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Introduction

If a computer is used to design the shape of an object, the object is in some
sense modelled in the computer. This model consists of data arranged according to
various relationships, and is known as the data structure. One of the basic items
in the data structure or model is a description of the geometry of the object itself:
if ome is to apply computers to engineering design one must be able to describe the
curves and surfaces which define engineering shapes,

In industries where surface shape is of critical importance methods of surface
description have already been developed. The approach taken is largely that of fitting
surfaces to a grid of points defined in some other way.

The traditional method of describing complex shapes is by draughting a series of
sections along the object. This has two drawbacks: firstly, curves other than straight
lines and circular arcs are rarely used by the draftsman, although the object described
may be almost free form - this leads to obvious errors in description. Secondly, a
drawing may not define a curve shape fully - interpolations between the given sections
may lead to inaccuracies in the completed prototype. One aim of storing surface des-
criptions in the computer is to provide unambiguous definitions.

The computer must be able to deal both with analytic shapes such as conic sec-
tions, and with free form surfaces. (Free form surfaces being surfaces of abitrary
shape, both smooth or rippled.) It will be an added advantage if the computer can
deal with surface fitting from point data such as coordinate information, and with
surface design from the start in itself.

Several ways of geometric surface description are possible: descripticn by arrays
of coordinate data, by arrays of analytic section curves, or by purely analytic means.

The first has several serious disadvantages: excessively large storage needed,
cumbersome transformation computations, and inaccurate interpolations. The second,
known as "lofting" in the trade, stores the intersecting curves as sets of orthogonal
plane sections with the curves as a series of analytic equations. Storage is reduced
and there is a greater degree of analytic definition, but some interpolation is still
necessary to obtain points and curves not lying on the plane sections.

Analytic surface description overcomes many of the drawbacks of the other methods -
no interpolation is necessary, the exact shape is immediately known, and changes can
be made easily with the exact description always present.

To summarize: the most general way to describe a surface is to list sufficient
points on the surface to define it to the desired accuracy. This approach is too
cumbersome for normal use and in practice it is common to employ some form of inter-
polation scheme and list fewer points. The more elaborate the interpolation scheme
and the fewer the points listed, the nearer one approaches total analytic definition
6f a surface which is more convenient for computer~aided design and manipulation. In
mechanical engineering surfaces are generally smooth and regular, and analytic methods
are convenient. But for surfaces of a very arbitrary, almost random, nature (terrain
contours, for instance) the analytic methods of description become unwieldy and tedious
as well, and other methods are better suited for their description.



Parametric Curves

To describe the three~dimensional curves and surfaces found in mechanical
engineering, one attempts to achieve several objectives: to obtain axis independence
to be able to describe finite shapes, and to be able to decouple the representation,
The curve or surface is an actual physical entity being modelled mathematically, and
the model is inaccurate if dependent on the directions arbitrarily decided for the
axis directions. As finite objects the curves and surfaces are closed, and this may
lead to infinite slopes in the analytic description - very awkward to deal with.

Forrest(l)has shown that using parametric representation has several advantages
over the previously more general use of non-parametric representation. Each special
coordinate is evaluated and manipulated separately, and a particular value of the
parameter defines only one point of the curve. The bounds imposed on the parameter
ensure that the desired portion of the curve is selected. Infinities of slope can
easily be avoided.

Forrest noted that sophisticated interpolation techniques enable representation
of a single curve by a series of pPiecewise curves with degrees of continuity between
adjoining segments. He suggested using parametric polynomial functions as curve
segments, and noted that the parametric cubic spline segment is the simplest curve
which allows slope continuity with adjoining segments. It is also the simplest non-
planar curve: it is fully 3D in the general sense, and it is also the lowest order
curve with points of inflexion. Tt permits tangent vector continuity at both ends.
However it reduces to conic curves in special cases only and never to a circular are,
and it is not accurate for describing asymptotic curves. But once end points and
tangent vectors are fixed the cubic is completely defined.
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Extending the homogeneous coordinate approach to space curves using the basis
vector r = [u’ u? u 1] we obfain the rational cubic curve, which in general is a
twisted space curve with points of inflexion, (The homogeneous coordinate approach
can be considered as describing an n-dimensional curve in (n+l) hyper;rspace and pro-
jecting the resulting hypercurve on the n-dimensional space.) By adding the fourth
or homogeneous coordinate, one obtains a very flexible curve - the rational cubic
provides a standard form for describing straight lines, conics, cubics, et cetera,

and is fully defined by its two end points, its two end tangent vectors, and an inter-
mediate shoulder point.

