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Abstract: Static estimation treats variation in the dependent data as noise, or error. In

simulations using agent-based models, however — especially with dynamic responses — such

variation in the simulated output may well possess valuable information from the simulation. We

explore previous methods of estimating simulation models before examining the simulated output

from an early agent-based model in marketing, and asking whether these methods allow the

modeller to conclude with some degree of confidence that the simulated output is generated by

essentially the same process that generated the historical output by measuring the degree of

similarity between two sets of time-series. We introduce a new measure, the State Similarity

Measure (SSM), to measure the distance beween two sets of time-series that embody dynamic

responses.
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1. Introducing the State Similarity Measure

The problem is to decide how well an agent-based model built in order to examine the rivalrous

dance of oligopolistic competition (necessarily with dynamic responses) is performing, compared

to historical data of the modelled market. This issue is not new. Agent-based models of financial

markets can be compared with historical markets using the large amounts of historical data.

Amongst other methods, the “method of simulated moments” has been used.

But in order to undertake this method, we need large amounts of data, which are not

available for the market we have modelled — brand competition among ground coffee brands in a

supermarket chain. This is one issue: given one historical realisation, and given any simulated

moments we wish to derive from our model, what is the degree of confidence that the model is

capturing the essential actions and reactions of the historical market?

Second: just what are the appropriate moments (summary statistics) to calculate for both

historical data (when we have enough) and the simulations output? For the exchange markets that

others (Franke 2009, Winker et al. 2007, Chen et al. 2012) have modelled, there has been much

effort in analysing historical data: it is from these analyses that such characteristics of these

markets as “fat-tailed distributions” and “volatility clustering” have been derived.

In this paper we, first, discuss the issue of validation of simulation models using historical

data; second, the simulated method of moments, as applied to exchange markets; third, possible

moments to be used to validate models of oligopolistic competition and introduce the State

Similarity Measure; fourth, comparing historical data using the SSM; fifth, validating simulation

outputs against historical data using the SSM; conclusion; appendix.

2. Validation of Agent-Based Models

The author has been involved in a research program to elucidate the issues involved with building

1. An earlier version of this paper was presented at the workshop on Advances in Agent-Based Computational

Economics, ADACE 2010, July 5−7, 2010, Center for Interdisciplinary Research (ZiF), Bielefeld University,

Germany, and the Sydney Agents Group, UTS.
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agent-based models of oligopolistic competition. In particular, he and colleagues (Marks 1992,

Marks Midgley & Cooper 1995, Midgley Marks & Cooper 1997, Marks 1998, Midgley Marks &

Kunchamwar 2007, Marks 2007) have been involved with comparing their models of market

interactions against historical records of such markets.

Such comparisons could be used for (at least) two reasons: first, to choose better

parameters (or models), and, second, to measure how realistic the behaviour of a model built with

parameters chosen for another reason (in this case to maximize weekly profits by brand over a

period) is, compared to the historical data.

To achieve this, we have coined the phrase “model assurance” (Midgley et al. 2007) to

include the twofold process of model verification (assuring ourselves that our computer model is

doing what our conceptual model does — that there are no bugs in the code) and model validation

(assuring ourselves that the output from the computer model is “realistic,” to a degree). Of

course, by their nature, models — both conceptual and computer implementations — are

abstractions from reality, so some judgement must be exercised in our validation stage.

We need to distinguish choosing the model’s variables (choosing the model, in effect)

from asking whether the model (with variables chosen using some independent criterion) exhibits

behaviour that is “close” (in some sense) to the historically observed outcomes. This distinction

is important, since “validation” can sometimes mean choosing model variables in order to

minimize a measure of divergence between the model’s behaviour and the historical outcomes.

This distinction can only matter when the researchers have another means to determine the

model variables. Midgley et al. (1997) used a learning algorithm (the Genetic Algorithm, or GA)

to determine the model variables when maximizing weekly profits was the aim of the modelling

exercise. Others (for instance, Hansen & Heckman 1996, and Gilli & Winker 2002) derive

(“estimate”2) variable values indirectly: Gilli and Winker estimate the values of an agent-based

model of a foreign exchange market, and Hansen and Heckman argue that calibration of the

micro foundations of macro models (of, for instance, the real business cycle) can lead to more

robust models.

Another way of considering this is that we are interested techniques to test the hypothesis

that the output from our agent-based model is sufficiently similar to historical data from the

exchange markets we are interested in modelling, in order to understand the historical interactions

among the players, rather than in applying techniques of variable estimation or model calibration

in order to choose models or parameters.3 We shall derive measures of similarity between model

and history in order to aid the decision of what is sufficient in closeness.

In order to do this, following Fagiolo & Roventini (2012), given a set of initial conditions

(including any random-number seeds), we run our model until it converges to some stable output

behaviour (i.e., for at least T > T ′ time steps). Suppose we are interested in a set

S = {s1, s2, . . . snm
} of statistics to be computed on the simulated output variables. For any giv en

run, the program will output a value for each statistic. Given the stochastic nature of the process,

each run will output a distinct value for the statistics. Therefore, after having produced M

independent runs, we have a distribution for each statistic containing M observations, which can

be summarized by computing its moments. These moments, however, will depend on the initial

conditions (parameters).4

2. Oreskes et al. (1994, p. 642) describe “calibration” of a model: “The process of tuning the model—that is, the

manipulation of the independent variables to obtain a match between the observed and simulated distribution or

distributions of a dependent variable or variables—is known as calibration.”

