTE (Z.MZ,NZ,IFAS,KUT,NRZ,NCZ) 
C 	 OUTPUT 1-ARRAY ETC. BEFORE CALLING KRSI.NP 

M12 = MZ + 2 
NZ1 = NZ + 1 
IF (IPRNT.LT.2) GO TO 145 
WRITE (6.141) 

141 FORMAT(30H01-ARRAY BEFORE CALLING KRSIMP/) 
DO 142 I = 1,012 

142 WRITE (6.138) (Z(I,J),J=1,NZ1) 
WRITE (6.144) IFAS.(KUT(J).J=1.NZ) 

144 FORMAT(7HOIFAS =,I4/12HOKUT ARRAY -/(1H .24I5)) 
145 CONTINUE 
. 	CALL KRSIMP (LrIFAS,MZ,NZ,NAMErIDEG,KUT,NRZ,MCZ,IPRNT,MARK) 

IF (IFAS.EC.3) GO TO 162 
C 	 OUTPUT Z-ARRAY ON RETURN FROM KRSIMP 

Mil 	= MZ + 	1 
IF 	(IPRNT.LT.2) 	GO TO 150 
WRITE 	(6.146) 

146 FORMAT (30HOZ-ARRAY CN RETURN FROM KRSIMP/) 
DO 	147 	I 	= 	1,MZ1 

147 	WRITE 	(6,138) 	(Z(I,J),J=1,NZ1) 
150 CONTINUE 

IF 	(IPRNT.LT.1) 	GO TO 152 
WRITE 	(6,151) 	IFAS 

151 FORMAT 	(7H0IFAS =,141 
152 CONTINUE 

C SET VALUES OF PRIMAL VARIABLES 	IN FIRST MW 
C OF 	Z-ARRAY, 	PRIMAL 	OBJECTIVE 	IN Z(2,1) 

DO 154 J = 10Z 
154 Z(1.J) 	= 	CHS(J) 	* 	Z(MZ1.J) 

Z(2,1) 	= 	-1(2,1) 
C CHECK FOR ADAPTION OF MOVE LIMITS 

GO TO 	(160,160r156).OPT1 
156 DO 158 	I 	= 	1.N 

ADAP(I.2) 	= 	ADAP(I,1) 
ADAP (I .1) 	= 	-1 
IF 	(Z(1.I).GT.0.) 	ACAP(I.1) 	= 	1 

158 IF 	(IABS(AOAP(I.1) 	- 	AOAP(1,2)).GT.1) 	BOX(I) 	= 	0.5 • BOX(I) 
160 CONTINUE 

RETURN 
162 Z(2,1) 	= 	0.0 

RETURN 
END 

SIBFTC DEFLN 
SUBROUTINE DEFLN (A,OBJ,PROD.NYLOrH.OlCTH,C,MREfl,KNUY,MOP,NTMßS•  
• NTIV.NTCA.NMBS.NRD,NRC.ISW,ALF) 
REAL A(NTMRS,NTCA).OBJ(NTMBS).PROC(NTMBS)0(4TMBS),OLGTH(NTMBS). 
• C(NTMBS.NTMBS) 
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C 
C SET UP SFT OF YIELDED MEMBERS 

GO TO (4,6,3),ISN 
3 NRD = 0 

NY = 0 
GO TO 11 

4 READ (5,5) NRO, NY, (NYLD(I),I = 11 NY) 
5 FORMAT (16I4) 

GO TO 11 
6 J = _n 

DO 10 I = 1,NM8S 
APRO = PRODII) 
IF (APRO.LT.O.) GO TO 8 
IF ((APRO.LT..9999).0R.(APRO.GT.1.0OQ1)) GO TO 10 
GO TO 9 

8 IF ((APRO.LT.(-ALF-.0001)1.OR.(APRO.GT.(-ALF+.0001)))  GO TO 10 
9 J = J + 

NYLO(J) = I 
10 CONTINUE 

NY = J 
IF (NY.LT.NRD) NRD = NY 

11 CONTINUE 
C 
C CALCULATE THE YIELDED MEMBERS TO BE ELIMINATED 

NIV = NRD + 1 
NEL = NY - NRD 
WRITE (6,15) NEL 

15 FORMAT (1H-.5HNEL =.I3) 
IF (NEL.GT.4)•RETURN 

IG = NRD + 4 
IE = NRO + 3 
ID = NRD + 2 
IC = NRO + 1 

DO 70 14 a 1.IG 
IF (1 4.GE.ID) GG TC 60 

1H = NRO + 3 - 14 
DO 55 13 = 1.IE 
IF (I3.GE.IH) GO TO 45 

18 = NRD + 4 - 13 - 14 
DO 40 I2 = 1.IC 
IF (I2.GE.I3) GO TO 30 

IA = NRD + 4 - I2 - I3 - I4 
D0 25 I1 = 1.IA 

C 
C 
C 
C PUTTING NYLD(1 TO NRO) INTO ASCENDING ORDER 

MA = I2 + I3 + I4 - 3 
MB = MA + 1 
IF (MA.EQ.0) GO TO 215 
DO 210 II = 1,MA 
BLOK = NYLD(11 
DO 205 JJ = 2,NR0 
KK = JJ - 1 

C 

C 

C 

C 

INTEGER NYLD(NTMBS).MRED INTIVI.KNUT(`)TIV).MOP(NTMBS) 
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205 NYLD(XK) = NYLC(JJ) 
NYLD(NRO) = BLCK 

210 CONTINUE 
215 CONTINUE 

C 
JF = I1 - 1 
IF (MB.GE.NRO) GO TO 218 
IF (JF.EQ.0) GC TO 218 
DO 217 JG = 1,JF 
BLOC = NYLD(1) 
JH a NRD - MA 
DO 216 JJ = 2,JH 
JK = JJ - 1 

216 NYLO(JK) = NYLC(JJ) 
NYLO(JH) a BLOC 

217 CONTINUE 
218 CONTINUE 

C 
C FORM DETERMINATE C MATRIX 

DO 3C0 I = 1,NRC 
DO 3^0 J = 1,NMBS 

300 A(I,J) = C(1,J) 
C 
C ELIMINATING YIELDED MEMBERS 
219 FORMAT (1H /(2CF6.2)) 

NM = NMBS 
NMM = NMBS - 1 
IF (NRD.EQ.0) GO TO 325 
DO 324 II = 1,NR0 
JJ = NYLD(II) - II + 1 
NM a NM - 1 
DO 322 MM 	1,NRC 
DO 322 KK = JJ,NM 
LL = KK + 1 

322 A(MM,KK) = A(MM,LL) 
BLOA = PROD(JJ) 
BLOB = OBJ(JJ) 
DO 323 KK = JJ,NMM 
LL = KK + 1 
PROD(KK) = PROD(LL) 

323 OBJ(KK) = OBJ(LL) 
PROD(LL) = BLOA 
OBJ(LL) = BLOB 

324 CONTINUE 
WRITE (6,330) (NYLD(IQ),IQ = 1,NR0) 

330 FORMAT (1H0,22HELIMINATED MEMBERS ARE,16I4) 
IF (NY.LE.NRD) GO TO 340 
100 = NRD + 1 
WRITE (6,335) (NYLD(I0),I0 = IQQ,NY) 

335 FORMAT (UHO,25HLAST TO YIELD ARE MEM3ERS,16I4) 
340 CONTINUE 
325 CONTINUE 

C 
C FORM BO MATRIX 

NRCE = NRC 
NEM = NM 
CALL RANK 2 (A,MREO,KNUT,MOP,NTMCS,NTGA,NTIV,NRCE,NEN,NOO) 

C 
C CALCULATE DEFLECTIONS 
C OUTPUT DEFLEXIONS 
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KK = II + NM 
DIII) = 0. 
DO 225 JJ '- 1,M1M 

225 DIII) = D(II) + A(JJ,KK1•UBJ(JJ)•PRUD(JJ)/10. 
245 FORMAT (1H0,15HVECTOR NYLD IS .16I4) 

WRITE (6,250) (D(IQ),IQ = 1,NRC) 
250 FORMAT (1H0,18HJOINT DEFORMATIONS/(13E12.3)) 

C CALCULATE DISTORTED MEMBER LENGTHS 
00 275 N1 = 1,NMBS 
OLGTHINI) = 0. 
DO 275 N2 = 1,NRC 

275 OLGTH(N1) = OLGTH(N1) + C(N2.Y1)•D(N2) 
WRITE (6,270) (CLGTH(N3),N3 = 1,NMBS) 

270 FORMAT (1H ,22HCISTORTED LENGTHS ARE /(10F7.3)) 
C 

C CHECK ON JOINT DEFLEXIONS 
IF (NOO.EQ.0) GO TO 285 
DO 279 II = ',NCO 
KK = NM + 1 - II 
DIII) = 0. 
DO 279 JJ = 1,100 

279 D(II) = D(II) + A(JJ,KK)wOBJ(JJ)+PROC(JJ)/10. 
WRITE (6,280) (C(II1,II = 1,N00) 

280 FORMAT (1H ,32HRELATIVE REDUNDANT DISPL.ACEMENTS/(10E11.3)) 
285 CONTINUE 

C 
C RETURNING MATRICES SENS, PROD, OBJ, TO INITIAL ORDER 

IF (NRO.EQ.0) GO TO 350 
DO 349 II = 1,NR0 
JJ = NRD + 1 - II 
KK = NYLO(JJ) - JJ + 2 
NM a NM + 1 
BLOA = PROD(NMBS) 
BLOB = OBJ(NMBS) 
DO 348 LL = KK,NMUS 
IIA = NMBS + KK - LL 
IIB 	= 	IIA 	- 	1 
PROD(IIA) 	= 	PRCCIIIB) 