Let V = [xy =z 1]

wV [wx wy wz w] = r = fudu?uil]

Then transform the primitive curve by a 4 x 4 matrix A
so that wv = [u3uw2ui1l] A

Substitution of end points and tangent vectors and "homogeneous coordinates™
((w) u=0, (wyu=l, (w)'u=0, (w)'u=1) yields a specific curve.

Coon's Patches

Coons(z) has developed the idea of representing a surface by using a quilt of
"patches” with the desired degree of surface and slope continuity across their bound-
aries. A patch has four edges which meet at four corners. The surface between the
four edges is defined by a weighting of the boundary functions defining the edges.

The whole surface is thus described in terms of its edge properties and one can thus
ensure that the internal patch shape is satisfactory by so designing the edge properties

If each patch edge is a segment of a 3D parametric cubic curve the data structure
is simplified since only a small amount of information is sufficient to define the
boundary curves. But the range of shapes a single patch can adopt is restricted,
as discussed above, unless rational cubic curves are used. These "bicubic'" patches,
as they are called, can be defined by the four corner coordinates, the eight slope
vectors of the ends of the edges, and the four twist vectors at each corner.

Using Forrest's(S) notation, a patch is represented by the vector expressioh (tu),
which in the three dimensional case is (tu) = [x (tu) y(tu) z(tu)] A patch 1s typi-
cally the sum of one or more types of Coons surface, denoted here by f£(tu), g(tu), etc.
Then (tu) = f(tu) + g{tu) + ..... The patch will always consist of at least
the component f(tu). A patch has four boundary curves: (t0), (tl), (Ou), (lu) and

four corner points (00), (01), (10), (11). These are, of course, vectors. Figure 1
shows the basic Coons surface patch.

The basic form is £{tu) = -[-1 Fo(t) TF;(t)) 0 (t0) (t1)] |-1
(0u) (03) (O1)| |Fp(uw)
(1u) (10) Q1)) [F(w

This surface form is composed of the boundary curve vectbors and the corner points,
and the four functions Fy(t), Fy(t), Fg(u) and F;(u) which are sometimes called the
blending functions. Other than the restriction that they should meet at the four cor-
ner points, there is no restriction on the boundary curve functions, provided they
can be represented in a parametric form. To ensure that the surface f(tu) includes
the boundary curves and corner points, the four F blending functions have the
properties that:

Fi(j) = éij‘ ¥ i,j (for all i,3)

and further, to ensure that the slope across the boundaries depends only upon the



two end tangent vectors across the boundary and blending functions :
FI() =0, ¥i,j
(3)

It can be shown that the corner cross derivations are all zero.

By introducing a second form g(tu)
such that
g(tu) = [~1 Gg(t) Gy ()] | O g(tO)u g(tlu -1
g(Ou)t {00) tu (01l)tu Gy (u)
g(lu)t (10) tu (1) tu Gy (u)

where Go(t), G,(t}, Gy(u), G;(u) are slope blending functions which have the following
end conditions to ensure that the correction surface has zero positioned value on the
patch edge but has the required cross-boundary slopes

G. ()
and G& (3

0 Vi, j

81] Vi, 3
one can match patches with given cross-boundary slopes, or non-zero twist vectors.
One now has a general expression for a slope-matching, slope continuous surfaee

patch with entirely arbitrary boundaries and entirely arbitrary slopes across these
boundaries.

It is often convenient to use particular boundary curve functions defined by
curve end-points and end-point tangent vectors. If the blending functions themselves
are used by writing

(tp) = [Fg(t) Fy(t) Go(t) G;(e)1 [(00) ete.
(103
(([0)) =
(10) ¢
one obtains for (tu) = £(tu) + g(tu)
(tu) = [Fo(t) Fy(t) Gg(t) G(t))1[ (00) (01) (00)u (Ol)u Fo (u)

(01) (11) (10)u (11)u Fi(u)
(00)t (01)t (00)tu (Ol)tu Gg (u)
{100t (1Dt (10)tu (1l)tu Gy (u)

where the 4 x 4 matrix is the boundary condition matrix B. Given the blending func-
tions, the surface is defined purely in terms of the four corner coordinates, the
eight tangent vectors, and the four "twist" or cross tangent vectors.

If the blending functions are chosen to be the primitive cubic blending functions
(the simplest functions to obey the necessary conditions above) then one gets the
bicubic form
(tu) = [Ap(t) Aj(t) Bo(r) Bi()) [(00) (01) [(00)u  (0L)u | |Ag(w)
(10)_ (11)_ Q0)u _ (1l)u | {A;(u)
(oo)t (Ot |(00)tu (O1)tu| |Bg(u)
(o)t (11t (Q0)tu (11)tu| |Bj(u)

where Ao(x) = 2x3 ~ 3x2 + 1
Ap(x) = -2x3 + 3x2
w3 - 0.2 It is this form that Armit's program "Multi-
Bo (x) * 2xt + x Patch Design Program" uses. {4)
Bi(x) = x3 - x?



A Program for Fitting

In dealing with curves and surfaces there can he two basic ways of treating the
surface: fitting or designing. Fitting is the problem, given the existing shape, of
‘obtaining a mathematical representation, or perhaps simplifying a known complex
analytic expression of a shape. Designing involves creating a shape from scratch or
perhaps modifying an existing shape and its mathematical description.

The aim of the work described helow was to tie together fitting a surface to a
curvilinear grid of data points using the program "Multi-Patch Design Program" (MPDP)

written by Armit of the C.A.D. group, Cambridge, for designing murfaces from scratch
using a PDP-7 and associated display.

Previous attempts to use the MPDP to fit surfaces to point data have(s)proven
unsatisfactory: the methods were long, tedious, and did not give really smooth sur-
face fits. Given that there are many mechanical engineering cases where a design
would proceed by first fitting a curve or surface and then refining the shape, using

design techniques, it is obvious that a surface fitting method compatible with MPDP
would be of great benefit.

The program GADA/REM/SUBROUTS was written to obtain the boundary condition
matrices B of a quilt of patches covering the grid of data points on the surface. Th
method is limited in that the data points must lie on the corner points of the patche

and must thus form a curvilinear grid pattern in x, y, z space (a rectilinear grid on
the t, u plane).

Forrest provided a simple method of calculating the tangent vector based on the

F-Mesh, (6) devised to fit a surface to an array of data points homeomorphic to a
rectangular grid of points.

For tangent vectors there arc four possible cases

i) only one point on line - error message
ii) only two points on line

P'(1) =P'(2) =P(2) - P(1)
iii) three or more points on line, tangent vectors at ends.
Computed to make ends parabolas.
P'(1)
and P'(m)

it

2{P2) ~P(1)} -P'(®)
2{P(m) - P(m-1)} - P"(m-1)

]

where P(1l) and P(m) are at ends.
iv) three or more points on line, tangemt vectors at interior points
P'(i) = P{i+l) - P(i-1)
|P(i+l) - P(i-1)|

% min. of %]P(i+1) -p@)|, |pPd) - p(i-1)

For the cross derivative or twiet .vector at each corner, a formula suggested by
Birkhoff and de Boor (7) is used

PY(j) = l[P(i+1, J+1) + P@-1, j-1) - P(i+l, j-1) - P(i-1, j+1)]
4

If any of these four surrounding points is not specified, its coordinate is interpolat
linearly from the two closest points. (For instance, in the case of P(i+1, j+1), from
P(i+l, j) and P(i, j+1)). 1If either of these is not specified, the twist vectow is
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set to zero. The effect of the approximation made in the linear interpolation is
found to be negligible, as the value of the vector is not much changed, and the sur-
face is not very sensitive to the value of the twist vector at any rate,

The data read in are

i) the number of rows of the rectangle in which the surface grid fits,
the number of columns, (format: 2 I 4);

ii) the key element to each point, row by row. This is set to 1. if the
coordinates are specified,

+1 if the horizontal tangent vectors of the point are specified
+2 n T VEI‘tical " n " n " t 1"
+£. L1] 1 tWiSt i1 " " " n L}

(format: 18F 4.0) - ©Note that the grid may appear as in Fig. II;

iii) Point by point, row by row, the x, y, and z coordinates of each data point
specified are read, (format: 9F7.1) and the specified tangent or twist vec-
tors, if any, are read (format: 9F7.1).

This is all the data needed.