348 OBJ(I1A) = 08J(II13) 
PROD(IIB) = BLOA 
OBJ(118) = BLOB 

349 CONTINUE 
350 CONTINUE 

C 
C COMPUTE THE RATIOS OF ACTUAL STRAIN TO YIELD SYRAIN 

DO 290 N1 = 1,NM8S 
DLGTH(N1) = SIGN(0LG7H(N1),PROD(t,i1)1 

290 OLGTH(N1) = OLGTH(N1)•10./0ßJ(`(1) 
WRITE (6,295) (DLGTH(N3),N3 = 1,NMBS) 

295 FORMAT (1H ,52HRATIO OF ACTUAL MEMBER STRAIN TO MEMBER YIELD STRAI 
+N/(1nF7.3)) 

C 
C PUT NYLD(1 TU NRD) INTO FORMER ORDER 

IF (MB.GE.NRD) GO TC 22B 
IF (JF.EW.0) GC TO 228 
DO 227 Jr, = 1,JF 
BLf1C = NYLO (JH ) 
JI = JH - 1 
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DO 226 JJ = 1,JI 
JK z JH + 1 - JJ 
JL = JK - 1 

226 NYLD(JK) = NYLC(Jl) 
NYLD(1) = BLOC 

227 CONTINUE 
22R CONTINUE 

IF (►!A.E0.0) GO TO 240 
DO 235 II = 1,MA 
BLOK = NYLD(NRD) 
IN = NRD - 1 
00 230 JJ = 1,IN 
KK z NRD + 1 - JJ 
'LL = KK - 1 

230 NYLC(KK) = NYLO(LL) 
NYLD(1) = BLOK 

235 CONTINUE 
240 CONTINUE 

IF (NEL.LE.0) GO TO 200 
BLOC = NYLO(IC) 
JA = 12 + I3 + 14 - 2 
J8 = IA - 1 
DO 20 JC = 1,J8 
JD = NRO + 2 - JC 
JE = JD - 1 

20 NYLO(JD) = NYLC(JE) 
NYLD(JA) = BLOC 

25 CONTINUE 
IF (NEL.EQ.1) GO TO 200 

30 BLOC = NYLD(I01 
DO 35 KA = 1,IC 
KB = NRD + 3 - KA 
KC = KB - 1 

35 NYLC(KB) = NYLD(KC) 
NYLD(1) z BLOC 

40 CONTINUE 
IF (NEL.E0.21 GO TO 200 

45 BLOC = NYLO(IE1 
DO 50 LA = 1,I0 
LB = NRO + 4 - LA 
LC = LB - 1 

50 NYLO(LB) = NYLD(LC) 
NYLD(1) = BLOC 

55 CONTINUE 
IF (NEL.EQ.31 GO TO 200 

60 BLOC = NYLO(IG) 
DO 65 NA = 1,IE 
NB = NRD + 5 - NA 
NC = N8 - 1 

65 NYLD(NB) = NYLD(NC) 
NYLO(11 = BLOC 

70 CONTINUE 
200 CONTINUE 
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C 
RETURN 
END 

SIBFTC NOWEND 
SUBRnUTINE NOWEND (Z,QL,SENS,PR)O,LEN,ARFA,X,NTMRS,NRZ,4CZ,4TRO, 
• NMBS,NRD,KOUNT) 
REAL Z(NRZ,NCZ),QL(NTMBS),SENS(NTMBS,NTRD),PROD(NTMBS),LEN(NTMBS), 
+ AREA(NTMBS),X(NTRD) 

C OUT PUT OPTIMUMM VALUES OF LAMDA 

10 FORMAT (1H-,50H 	  
WRITE (6,10) 

1 

C 

11 FORMAT (1H0,16HITERATICN NUMBER/1'4) 

15 FORMAT (1H-,15HOPTIMUM LAMDA -,1PE12.4) 
WRITE (6,15) Z(2,1) 

WRITE (6,11) KCUNT 

COUTPUT MEMBER FORCES 
0025 I = 1,NM8S 
PROD()) = 0. 
DO 20 J = 1,NR0 

20 PROD(I) = PROD(I) + SENS(I,J)•(X(J) - 1.) 
25 PRQD(I) a PROD(I) + QL(I) 

WRITE (6,30) (PROD(I),I = 1,NMBS) 
30 FORMAT (1H0. 16HPROCUCT MATRIX -/(6E12.41) 

WRITE (6,50) (Z(1,I),I = 1,NRD) 
50 FORMAT (1H0, 7HZ ROW -/(10E12.4)) 

WRITE (6,55) (X(I),I = 1,NR0) 
55 FORMAT (1H0.17HX VARIABLES ARE -/(10E12.4)) 

C 
RETURN 
END 

1053 

C 
C CALCULATE STRAIN ENERGY 

SE = 0. 
DO 40 I = 1,NMBS 

40 SE 	SE + LEN(I)•AREA(I)*(PRCD(I)••2) 
WRITE (6,45) SE 

45 FORMAT (1H0,16HSTRAIN ENERGY IS,E12.4) 



55: 
"APPE?JDIX C 

Appendix C presents the listings of six of the eight 

subroutines of the program MULTI-LOAD PLASTIC DESIGN. This 

is a program to determine the minimum weight designs of two-

or three-dimensional pin-jointed trusses, with ideal elastic-

plastic member load-deformation behaviours, for one or several 
loading cases. 

The program is dimensioned: 
maximum number of joints 

maximum number of members 

maximum number of redundants 

maximum number of loading cases 

j = 16 

m = 30 

r = 10 

c = 10 
(Note, that in equations 5.7 and 5.8, the maximum number 
of variables = 40 and the maximum number of constraints 
= 60), 

The relevant matrices of the program are: 

COORD is the matrix of joint coordinates 

RELS is the matrix of support restraints 
A 	is the augmented matrix [C : I] 
Z 	is the Simplex tableau 

ACT is the vector of the signs of the variables 
SENS is the coefficient matrix (equation 5.8) 
RHS 	is the vector of right hand side constraints (equation 5.8) 
OBJ 	is the member length vector, augmented [2T : 0T] 

is the joint load vector p 

MRED is the vector of redundant member numbers 

ENDS is the matrix of the member incidence joint numbers 
ALF 	is the compression coefficient a 

The two subroutines KRANTE and KRSIMP describe a 

two-phase Standard Simplex algorithm and are not listed. 



Cl. 

SJOB 	 357361, MARKS 
STIME 	 6C 
S• 	 MULTI-LOAD PLASTIC DESIGN 	(TUAKLEY) 
SIBJOB 	 MAP 
SIBFTC POLOAD NODECK 
C PROGRAM FOR DETERMINING OPTIMUM (MINIMUM VOLUME) CROSS-SECTIONAL AREAS 
C OF THREF-DIMENSIONAL TRUSSES, FUR GIVEN LOAD AND CONFIGURATION 
C THE PROGRAM DESIGNS FOR SEVERAL LOAD CASES. 
C THE PROGRAM IS COMPRISED OF EIGHT SUB-PROGRAMS -  
C 	POLOAD - THE VARIABLE ARRAYS AND CALL STATEMENTS 
C 	PLOPT5 - FORMS THE MATHEMATICAL MODAL 
C 	RANK 2 - ISOLATES THF REDUNOANTS 
C 	MANYLD - SETS UP THE L.P. VALUES 
C 	DUALP - FORMS THE Z ARRAY 
C 	KRANTE + KRSIMP - THE L. P. SUH-PROGRAMS 
C. 	FINAL - OUTPUTS THE RESULTS 
C 

REAL COORD(16,3),RELS(16,3),A(3^,6)),Z( 73,16C),ACT(4j), 
• SENS( 60,40),RHS( 60),OBJ(40),CHS(4')),C(30,10) 
INTEr,ER KUT(160),IDEG1160),NAME(160),MARK(  73),MREO(l0),M:1P(3:). 
• KNUT(10),ENDS(30,2) 

00 170 LOOK = 1,20 
CALL TIME 
CALL PLOPT5 (COORD,RELS,A,C,O9J,ENDS,16,30,10,6O,40,NRC,UMBS,KLDS, 
• JF,NJS,NSJS) 
CALL RANK 2 (4,MRED,KNUT,MOP,30,60,10,NRC,NMBS,NRD) 
CALL MANYLD (A,C,OBJ,SENS,ACT,RHS,60,40,3^,60, K,NMBS.NRt).NIV,:+RS, 
• NLDS,NRC) 
CALL DUALP2 (SENS,08J 0 ACT,RHS,Z.lICHSrKUT,IDEGrNAME,MARK,  
• 70,160,NRS,NIV) 
CALL FINAL (Z, 73,160•NM8S,NIV) 
CALL TIME (NM,NS,NSS) 

WRITE (6,169) NM, NS, NSS 
169 FORMAT(1H,32HTIME TAKEN FOR ABOVE STRUCTURE -/20X,I4,5H MINS,16. 
• 5H SECS,I6,6H SSECS) 

170 CONTINUE 
CALL EXIT 
ENO 

SI3FTC PLOPT5 
SUBROUTINE PLOPT5 (CORRD,RELS,A,Q,OBJ,ENDS,NTJS,NTM1SINTUSINTCA, 
• NTIV,NRC.NMBS.NLDS,JF.KJS,NSJS) 
REAL COORD(NTJS,3l,RELS(N7JS,3), A(NTMES,NTCA) ,TYPE(2)•XYZ(3). 
• PRNAME(13),DRNCOS(3),QJ(3),LENGTH,Q(NTMBS,NTLOS) 
REAL OBJ(NTIV) 
INTEGER ENDS(NTMRS,2) 
DATA TYPE/611 PLANE, 6H SPACE/, XYZ/IHX, 1HY, 1HZ/, FIN/611FIN1StI/ 

C 
C READ HEADER CARO 

READ (5,10) PRNAME 
10 FORMAT (13A6) 

IF (PRNAME(1).EQ.FiN) CALL EXIT 
WRITE (6,15) PRNAME 

15 FORMAT (1H1, 13A6) 
C 

C 

C 



C2. 

C READ PROBLEM PARAMETERS -  
C 	JF = 2 FOR TWO-DIMENSIONAL TRUSS 
C 	JF = 3 FOR THREE-DIMENSIONAL TRUSS 
C NJS = NUMBER OF JO/NITS IN TRUSS 
C NSJS = NUMBER OF SUPPORT JOINTS IN TRUSS 
C NMBS = NUMBER OF MEMBERS IN TRUSS 

WRITE (6,20) 
20 FORMAT (1H0, 10X, 6HDATA -) 

READ(5,25) JF, NJS, NSJS, NMBS 
25 FORMAT (2014) 

NFJS = NJS - NSJS 

C 

C READ JOINT NUMBERS AND COORDINATES - 
C FREE JOINTS MUST BE NUMBERED FIRST, THEN SUPPORTS 
C IF RELS(N,I) = I. ... RESTRAINT AT N IN X-DIRN. 
C IF RELS(N,2) = 1. ... RESTAINT AT N IN Y-DIRN. 
C IF RELS(N,3) = 1. ,.. RESTRAINT AT N IN L-DIRN. 

CO 39 I = 1,NJS 
00 39 J = 1,JF 

39 RELS(I,JI = O. 
DO 40 I = 1,NJS 
READ (5,451 N, (COORD(N,J),J = 1,JF) 

45 FORMAT (I4, 3F8.4) 
IF (N.LE.NFJS) GO TO 40 
READ (5,46) (RELS(N,J),J = 1,JF) 

46 FORMAT (3F4.1) 
40 CONTINUE 

C 
C OUTPUT JOINT NUMBERS AND COORDINATES - FIRST FOR FREE JOINT AND THEN 
C SUPPORT JOINTS 

WRITE (6,5C) (XYZ(I),I=1,JF) 
50 FORMAT (1H0,20X,20HJOINT COORDINATES -//28X.5HJOINT,10X,3(A1,11X)) 
•) 
WRITE (6,55) 

55 FORMAT (23X,4HFREE) 
00 60 I = 1.NJS 
WRITE (6,65) I, (COCRD(I,J),J=1,JF) 

60 IF (I.EJ.NFJS) WRITE. (6,70) 
65 FORMAT(IH ,I31,2X,6F12.4) 
70 FORMAT (23X.7HSUPPORT) 

NFJSP = NFJS * 1 
WRITE (6,47) ((RELS(I,J),J = 1,JF),I = NFJSP,NJS) 

47 FORMAT (1H0,2.0X,6NRELS -/27X,(6F5.1)) 
WRITE (6.75) (XYZtI1•I = 1,JF) 

75 FORMAT (1HC,20X,17HMEMBER DETAILS -//31X,6HMEMPER,6X,5HSTART,7X, 
• 3HEND,5X,6HLENGTH,3(3X,7HPRNCOS-,A1)) 

C 
C LOOP ENTERED FOR ALL MEMBERS 

NRC = JF+NJS 
DO 79 I = 1,NRC 

.DO 79 J = 1,NMBS 
79 A(I,J) = 0. 

C 
C OUTPUT PROBLEM PARAMETERS 

WRITE (6,30) TYPE(JF - 1) 
30 FORMAT (1H0,20X,20HTYPE OF STRUCTURE -,A6,29H TRUSS WITH THE CR3SS-S 
•S-SECTIUtJ/42X.27HAREA OF EACH MEMBER VARYING) 
WRITE (6,35) NJS, NSJS, LAMBS 

35 FORMAT (1H0,23X,2OHNUMBER OF JOINTS 	=,14/31X,10HSUPPORTS =,I4/3 
•1)(,10HMEMBERS =,I4) 



C3. 

C 
C 

C READ MEMBER INCIDENCES AND PROPERTIES 
DO 120 MD = I,NNBS 
READ (5,80) M,JNTST,JNTEND 

80 FORMAT (314, F12.4) 
IF ( 	 (JNTEND.LE.NJS).ANO.(JNTS7.LT.JNTENDI) GO 
+ TO 90 
WRITE (6,85) M 

85 FORMAT (1H-,208 INCIDENCE OF MEMCER,I4,39H INCORRECTLY SPECIFIED. 
+ JOB TERMINATED) 
CALL EXIT 

90 CONTINUE 
ENOS(M,1) a JNTST 
ENDS(M,2) = JNTEND 

C CALCULATE MEMBER LENGTHS 
TLGTH = O. 
no 95 I = 1,JF 

95 TLGTH = TLGTH + (COORD(JNTEND,I) - COORD(JNTST,I))**2 
LENGTH = SQRT(TLGTH) 
08J(M) = LENGTH 

C CALCULATE MEMBER DIRECTION COSINES 
DQ 100 I = 1,JF 

100 DRNCOS(I) = (CCORC(JNTEND,I) - CUURD(JNTST,I))/LENGTH 

C 
C ADD MEMBER DIRECTICN COSINES INTO THE CONNEXION MATRIX 

LROCS = JF+JNTST 
'ROCS s LROCS - JF + 1 
DO 110 I = IROCS. LROCS 
J = I - IROCS + 1 

110 A(I,M) = -DRNCOS(J) 
LROCE = JF+JNTEND 
IROCE = LROCE - JF +1 
DO 115 1 = TRUCE, LROCE 
J = I - IROCE + 1 

115 A(I,M) = ORNCOS(J) 
120 CONTINUE 

C 
C 
C READ SIZES OF LOAD COMPONENT AT EACH JOINT 
C MUST NUMBER IN ORDER X. Y. Z. AT EACH JOINT 
C NLJTS = NUMBER OF LOADED JOINTS 
C NLDS = NUMBER OF LCADING CASES 

READ (5,140) AIDS 
DO 154 LOAD = 1.NLDS  
READ (5,140) NLJTS 

140 FORMAT (1614) 
DO 145 1 = 1,NRC 

145 Q(I,LOAD) = G. 
DO 155 NO = 1,NLJTS 
READ (5,150) N, (QJ(I), I = 1,JF) 

150 FORMAT (14,9F8.4) 
DO 155 I = 1,JF 
J = JF+(N-11 + I 

NC = NMBS + 1 

C 
C OUTPUT MEMBER INCIDENCES AND PROPERTIES 

WRITE (6,105) M,JNTST,JNTFN0,LENGTH,(DRNCOS(I),i = 1,JF) 
105 FORMAT (1H ,23X,3111,F12.4,3E11.3) 



155 C(J,LOAD) = QJ(I) 
154 CONTINUE 

C 

C TO CORRECT MATRICES C AND G FOR SUPPORTS 
NFJSP = NFJS + 1 
M = 0 
DO 157 I = NFJSP, NJS 
DO 157 J = 1, JF 	. 
IF ( RELS(I,J).NE.1.) GO TU 157 
K = JF•(I - 1) + J - M 
NRC = NRC - 1 
DO 156 L = K, NRC 
N ' L + 1 
DO 156 II = 1, NMBS 
A(L,II) = AIM,II) 

156 CONTINUE 
M = M + 1 

157 CONTINUE 
C 
C OUTPUT CONNEXION MATRIX 

WRITE (6,125) 
125 FORMAT ( 1H-, 18HCONNEXION MATRIX C/) 

DO 130 I.= 1,NRC 
130 WRITE (6,135) (A(I,J),J = 1,NMOS) 
135 FORMAT (1H , 10E12.3) 
170 CONTINUE 

RETURN 
END 

$IBFTC RANK 2 
SUBROUTINE RANK 2 (A,MRED,KNUT.MJP,NTM3S,NTC4,'1TIV•NR,NCC,NRD) 
REAL A(NTMBS,NTCA) 
INTEGER MREDlNTIV1,KNUT(NTiV),M0P(NTMBS) 

C 
C JORDAN ELIMINATION 

DO 25 I = 1,NR 
DEN = 0. 
00 5 J = 1,NCC 
AB = ABS(AII,J)) 
ON = ABS(DEN) 
IF (AB.GT.ON) JJ = J 
IF (AB.GT.nN) DEN = AII,J) 

5 CONTINUE 
IF (DEN.EO.?.) GO TO 25 
DO 10 K = 1, NC 

10 A(I,K) = A(I,K)/DEN 
DO 20 L = 1,NR 
IF (L.EO.II GO TO 20 

C4. 