The output is

i} row by row the 13 elements (the key element, the three coordinate com-
ponents, the nine vector components) are written;

ii) row by row the boundary conditions matrices B of each bicubic patch
are written. The convention of writing the vectors is as follows:

for a given point C (Diagram I) the matrix is written as -

X components y components Z compomnents
C S c 5

c c v v
E SE E SE

c c v v

0 S| % | Or

EHu SEH ET SET

where the points C, S, E and SE are shown in Diag.l and where the Sub-
scripts C, H, V and T stand for position, horizontal(ie. along row),
vertical (ie. along column), and twist vectors respectively. Horizontal
and vertical vectors are positive in the directions of increasing col-
umns and rows respectively.

A more detailed summary of the internal data structure is given in Appendix A.

The tape punching program CADA/REM/BINARY is described in Appendix B.



Results

Coons(z) shows that it ig possible to choose a parametric cubic which very
nearly approximates a circle for one quadrant. Consider Figure III

x = [udy?y 11 M 1o where the column vector is the
1 end conditiong
a
0

Then for u = | this becomes

x=1{124 8] 2 -2 1 1 0
-3 3 -2 - 1
0 0 1 o a
1 0 0 o o
Solving a = 8x - 4
But at u = {, x = 12 » by tan (n/4),
2
thus a=4(/2 - 1) = 1,656
and a? = 2.752

Coons shows that for a quasi-sphere, using the quasi-circle ag boundary curves,

the boundary conditions matrix B is given by

for z components B= [ 1 0 0 -3
1 0 0 -3
Q o0 o 0
[0 0 0 o]
for x components B = r-0 0 0 07
0 1 a o
0 a a2 ¢
L0 0 0 o |
for y components B= [ 01 a o
0 0 0 o
0 0 0 o
(0 -a=-aZ o J
where, as shown above, a = 1,656
a2 = 2,752

Thus for a quasi-sphere of radius = 100 (see Figure IV)

B= 10 0o Jo o |o 100 | 166 0| 100 o [ 0 -166
0 _100 166 0 | o 9 .0 __0]100 0 o0 -1
0 7186|275 0 T B R Bl 0770~
© 0 0o 0o [0 -166 -275 o 0 0 o 0



the values obtained from the program CADA/REM/SUBROUTS are scaled up to enable com-
parison with Coons' values above. (The purpose for dividing the quadrant into a
20 x 20 grid is to achieve better accuracy; the values of the tangent vectors at any
point are only dependent on the Position vectors of the surrounding points.- the

closer these are to the point considered, if the surface ig regular, the better the
approximation.)

The boundary conditions matrix obtained thus is

B = o |o

0 010 100] 157 o] 100 o | o -157
0 100 157 0|0 o O 0100 0 o -157
0 157|248 0 j o o l o o o o | o 0
0 0 0 o0f0-157 -248 o o 0 0 0

This shows not only that the Program is working to a good degree of accuracy

(9/166 = 637, 27/275 = 10%Z) with only twenty divisions, but also that the formula
for the twist vector is acceptable, not bringing in any non-zero elements where

they are not expected, and keeping the apparent error to within 103 with this re-
latively coarse grid. Subsequent display of both the results with MPDP an the PDP-7
showed that they were both very good approximations to the eye of a true quadrant.

Following this reassuring result, the data points Previously taken from a wooden
shoe-last by other members of the CAD Group were obtained and fed into the fitting
Program CADA/REM/SUBROUTS. The resulting values of twist and tangent vectors were
found to be in good agreement with results obtained earlier using a trial-and-error

method to design the tangent vectors by looking at the display screen to see their
effects on the smoothness of the shape.

At the time of termination of the project the author was attempting to display
Part of the results obtained. A difficulty here is that the PDP-7 can only take
about ten patches at a time and the complete shoe last needed ninety-six for full
definition. However a reasonable view of the toe of the shoe was obtained using the
program CADA/REM/BINARY to convert the patch data structures obtained from CADA/REM/

SUBROUTS into a binary form on 8-track tape suitable for digestion by the Multi-Patch
Design Program on the PDP-7,

This transformation and tape-punching program is described in Appendix B.



Appendix A - CADA/REM/SUBROUTS

The program is written in FORTRAN IV for implementation on Titan, the prototype
Atlas II at the Computer Laboratory, University of Cambridge. Its purpose is to fit
a quilt of boundary condition matrices B to a curvilinear grid of data points for usge
with the program MULTI-PATCH DESIGN PROGRAM written by Armit of the Computer-Aided
Design Group in the Laboratory. As such it should be used in conjunction with the
program CADA/REM/BINARY which punches the patch data in binary form on 8-track pPaper
tape for input to the design program in the PDP-7.