C 
C SET UP UNIT SUBMATRIX 

NCP = NCC + 1 
NC = NCC + NR 
DO 4 1 = 1,NR 
DO 3 J = NCP,NC 

3 A(I,J) = 0. 
K = I + NCC 

4 A(I,K) a  1. 



C5. 

C 

C CHECK FOR INCONSISTENCY AND DEPENDENCE 
NOF = 0 
DO 65 I = 1.NR 
J = 0 

45 J = J + I 
IF (J.GT.NC) GC TO 55 
IF (A(I.J).E0.0.) GO TO 45 
IF (J.LE.NCC) GC TO 65 
NOF = NOF + 1 
GO TO 65 

55 NR = NR - 1 
DO 60 K = /OR 
L = K + 1 
DO 60 M : 1,NC 

60 A(K.M) = A(L,M) 
65 CONTINUE 

IF (NDF.E0.0) GC TO 66 
WRITE (6,50) NOF 

50 FORMAT (1H-.281THE STRUCTURE IS A MECHANISM/3OHNUMBER OF DEGREES OF 
+F FREEDOM =,13) 

66 CONTINUE 
C 
C ISOLATE REDUNDANCIES 

NRD = 0 
DO 75 J = 1,NCC 
KOUNT = 0 
CO 70 I = 1.NR 

70 IF (A(I,J).NE.0.) KOUNT = KOUNT + 1 
IF IKOUNT.LE.1) GO TO 75 
NRD = NRO + 1 
MREO(NRD) = J 

75 CONTINUE 
C 
C REDUNDANCIES ... CHECK, OUTPUT 

I = NCC - NR 
IF'(I.NE.NRD) WRITE (6,8C) 

80 FORMAT (1H-,22H(COLS - ROWS) .NE. NRD) 
IF (NRD) 85,85,95 

85 WRITE (6.90) 
90 FORMAT (1H0,32HSTRUCTURE IS ALREADY DETERMINATE) 

GO TO 105 
95 WRITE (6,1C0) NRD,(MRED(I),I = 11NRO) 
100 FORMAT (1H0.13HSTRUCTURE IS ,12,16H TIMES REDUNDANT/ 

+ 22H REDUNDANT MEMBERS ARE,40I3) 
105 CONTINUE 

C 
C MOVE ALL REDUNCANT COLUMNS TO RHS OF MATRIX A 

IF (NRD.LE.0) GC TO 135 
DO 110 K = 1,NRC 

110 KNUT(K) = 0 
DO 130 I = 1.NRD 
IF (MREO(I).GT.NR) GO TO 130 
J = NR 

FAC = A(L,JJ) 
DO 15 M = 11NC 

15 A(L,M) = A(L,M) - A(I,M)+FAC 
20 CONTINUE 
25 CONTINUE 
301 FORMAT (1H /(2CF6.2)) 



115 J = J + 1 
K = 0 

120 K = K + 1 
IF (MREOIK).EQ.J) GO TO 115 
IF IK.LT.NRD) GO TO 120 
K = MRED(I) 
DO 125 L = 1,NR 
BLOC = AIL,J) 
AIL,J) = A(l,K) 
A(L,K) = BLOC 

125 CONTINUE 
KNUT(I) = MRED(I) 
MRED(I)= J 

130 CONTINUE 
135 CONTINUE 

C 
C FORM UNIT MATRIX IN A(NR,NR) 

DO 155 L00 = 1,2 
DO 140 I = 1,NR 
DO 140 J = 1,NR 
IF (A(I,J1.EQ.0.) GO TO 140 
MOP(I) = J 

140 CONTINUE 
DO 155 I = 1,NR 
IF (M,OP(I).EQ.I) GO TO 155 
DO 145 K = I,NR 
IF (MOP(K1.EQ.I) L=K 

145 CONTINUE 
DO 150 J = 1.NC 
BLOC = A(I,J) 
A(I,J1 = AIL,J) 
AIL,J) = BLOC 

150 CONTINUE 
MOP(L) = MOP(I) 

155 CONTINUE 
C 

C INCREASE A TO GET COMPLETE INTERNAL LOAD SYSTEM 
K = NR + 1 
IF (NRD.LE.C) GC TO 170 
DO 165 I = K,NCC 
DO 160 J = K,NC 

160 A(I,J) = 0. 
165 A(I,I) = -1. 
170 CONTINUE 

C . 

C BACK TO ORIGINAL ORDER OF ELEMENT FORCES 
IF (NRO.EQ.0) GC TO 174 
DO 173 I = 1,NR0 
IF IKNUT(I).E0.0) GO TO 173 
J = KNUT(I) 
M = MRED(I) 
MRED(I) = J 
DO 172 L = K,NC 
BLOC = A(J,L) 
A(J,L) = AIM,L) 
A(M,L) = BLOC 

172 CONTINUE 
173 CONTINUE 
174 CONTINUE 

RETURN 

C6. 



END 

C7 . 

C 

C 

SIBFTC MANVLD NCDECK 
SUBROUTINE MANVLD (4,Q,OBJ,SENS,ACT,RHS,NTRS,NTIV,NTMBS,NTCA, 
• NTLf1S.NMBS,NRO.NIV,NRS,NLDS.NRC) 

REAL A(NTMBS,NTCA),Q(NTMBS,NTLDS),OBJ(NTIV),SENS(NTRS,NTIV),ACT(NT 
• IV),RHS(NTRS) 

NIV = NMBS + NLCS•NRD 
NRS = NMBS•2 ■NLDS 
NC = NMBS + 1 
NCP = NMBS + NRC 
DO 10 I a 1,NMBS 
00J(I) _ —OBJ(I) 

10 ACT(I) _ —1. 
IF(NRD.EQ.0) GO TO 20 
DO 15 I = NC,NIV 
OBJ(I) = 0. 

15 ACT(I) = 1. 
20 CONTINUE 

C 
C SET UP SENSITIVITIES 

DO 30 I = 1,NRS 
DO 30 J = 1.NMBS 

30 SENS(I,J) = 0. 
DO 31 I = 1,NLCS 
DO 31 J = 1,NMBS 
K = 2*NMBS+II — 1) + J 
L = K + NMBS 
SENS(K,J) = 1. 

31 SENS(L,J) = 1. 
IF (NRD.EQ.0) GO TO 40 
DO 32 I a 1,NRS 
DO 32 J = NC,NIV 

32 SENS(I,J) = 0. 
DO 35 I = 1.NLOS 
DO 35 J = 1,NMBS 
L = 2•NMBS•(I — 1) + J 
M = L + NMBS 
DO 35 K = 1.NR0 
N = NRO+( I — 1) + K t NMBS 
II a NRC + K 
SENS(L,N) _ —A(J,II) 

35 SENS(M.N) = A(J.II) 
40 CONTINUE 

C 
C SELECT CRITICAL LOAD 

DO 55 1 = 10MBS 
M = NMBS + I 
DO 55 K = 1,NLDS 
BLOC a O. 
DO 45 J = 1,NRC 
L = NMBS + J 

45 BLOC = BLOC + A(I,L)+Q(J,K) 
M = 2+NMBS+(K — 1) + I 
N = M + NMBS 



C 
C 
C 
C 
C 
C 
C 
C 
C 

RHS(M) = BLOC 
RHS(N) = -BLOC 

55 CONTINUE 
C 
C OUTPUT THE OPTIMISATION SUBROUTINE ARGUMENTS 

WRITE (6,601)NMBS,NIV 
601 FORMAT (1H , 5HNMBS-,I4/6H NIV- ,14) 

WRITE (6,60C) ((Q(I,J),I = 1,NRC),J = 1,NLOS) 
600 FORMAT (1H0,13HLOAD MATRIX -/(20F6.2)) 

WRITE(6,602)((SENS(I,J),I=1,NRS ),J=1,NIV I 
602 FORMAT(1H0,6HSENS -/(10E12.3)) 

WRITE (6,603) (OßJ(I), I=1,NIV ) 
603 FORMAT (1H0,5HCBJ -/(10E12.3)) 

WRITE (6,604) (ACT(I), I=1,NIV ) 
604 FORMAT (1H0.5IIACT -/(10E12.3)) 

WRITE (6,607) (RHS(I), I=(,NRS 1 
607 FORMAT (1H0,5HRHS -/(10E12.3)) 

RETURN 
END 

fIBFTC DUALP2 
SUBROUTINE DUALP2(SENS,OBJ,ACT, 	RHS, Z, 
• CHS,KUT,IDEG,hAWE,MARK,NTRS,NTMBS,NRZ,NCZ,M,N) 

LINEAR PROGRAMMING BY SOLUTION OF DUAL 

OUTPUT INDEX 'IPRNT' FOR THIS SUBROUTINE 
IPRNT = 0 NO OUTPUT 
IPRNT = 1 OUTPUT IFAS,MOVE LIMITS 
IPRNT = 2 OUTPUT IFAS,MOVE LIMITS,Z-ARRAYS ETC. 
IPRNT = 3 AS FOR 2 PLUS 0-ROW OUTPUT FROM KRSIMP 

REAL SENS(NTRS,NTMBS),03J(NTMBS),ACT(NTMBS)• 
• RHS(NTRS), 	 Z(NRZ,NCZ),CHS(NTMBS) 
INTEGER 	CPT1,KUT(NCZ)rIDEG(NCZ),NAME(NCZ),MARK(NRZ) 

C 
C 	 CLEAR 1-ARRAY 

DO 100 I = 1,NRZ 
DO 100 J = 1,NCZ 

100 Z(I,J) = 0. 
C 	 SET DUAL SENSITIVITIES, OBJECTIVE COEFFICIENTS 
C 	 AND ACTIVITY CCDES IN 2-ARRAY 

ND = 0 
DO 113 J = 1,14  

104 00 105 I = 1,N 
105 Z(I,J) _ -SENS(J,I) 

Z(N+I,J) = RHS(J) 
113 CONTINUE 

C 	 SET DUAL L.H. AND R.N. SIDES AND 
C 	 CONSTRAINT CODES IN Z-ARRAY 

121 NZ 	M + ND 
123 DO 130 I = 1,N 

Z(I,NZ+3) = OBJII) 
IF (ACT(I)) 124,124,125 

124 Z(I,NZ + 1) = 2. 
GO TO 130 

125 Z(1,NZ+1) = 3. 

C8. 

IPRNT, 



130 CONTINUE 
C 	 MAKE R.H.SIOFS OF DUAL CONSTRAINTS POSITIVE 

00 135 I = 1.N 
CHS(I) = -1. 
IF (Z(I,NL+3)) 132,135,135 

132 CHS(I) = 1. 
DO 133 J = 1,N1 

133 Z(I,J)  
Z(I,NZ+3) _ -Z(I,NZ+3) 
IF (Z(I,NL+1I.EC.3.) GO TO 135 
Z(I.NZ+1) = 1. 

135 CONTINUE 
C 	 OUTPUT 7-ARRAY BEFORE CALLING KRANTE 

MZ N 
M12 = N + 2 
NZ3 = Ni + 3 
IF (IPRNT.LT.2) GO TO 140 
WRITE (6,136) 

136 FORMAT(30HOZ-ARRAY BEFORE CALLING KRANTE/) 
DO 137 I = 1,MZ2 

137 WRITE (6,138) (Z(I,J),J=1,N13) 
138 FORMAT(1H .10E12.3) 
140 CONTINUE 

CALL KRANTE (1,NZ,N1,IFAS,KUT,NRL,NCZ) 
OUTPUT Z-ARRAY ETC. BEFORE CALLING KRSIMP 

MZ2 = MZ + 2 
NZ1 = NZ + 1 
IF (IPRNT.LT.2) GO TO 145 
WRITE (6,141) 

141 FORMAT(30HOZ-ARRAY BEFORE CALLING KRSIMP/) 
DO 142 I = 1,M12 

142 WRITE (6,138) (Z(I,J),J=1,N21) 
WRITE (61144) IFAS,(KUT(J),J=1,N2) 

144 FORMAT(7HOIFAS =,I4/12HOKUT ARRAY /(1H .24I5)) 
145 CONTINUE 

CALL KRSIMP (Z,IFAS•MZ,NZ,NAME,IOEG,KUT,NRI,NC2.IPR'4T.MARK) 
IF (IFAS.E0.3) GO TO 162 

C 	 OUTPUT Z-ARRAY ON RETURN FROM KRSIMP 
MZ1 = MZ + 1 
IF (IPRNT.LT.2) GO TO 150 
WRITE (6,146) 

146 FORMAT (30H02-ARRAY ON RETURN FROM KRSIMP/) 
DO 147 I = 1.MZ1 

147 WRITE (6,138) (Z(I,J),J=1,NZ1) 
150 CONTINUE 

IF (IPRNT.LT.1) GO TO 152 
WRITE (6.151) IFAS 

151 FORMAT (7HOIFAS =,14) 
152 CONTINUE 

C 	 SET VALUES OF PRIMAL VARIABLES IN FIRST ROW 
C 	 OF Z-ARRAY, PRIMAL OBJECTIVE IN Z(2.1) 

DO 154 J = 1,MZ 
154 Z(1,J) = CHS(J) • Z(MZ1,J) 

Z(2,1) = -Z(2,1) 
160 CONTINUE 

RETURN 
162 Z(2,1) = 0.0 

RETURN 
END 

C9. 



C10. 

C 

	

$IRFTC FINAL 	NOOECK 
SU3ROUTINE FINAL (Z,NRZ,NC,Z,NMBS,NIV) 
REAL 2(NRZ,NCZ) 

C OUTPUT OPTIMUM AREAS AND VCLUNE 
WRITE (6,10) 

	

10 FORMAT 	(1H-,50H 	  
WRITE (6,15) (2(1,I),! = 1,NMBS) 

15 FORMAT(1H-,22HCPTIMUM MEMBER AREAS -/(6E12.4)) 
J = NMBS + 1 
WRITE (6,20) (2(1,I),I = J,NIV) 

20 FORMAT (1H-,22HVALUES OF REOUNDANTS -/(10E12.4)) 
WRITE (6,25) Z(2,1) 

25 FORMAT (1H-, 19HSTRUCTURAL VOLUME 

	

 
RETURN 	

,IPE12.4) 

END 

559 



56. 

• • APPENDIX  D 

Appendix D presents the listings of the six subroutines 

of the program SELF-WEIGHT PLASTIC DESIGN. This is a program 

to determine "efficient" weight designs of two- or three-

dimensional pin-jointed trusses, with ideal elastic-plastic 

member load-deformation behaviours, for one or several 

loading cases, taking self-weight into account. 

The program is dimensioned: 

maximum number of joints 	 i = 16 
maximum number of members 	 m = 50 
maximum number of redundant members r = 10 

maximum number of loading cases 	e = 10 

(Note that in equations 5.9 and 5.10 maximum number of variables 
_ .60 ) . 

The relevant matrices of the program are: 

COORD is the matrix of joint coordinates 

RELS is the matrix of support restraints 
A 	is the augmented matrix [C : I] 
B 	is the force transformation matrix B

1  

is the joint load matrix P 
OBJ 	is the augmented member length matrix [QT  . OT]  

Z 
• 

is the Simplex tableau 
X 	is the vector of optimum area ratios a* 
fl 	is the vector of optimum redundant force ratios r 
QU 	is the matrix of the member force envelope [R 	:R 	] max. min  
BO 	is the force transformation matrix B 

.o 
VOL 	is the member volume matrices [v 1 * : v i+I*1 
MRED is the vector of redundant member numbers 

ENDS is the matrix of the member incidence joint numbers 
ALF 	is the compression coefficient a 



C 
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SJOB 	 357206, MARKS 
STIME 	 60 
S• 	 SELF-WEIGHT PLASTIC DESIGN 
SIBJOB 	MAP 
SIBFTC SELFWT NODECK 
C PROGRAM FOR DESIGNING SPACE TRUSSES PLASTICALLY, INCLUDING SELF-WEIGHT AND 
C SEVERAL LOAD CONDITIONS 
C THE PROGRAM CONSISTS OF SIX SUBROUTINES - 
C 	SELFWT - VARIABLE DIMENSIONS AND SELF-WEIGHT ITERATIONS 
C 	PLOPT5 - FORMS MATHEMATICAL MODEL 
C 	RANK 2 - PROCESSES AND REARRANGES THE AUGMENTED MATRIX A 
C 	SAG 	- SELF-WEIGHT INCREMENTS IN, FORMS L. P. PROBLEM 
C 	LIMFRA - FORMS THE TABLEAU AND SOLVES THE L.P. PROBLEM (DUAL SIMPLEX) 
C 	ULTIM - OUTPUTS THE RESULTS 
C 

REAL COORO(16,3).RELS(16,3),A(50,100),B(50,13),Q(50,10),OBJ(60). 
• Z(110,70),X(160),R(10),AM(50),QU(50,2)00(50,50),VOL(50,2) 
INTEGER MRED(10),MOP(50),KNUT(10),I1(160),IXXP(60),IXP(11D) 
• ENDS(50,2) 
EQUIVALENCE 1Z,A) 

DO 170 LOOK = 1,20 
CALL TIME 
CALL PLOPT5 (COURD,RELS,A,Q1OBJ,ENDS,16,50,13,100,60,NRC,NM3S. 
• NLOS,JF,NJS,NSJS) 
CALL RANK 2 (A,MRED,KNUT,MOP,50,100,10,NRC,NMBS,NRD) 
KOUNT = 1 
DO 22 I = 10MBS 
DO 22 J = 1,NRC 
K 	J + NMBS 

22 BO(I,J) = A(I,K) 
WRITE (6156) ((BO(I.J).J = 1,NRC),I 	1,NMBS) 

56 FORMAT (1H /(20F6.2)) 
IF (NRD.EQ.0) GO TO 45 
00 40 I = 1,NMBS 
DO 40 J 	1,NRD 
K = NMBS + 1 - J 

40 8(I,J) a A(I,K) 
45 CONTINUE 
10 CALL SAG ( Q,RELS,VOL,ENDS.OBJ,8.QU,B0050,10,60.10,100,16,NM3S. 
• NRD,NLOS,IF,NJS,NSJS,ALF,KOUNT) 
CALL LOMFRE (B,QU,OBJ,Z,X,Y,R,I2,IXXP,IXP,50,60,110,70,10,160, 
• NMBS,NRO,ALF) 
DO 11 I = 10NMBS 

11 VOL(I12) = 0. 
IF (KOUNT.LT.2) GO TO 13 
DO 12 I = 1,NM8S 

12 VOL(I.2) = VOL(I.1) 
13 CONTINUE 

DO 15 I = 1,NMBS 
15 VOL(I,1)=08J(I)•X(I)/10. 