Each data point in the smallest rectangular grid into which the shape can fit,

whether specified or not, requires 13 elements of a 3D floating-point array, ARRAY
(see Figure II)

Input is:

i) MR, number of rows )

NC, number of columns) format 2T4

ii) ARRAY(I, J, 1) the key element, row by row, where the key element
equals 1. if the point coordinates are specified

+1. " " horizontal tangent vectors of the point are spe

+2. 1] " Vertical 1] 1 11 T n " llf

+l‘ n 1" twist n " 1t n " 111
. .

iii) the x, y and z coordinates of each specified point and the specified
tangent or twist vectors, if any. Row by row. Format for both ii)
and 1ii) : 9F7.1

The data is held in the m x n x 13 array ARRAY. The thirteen elements for each
point are the key element, the three position coordinates, the three horizontal tangen
coordinates, the three vertical tangent coordinates and the three twist coordinates.
Horizontal {ie. along the rows) and vertical(ie.along the columns) tangents are taken
positive with increasing columns and rows respectively.

The program is split into five subroutines:
the main routine which inputs, calls the subroutines and outputs;
HORTANV, which calculates the horizontal tangent vectors;
VERTANV, which calculates the vertical tangent vectors;
TWISTV, which calculates the twist vectors; and
PATCHES, which reorganises the contents of the array ARRAY into the
boundary conditions matrices B of the patches.

The main routine dimensions ARRAY, reads the rectangle dimensions, checks them,
sets ARRAY to zero, reads the key elements, reads the position coordinates and any
specified tangent vectors, calls the three calculating subroutines, outputs the con-
tents of ARRAY, and calls the reorganising subroutine.

HORTANV, virtually identical to VERTANV, row by row calculates the horizontal
tangent vectors, if not specified. To do this properly it looks two points on éither
side of the current point to determine which method of calculation to use (see main
text and Diagram II).

TWISTV row by row calculates the twist vectors. To do this ik must look at each
of the points SE, NW, SW and NE (see Diagram III) to see whether they are specified.
If one is not then its position vector is interpolated from the two points between it



and C, the current point. (For instance, in the case of point SE, points S and E).
If either one of these is not Bpecified, then the rwist vector is set to zero.

PATCHES sets 5 x 12 array, PATCH, to zero and writes into it the components of
the boundary conditions matrix associated with the current patch, This is partitiope:
and each partition transposed to give the structure of the main level. PATCH is
read out and the next point, row by row, considered. (See "A Program for Fitting,"
main text).
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Appendix B - CADA/REM/BINARY

The program is written in FORTRAN IV for implementation on Titan. Its purpose
is to punch an eight-track binary tape of the patch data geverated by CADA/REM/SUBROUTS
to enable this data to be read into the program MULTI-PATCH DESIGN PROGRAM in the PDP-7.

The form of the tape is shown in Diagram IV. The PDP~7 program demands that
the two left~most holes be always punched and that the number be in 18-digit binary.
This means splitting the number into three parts: the first » the significant fig-
ures in binary greater than 4096 (=212), the second, the significant figures in binary
between 4096 and 64 (=26), and the third, the rest.

Each patch has associated with it fifty four numbers. The first is the {(unique)
number of the patchs The second specifies the number of internal lines specified
(ABU, BCW). The next four are associated with such things as the numbers of the
surrounding patches, their edges and cyclicity, the type of cyclicity of the patch
(low or high), and continuity. These four have been set to zero in CADA/REM/BINARY.

The next sixteen are the X-components, row by row, of the boundary condition

matrix B, the next sixteen numbers the y-components, and the last sixteen the z-
components.

In addition, in the first two numbers are encoded such characteristics as in-
visibility on/off, corner labels on/off, patch and corner labels on/off, hedge-hog
on/off, hedge~hog edge/full, ABU parameters edge/full, BCW parameters edge/full. In
the present program all options are set at off.

There is a sign discrepancy between Coons(l)and the MPDP system (see Diagram V).

This means that the signs of elements Sv’ SE,, EH’ and SEH must be reversed (see main
text).

The final number on the tape must be 7777778.

Input is the exact output of CADA/REM/SUBROUTS : row by row, the boundary con-
ditions matrix B of each patch is read in, format: 4 (4F7.0, F10.0, 3F7.0, F10.0, 3F7.0)/.
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