XXX = y 
IF (KOUNT.LT.2) GO TO 25 
IF (XXX.LT.YYY) GO TO 25 
IF ((XXX - YYY).LT..O1) GO TO 30 
IF (KOUNT.GT.20) GO TO 30 

25 YYY = XXX 
CALL ULTIM (X,Y,R,AM,50,10,60,NMBS,NRO,KOUNT) 
KOUNT = KOUNT + 1 
GO TO 10 



C 
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30 CALL ULTIM (X,Y,R,AM,50.10.60.'JMHS•NRG•K0UNT) 
CALL TIME (NM,NS,NSS) C 
WRITE (6,169) NM,NS,NSS 

169 FORMAT (IH-.32HTIME TAKEN FOR ABOVE STRUCTURE -/20X,I4,5H MINS,I6, 
• 5H SECS,I6,6H SSECS) 

170 CONTINUE 
CALL EXIT 
ENO 

$IBFTC PLOPT5 
SUBROUTINE PLOPT5 (CCORD,RELS,A,O,OBJ,ENDS,NTJS,NTMBS,NTLDS,NTCA, 
* NTIV,NRC,NMBS,NLOS,JF,NJS,NSJS) 
REAL COORD(NTJS,3),RELS(NTJS,3),A(NTMBS,NTCA),TYPE(21,XY7(3), 
• PRNAME(13),CRNCOS(3),CJ(3),LENGTH,O(NTMBS,NTLDS) 
REAL OBJ(NTIV) 
INTEGER ENOS(NTMBS,2) 
DATA TYPE/6H PLANE, 6H SPACE/, XYZ/1HX, IHY, 1HZ/, FIN/6HFINISH/ 

C READ HEADER CARD 
READ (5,10) PRNAME 

10 FORMAT (13A6) 
IF (PRNAME(1).EC.FIN) CALL EXIT 
WRITE (6,15) PRNAME 

15 FORMAT (1H1, 13A6) 

C READ PROBLEM PARAMETERS - 
C 	JE = 2 FOR TWO-DIMENSIONAL TRUSS 
C 	JE = 3 FOR THREE-CIMENSIONAL TRUSS 
C NJS = NUMBER OF JOINTS IN TRUSS 
C NSJS = NUMBER OF SUPPORT JOINTS IN TRUSS 
C NMBS = NUMBER OF MEMBERS IN TRUSS 

WRITE (6,20) 
20 FORMAT (1HO, 10X, 6HDATA -1 

READ(5,25) JF, NJS, NSJS, NMBS 
25 FORMAT (20I4) 

NFJS = NJS - NSJS • 

C 

C READ JOINT NUMBERS AND COORDINATES -  
C FREE JOINTS MUST BE NUMBERED FIRST, THEN SUPPORTS 
C IF RELS(N,I) = 1. ... RESTRAINT AT N IN X-DIRN. 
C IF RELS(N,2) = 1. ... RESTAINT AT N IN Y-DIRN. 
C IF RELS(N,3) = 1. ••• RESTRAINT AT N IN Z-DIRN. 

DO 39 I = 1,NJS 
DO 39 J = 1,JF 

39 RELS(I,J) = 0. 
DO 40 I = 1,NJS 
READ (5,451 N, (COORD(N,J),J = 1,JF) 

45 FORMAT (14, 3F8.4) 

C OUTPUT PROBLEM PARAMETERS 
WRITE (6,30) TYPE(JF - 1) 

30 FORMAT (1H0,20X,20HTYPE OF STRUCTURE -,A6,29H TRUSS WITH THE CROSS-S 
*S-SECTION/42X.27HAREA OF FACH MEMBER VARYING) 
WRITE (6,35) NJS, NSJS, NMBS 

35 FORMAT (1H0,20X,2OHNUMBER OF JOINTS 	=,I4/31X,10HSUPPORTS =,14/3 
*1X,1OHMEMBERS =,I4) 
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IF (N.LE.NFJS) GO TO 40 
READ (5,46) (RELS(N,J),J = 1,JF) 

46 FORMAT (3F4.1) 
40 CONTINUE 

C 
C OUTPUT JOINT NUMBERS AND COORDINATES - FIRST FOR FREE JOINT AND THEN 
C SUPPORT JOINTS 

WRITE (6.50) (XYL(I),I=1.JF) 
50 FORMAT (1H0,20X,20HJOINT COORDINATES -//28X,5HJOINT,10X,3(A1,11X)) 
•) 
WRITE (6,55) 

55 FORMAT (23X114HFREE) 
DO 60 I = 1,NJS 
WRITE (6,65) I, (COORD(I,J),J=1,JF) 

60 IF (I.EQ.NFJS) WRITE (6,70) 
65 FORMAT(1H ,I31,2X.6F12.4) 
70 FORMAT (23X,7HSUPPORT) 

NFJSP a NFJS + 1 
• WRITE (6,47) ((RELS(I,J),J = 1,JF),I = NFJSP,NJS) 
47 FORMAT (1H0,20X.6HRELS -/27X.(6F5.1)) 

WRITE (6,75) (XYZ(I),I = 1,JF) 
75 FORMAT (1H0,20X,17HMEMBER DETAILS -//31X,6HMEMBER,6X,5HSTART,7X, 
• 3HEND,SX,6HLENGTH,3(3X,7HDRNCOS-,A1)) 

C 
C 
C READ MEMBER INCIDENCES AND PROPERTIES 

DO 120 MB a 1,NMBS 
READ (5,80) M,JNTST,JNTEND 

80 FORMAT (314. F12.4) 
IF ( 	 (JNTEND.LE.NJS).ANO.(JNTST.LT.JNTEND)) GO 
• TO 90 
WRITE (6,85) M 

85 FORMAT (1H-.20H INCIDENCE OF MEMDER.I4.39H INCORRECTLY SPECIFIED. 
• JOB TERMINATED) 
CALL EXIT 

90 CONTINUE 
ENDS(M.1) a JNTST 
ENDS(M 22) 	JNTEND 

C CALCULATE MEMBER LENGTHS 
TLGTH = 0. 
DO 95 I = 1.JF 

95 TLGTH = TLGTH + (COORD(JNTEND,I) - COORD(JNTST,I)1••2 
LENGTH = SQRT(TLGTH) 
OBJ(M) a LENGTH 

C 
C CALCULATE MEMBER DIRECTION COSINES 

DO 100 I = 1,JF 
100 DRNCGS(I) _ (CCCRD(JNTEND,I) - COORD(JN7ST,I))/LENGTH 

C 
C OUTPUT MEMBER INCIDENCES AND PROPERTIES 

WRITE (6,105) M,JNTST,JNTEND,LENGTH,(ORNCOS(I),I a 1,JF) 
105 FORMAT (1H ,23x,3111,Fl2.4,3E11.3) 

C 
C LOOP ENTERED FOR ALL MEMBERS 

NRC a JF+NJS 
DO 79 I = 1,NRC 
DO 79 J a 1,NMBS 

79 AI/,J) = 0. 
NC a NMBS + 1 

C 



C ADO MEMBER DIRECTICN COSINES INTO THE CONNEXION MATRIX 
LROCS = JF*JNTST 
IROCS = LROCS - JF + 1 
DO 110 I = IROCS, LROCS 
J = I - IROCS + 1 

110 A(I,M) = -ORNCOS(J) 
LROCE = JF*JNTEND 
IROCE = LROCE - JF +1 
DO 115 I = IROCE, LROCE 
J = I - IROCE + 1 

115 A(I,M) = DRNCOS(J) 
120 CONTINUE 

C 
C 

C READ SIZES OF LOAD COMPONENT AT EACH JOINT 
C MUST NUMBER IN ORDER X, Y, Z, AT EACH JOINT 
C NLJTS = NUMBER OF LOADED JOINTS 
C NLDS a NUMBER OF LOADING CASES 

READ (5,140) NIDS 
DO 154 LOAD = 1,NLDS 
READ (5,140) NLJTS 

140 FORMAT (1614) 
DO 145 I = 1,NRC 

145 QII,LOAO) = 0. 
DO 155 NO = 1,NLJTS 
READ (5,150) N, (QJ(I), I = 1,JF) 

150 FORMAT (I4,9F8.4) 
DO 155 I = 1,JF 
J = JF*(N-1) + 1 

155 Q(J,LOAD) = CJ(I) 
154 CONTINUE 

C 
C TO CORRECT MATRICES C AND Q FOR SUPPORTS 

NFJSP = NFJS + 1 
M = 0 
DO 157 I a NFJSP, NJS 
DO 157 J = 1, JF 
IF (RELS(I,J).WE.1.) GO TO 157 
K = JF*(I - 1) + J - M 
NRC = NRC - 1 
DO 156 L = K, NRC 
N = L + 1 
00 156 II = 1, NMBS 
AIL,II) = A(N,II) 

156 CONTINUE 
M = M + 1 

157 CONTINUE 
C 
C OUTPUT CONNEXION MATRIX 

WRITE (6,125) 
125 FORMAT ( 1H-, 18HCONNEXION MATRIX C/) 

DO 130 I = 1,NRC 
130 WRITE (6,135) (A(I,J),J = 1,NM8S) 
135 FORMAT (1H , 10E12.3) 
170 CONTINUE 

RETURN 
END 
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SIBFTC RANK 2 
SUBROUTINE RANK 2 (A,MRED,KNUT,M0P,NTMBS,NTCA,NTIV,NR,NCC,NRD)  
REAL A(NTMBS,NTCA) 

C 
	INTEGER MREDINTIV),KNUT(NTIV),MOP(NTMBS)  

C SET UP UNIT SUBMATRIX 
NCP = NCC + 1 
NC = NCC + NR 
DO 4 I = I,NR 
DO 3 J a NCP,NC 

3 A(I,J) = 0. 
K = I + NCC 

4 A(I,K) = I. 
C 
C JORDAN ELIMINATION 

DO 25 I = 1,NR 
DEN = 0. 
DO 5 J = 1,NCC 
AB = ABS(A(I,J)) 
DN ■ ABS(DEN) 
IF (AB.GT.ON) JJ = J 
IF (AB.GT.ON) OEN = A(I,J) 

5 CONTINUE 
IF (DEN.EQ.0.) GO TO 25 
DO 10 K = 1,NC 

10 A(I,K) s A(I,K)/DEN 
DO 20 L a 1,NR 
IF (L.EQ.I) GO TO 20 
FAC s A(L,JJ) 
DO 15 M = 1,NC 

15 A(L,M) = A(L,M) - A(I,M).FAC 
20 CONTINUE 
25 CONTINUE 
301 FORMAT (IH /(20F6.2)) 

C 
C CHECK FOR INCONSISTENCY AND DEPENDENCE 

NOF = 0 
DO 65 I = 1,NR 
J = 0 

45 J = J + 1 
IF (J.GT.NC) GO TO 55 
IF (A(I,J).EQ.0.) GO TO 45 
IF (J.LE,NCC) GC TO 65 
NDF = NOF + 1 
GO TO 65 

55 NR = NR - 1 
DO 60 K a 1,NR 
L = K + 1 
DO 60 M = 1,NC 

60 A(K,M) = A(L,M) 
65 CONTINUE 

IF (NDF.EQ.0) GO TO 66 
WRITE (6,50) NOF 

50 FORMAT (1H-,28HTHF STRUCTURE IS A MECHANISM/3OHNUM0ER OF DEGRELS OF 
wF FREEDOM =,I3) 

66 CONTINUE 
C 
C ISOLATE REDUNDANCIES 

NRD'= 0 



DO 75 J = 1,NCC 
KOUNT = 0 
CO 70 I = 1,NR 

70 IF (A(I,J).NE.0.) KOUNT = KOUNT + 1 
IF (KOUNT.LE.1) GO TO 75 
NRD = NRD + 1 
MRED(NRD1 = J 

75 CONTINUE 
C 

C REDUNDANCIES ... CHECK, OUTPUT 
I = NCC - NR 
IF (I.NE.NRD) WRITE (6,80) 

80 FORMAT (1H-,22H(COLS - ROWS) .NE. NRD) 
IF (NRD) 85,85,95 

85 WRITE (6,90) 
90 FORMAT (1H0,32HSTRUCTURE IS ALREADY DETERMINATE) 

GO Tn 105 
95 WRITE (6,100) NRD,(MREO(I),I = 1,NRD) 
100 FORMAT (1H9,13HSTRUCTURE IS ,12,16H TIMES REDUNDANT/ 
• 22H REDUNDANT MEMBERS ARE,40I3) 

105 CONTINUE 
C 
C MOVE ALL REDUNDANT COLUMNS TO RHS OF MATRIX A 

IF (NRD.LE.0) GO TO 135 
00 110 K = 1,NRD 

110 KNUT(K) = 0 
DO 130 I = 1,NR0 
IF (MREQ(I).GT.NR1 GO TO 130 
J = NR 

115 J = J + 1 
K = 0 

120 K = K + 1 

IF (MRED(K).EO.J) GO TO 115 
IF (K.LT.NRDI GC TO 120 
K = MREO(Il 
DO 125 L = 1,NR 
BLOC = AIL,J) 
A(L,J) = A(L,K) 
A(L,K) = BLOC 

125 CONTINUE 
KNUT(I) = MRED(I) 
MREO(I)= J 

130 CONTINUE 
135 CONTINUE 

C 
C FORM UNIT MATRIX IN A(NR,NR) 

DO 155 LOU = 1,2 
DO 140 I = 1,NR 
DO 140 J = 1,NR 
IF (A(I,J1.Ep.0.1 GO TO 140 
MOPO) = J 

140 CONTINUE 
DO 155 I = 1,NR 
IF IMOP(I).EO.I) GO TO 155 
00 145 K = I,NR 
IF (MOP(K1.EQ.I) L=K 

145 CONTINUE 
on 150 J = 1, NC 
BLOC = A(I,J1 
A(I,J1 = A(L ► J) 
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A(L,J) = BLOC 
150 CONTINUE 

MOPIL) = MOP(I) 
155 CONTINUE 

C 

C INCREASE A TO GET COMPLETE INTERNAL LOAD SYSTEM 
K = NR + 1 
IF (NRD.LE.0) GO TO 170 
DO 165 I a K,NCC 
00 160 J 	K,NC 

160 A(I,J) - 0. 
165 A(I,I) 
170 CONTINUE 

C 

C BACK TO ORIGINAL ORDER OF ELEMENT FORCES 
IF (NRD.EQ.0) GC TO 174 
DO 173 I a 1,NR0 
IF (KNUT(I).EQ.0) GO TO 173 
J = KNUT(I) 
M 	MRED(I) 
MRED(I) = J 
DO 172 L a K,NC 
BLOC a A(J,L) 
A(J,L) 	A(MIL) 
A(M.L) = BLOC 

172 CONTINUE 
173 CONTINUE 
174 CONTINUE 

RETURN 
END 

SIBFTC SAG 	NOOECK 
SUBROUTINE SAG ( Q,RELS,VOL,ENDS,OBJ,B4OU,B3,IVTMBS,YTRD,NTIV, 
• NTLOS,NTCA,NTJS,NMBS,NRO,NLDS•JF.NJ$•NSJS•ALF,KUUNT) 
REAL 	 C(NTMBS,NTLDS),RELS(NTJS,31,VOLINTMASs2), 
• OP,J(NTIV),B(NTMBS,NTRO),QUlNTM8Ss2I,8J(NTMBS,NTMBSI 
INTEGER EN0S1NTM8S,21 

C 
C INCREASE LOAD MATRIX TO INCLUDE SUPPORTS 

IF (KOUNT.LT.2) GC TO 10 
DO 4 I a NFJSP,NJS 
DO 4 J = 1,JF 
IF (RELS(I,J).NE.1.) GO TO 4 
K = JF.(I — 1) + J 
L = K + 1 
NRC = NRC + 1 
DO 2 N = L ,NRC 
IJ = NRC + L — N 
IK = IJ — 1 
DO 2 II = 1,NLDS 

2 Q(IJ,II) = Q(IK,II) 
4 CONTINUE 

U7. 

C 
C CONSTANTS 

NFJS = NJS — NSJS 
NFJSP a NFJS + 1 

C 



C ADD SELF-WEIGHT TO LOAD MATRIX 
CO 5 I = 1,NMBS 
J = JF*ENDS(I,1) 
K = JF*ENOS(I.21 
DO 5 L = 1,NLDS 
UtJ,L) = OtJ,I) - VCL(I,1)/2. 

5 C(K,L) = Q(K,L) - VOL(I,11/2. 
+ VOL(I,2)/2. 
+ VOL(I12)/2. 

C 

C CORRECT LOAD MATRIX FOR SUPPORTS 
10 NRC = JF*NJS 

M = 0 
DO 20 I = NFJSP,NJS 
DO 20 J = 1,JF 
IF (RELS(I,J).NE.1.) CO TO 20 
K = JF*( I- 1) + J - M 
NRC • NRC - 1 
DO 15 L = K,NRC 
N - L + 1 
DO 15 II = 1,NLDS 

15 O(L,I() = O(N.II) 
M = M + 1 

20 CONTINUE 
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C 
C SELECT CRITICAL L040 PATTERN 

NIV = NM3S + NRC 
NCP = NMBS + 1 
NC = NMBS + NRC 
DO 35 I = 1.NMB'S 
DO 35 K = 1,NLDS 
BLOC = O. 
00 25 J 	1,NRC 

25 BLOC = BLOC + 30(I.J)*0(J.K) 
IF (K.GT.11 GO TO 30 
OU(1,11 = BLOC 
OU(I,2) = BLOC 
GO TO 35 

30 IF (ULOC.GT.OU(I,1)) OU(I,1) = BLOC 
IF (RLOC.LT.OU(I,2)) OU(I,2) = BLOC 

35 CONTINUE 
C 
C CALCULATE OTHER COEFFICIENTS 

WRITE (6,11) 

	

11 FORMAT (1H-,50H 	  
IF tNRD.E0.01 GC TO 50 
DO 45 I = 1,NRC 
J = NMBS + I 

45 OBJ(J) = 0. 
IF IKOUNT.CT.1) GO TO 50 
WRITE (6,602) ((BII.J),I = 1,NMBS),J = 1,NRO) 

602 FORMAT(1H0,6HSENS -/(10E12.3)) 
50 CONTINUE 

C 
ALF = 1. 

55 FORMAT (F12.4) 
IF (KOUNT.GT.II GO TO 65 
WRITE (6.60) ALF 

60 FORMAT (1H0,26HCOMPRESSICN COEFFICIENT IS,F12.4) 
C 

WRITE (6,601)NMBS,NIV 
601 FORMAT (1H , 5HNMtS-.I4/6H NIV- .141 

1 



WRITE (6,603) (CBJ(I), I=1,NIV 1 
603 FORMAT (1H0,5HCBJ -/(10E12.3)) 
65 CONTINUE 

WRITE (6,607)(f9U(1,J),I = 1,NMDS),J = 1,2) 
607 FORMAT (1H0,5HRN5 -/(13E12.3)) 

C 
C WRITE LOAD MATRIX C 

WRITE (6,160) 
160 FORMAT (1H0,16HL04D MATRIX Q -) 

DO 163 J = 1,NLDS 
163 WRITE (6,165) (C(I,J),I = 1,NRC) 
165 FORMAT(1H ,18F6.3) 

RETURN 
END 

fIBFTC LOMFRE 
SUBROUTINE LOMFRE (B,Q,UBJ,Z,X,Y,R,IZ,IXXP,IXP,NTMBS,NTIV,NRZ, 
• NCZ,NTRO,NTNI,NMBS,NRO,ALF) 
REAL B(NTMBS,NTRD),C(NTMHS,21,0BJ(NTIVI,Z(NRZ,NCZ),X(NTN1),R(NTRD) 
INTEGER IZ(NTN1),IXXP(NTIV),IXP(NRZ) 

C SET UP TABLEAU 
C 

C CALCULATE SIZE LIMITS 
NP a NMBS + NRO 
NP1 = NP + 1 
NO • NMBS•2 
M1 • NO + 1 
N1 = NP + NO 
IH • NMBS + 1 

C 
C SENSITIVITIES, RHS, AND OBJ IN 

DO 20 I = 1,NMBS 
K = I.2 
J = K - 1 
ZlM1,I1 = -OBJ(I) 
Z(J,I) _ -1. 
Z(K,I1 = -ALF 
JJ = NP + j 
KK = NP + K 
IXP(J) = JJ 
IXP(K) = KK 
IZ(JJ) = J 
IZ(KK) = K 
XX • -Q(I,1) 
YY = +Q(I,2) 
IF (NRD.EQ.0) GO TO 16 
DO 15 L = IH,NP 
M = L - NMBS 
Y = B(I,M) 
Z(J,L) = Y 
Z(K,L) _ -Y 
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C 
C CLEAR 6 Z• TABLEAU 

00 5 I = 1,M1 
DO 5 J = 1,NP1 

5 Z(I,J) = O. 
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XX = XX + Y4100. 
15 YY = YY - Y•1CC. 
16 ZIJ,NP1) = XX 
20 ZIK,NP1) = YY 

C 
C POINTERS SET UP 

DO 25 J = 1.NP 
IXXP(J) = J 
I2(J) _ -J 

25 X(J) = O. 
NUM = 1 

C 

C START ITERATIONS TO OBTAIN OPTIMUM TABLEAU 
C 

30 CONTINUE 
DO 35 I = 1,N0 
J = IXP(I) 

35 X(J) = Z(I,NP1) 

Y - O. 
DO 65 1 = 1.ND 
Al = A8S(Z(I.NP1)) 
IF (A1.GT.Y) Y = Al 

65 CONTINUE 
C 

XX i 0. 
IXX = 0 
Y = 1./Y 

00 75 I = 1,N0 
Al = ZtI.NP1) 

A1Y = A1=Y 

AA1 = AßS(A1Y) 

IF ((AA 1.GT.1.E61.AND.(A1.LT.XX)) GO TO 70 
GO TO 75 

70 XX = Al 
LL = I 
IXX = 1 

75 CONTINUE 
C 
C IS PIVOTING COMPLETE 
C 

IF (IXX.EQ.0) GO TO 200 
C 
C CACLULATE PIVOT COLUMN 
C 

Y = 0 . 
DO 80 J = 1.NP 
Al = ARS(Z(LL,J)) 
IF (A1.GT.Y) Y = Al 

80 CONTINUE 
C 

XX = 1.E30 
Y = 1./Y 
KK = 0 

C 
DO 85 J = 1.NP 
All = Z(LL,J) 

C 
C CALCULATE PIVOT ROW 
C 



AY a A11•Y 
AAY a ABS(AY) 
IF ((AAY.LT.1.E-6).CR.(AI1.GT.0.)) GO TO R5 
Al = Z(M1.J)/All 
IF (A1.GT.XX) GO TO 85 
XX = Al 
KK a J 

85 CONTINUE 
C 

C INFEASIBLE SOLUTION 
C 

Dll. 

IF IKK.NE.0) GC TO 95 
WRITE (6.90) 

90 FORMAT (1H-.61HINFEASIßLE SOLUTION 
•ITICAL ROW) 
RETURN ' 

C 
C PIVOTING 
C 

95 Al = 1./Z(LL.KK) 

00 105 J = 1.NP1 
IF (J.EQ.KK) GO TO 105 
ZILL.J) = A1•ZILL.J1 
All s ZILL.J) 
DO 100 I * 1041 
IF (T.EQ.LL) GC TO 100 
Z(I.J) = Z(I.J) - A11•Z(i.KK) 

100 CONTINUE 
105 CONTINUE 

C 

C 

C CHANGE POINTERS ANC REITERATE 
C 

NN a IXP(LL) 
MM = IXXP(KK) 
IZ(NN) = -KK 
I2(MM) = LL 
IXPILL) = MM 
IXXP(KK) = NN 
X(NN) a O. 

C 
NUM a NUM r 1 
GO TO 30 

C 

C CALCULATE CORRECT VARIABLE VALUES 
C 
200 CONTINUE 

WRITE (6,36) NUM 
36 FORMAT (1H0.15HTABLEAU NUMBER .12/) 

DO 205 J = IH.NP 
K = J - NMBS 
R(K) = 0. 

IF (NRO.EQ.0) GO TO 205 
R(K) = X(J) - 100. 

205 CONTINUE 

C 

C 
DO 110 I = 1.N1 

110 Z(I.KK) = -A1•Z(1.KK) 

Z(LL.(K) a Al 

NO NEGATIVE COEFFICIENT IN CRITICAL R 



D12. 

1 

C 
Y = 0. 
DO 210 J = 1,NMBS 

210 Y = Y + OBJ(J) • X(J) 
C 

RETURN 
END 

C 
C OUTPUT OPTIMUM AREAS AND VOLUME 

WRITE (6,10) 
10 FORMAT (1H0,50H 	  

WRITE (6,15) (X(I),I = 1,NMBS) 
15 FORMAT(1H0,22HCPTIMUM MEMBER AREAS -/(6E12.4)) 

WRITE 16,20) (R(I1,1 = 1.NRD) 
20 FORMAT (1H0,22HVALUES OF REOUNOANTS -/(10E12.4)) 

WRITE (6,25) Y 
25 FGRMAT (1H0, 19HSTRUCTURAL VOLUME ,1PE12.4) 
30 FORMAT (1H0,21HACTUAL AREAS NEEDED -/( 6E12.4)) 

WRITE (6,35) KOUNT 
35 FORMAT (1H0,16HITFRATION NUMBER,I3) 

RETURN 
END 

689 

tIBFTC ULTIM 	NCDECK 
SUBROUTINE ULTIM (X,Y,R.AM.NTMBS.NTRD.NTIV.NMBS.NRD.KUUNT) 
REAL X(NTIV),R(NTRD),AM(NTMBS) 
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