3. Miller (1998) argues for testing models to destruction in the space of input parameters in order to derive a sense

of the robustness of each model. Although it is important to spell out one’s input parameter settings (as Winker et

al. 2007 do), we are not here concerned with choosing these. See also Grimm et al. (forthcoming).

4. As Fagiolo and Roventini comment, by exploring a sufficiently large number of points in the space of initial

conditions, we might get a quite deep descriptive knowledge of the behavior of the model. In a way, that is what

our machine-learning algorithm achieves, while searching in the non-linear parameter space for more profitable

models. See also Fagiolo et al. (2007).
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Because of our use of simulated evolution (via the GA) with agent profitability as our

“fitness”, we are not concerned (unlike many other agent-based model researchers) with model

selection through use of the simulated moments. Instead, as mentioned above, we are concerned

with empirical validation of our models, using the simulated moments derived from the M runs of

the model.

Chen et al. (2012) provide a good description of using the method of simulated moments

to estimate the model parameters (“the indirect method”, Gourieux & Monfort 1997), and discuss

the earliest papers to do so, including: Winker & Gilli (2001), Gilli & Winker (2003), Winker et

al. (2007), and Franke (2009). They also outline six practical issues in the use of MSM: the

dimensionality of the vector of statistics, the statistics included in the vector, the set of initial

parameters, the “distance function” (see below), the search algorithm used for global

optimization, and the number of runs M , which is the sample size of simulated moments.5

3. The Method of Simulated Moments

We are interested in comparing the distributions of summary statistics (or “moments”) from the

model and from the empirical data (or “history”); we leave until later discussion of just what

these statistics should be for our model of market interactions, whereas others have used the

logarithm of returns in models of exchange.6 Let L be the greatest lag in forming these statistics;

let yh
t be a vector of historical variables observed in period t, of arbitrary dimension; let historical

observations be available over a time span t = 1 − L, (2007). . . 1, . . . T . The summary statistics

derive from nm moment functions mi(. ), defined on L-stretches of a variable yt . Let

zt ≡ (yt , yt−1, . . . , yt−L). The ith empirical moment is computed as the time average

(1)m̂Ti ≡ 1
T

T

t=1
Σ(zh

t ), i = 1, . . . , nm

The index T is the explicit length of the sample period. m̂ is only an estimate of of the true

unconditional mean of the real-world stochastic process, and the actual sequence {yh
t }T

t=1−L is just

a single realization of it.

Following Chen et al. (2012), let X be a set of chosen moments (statistics) derived from

the historical data, X = (X1, X2, . . . , Xnm
), and let Y be the equivalent in the synthetic, simulated

data, Y = (Y1, Y2, . . . , Ynm
). In addition, let D be a distance metric between X and Y. The smaller

the difference between them, the greater the likelihood that the model generating the synthetic

moments is sufficient to describe the historical process. We use this approach below.

4. Which Moment to Use? The State Similarity Measure (SSM).

For researchers using agent-based models to build artifical stock markets, the question of which

moments to use is a simple one: the standard measures of variability and clustering, including the

volatility. Such researchers are attempting to explain (at least) four stylized facts of financial

markets: the absence of autocorrelations, volatility clustering, long memory, and fat-tailed

distributions. Frenke (2009) lists six possible moments: the mean and autovariance of the returns

and absolute returns, and two moment functions that are related to the Hill estimator of absolute

returns. Frenke (2009), Winker et al. (2007), and Gilli & Winker (2003) use the simulated

method of moments to (indirectly) estimate the parameters and initial conditions for their models

that minimise the distance between the simulated moments and the historical moments.

As mentioned above, our study differs to two ways from this: our parameters are

determined to maximise our agents’ weekly profits, perhaps greatly exceeding historical profits,

and our agents are not buying and selling on an artificial stock market, but are competing to sell

imperfect, distinct substitutes in a retail grocery oligopoly market. The first means that we are not

5. Richiardi (2012) also discusses the methods of estimating the structural parameters of agent-based models.

6. This discussion is adapted from Franke (2009) and Chen et al. (2012).
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interested in estimation of the model parameters. The second means that our moments of interest

are quite different from the earlier studies.

Figure 1 shows the weekly prices and volumes sold of coffee brands in our supermarket

Chain One.
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Figure 1: Weekly Sales and Prices (Source: Midgley et al. 1997)

The following stylized facts can be seen in the patterns of competition among the nine

brands:

1. Much movement in the prices and volumes of four strategic brands — a rivalrous dance.

2. For these four brands, a high price (and low quantity) is punctuated by a low price (and a

high volume).

3. The remaining five brands exhibit stable prices and volumes, by and large. For this reason

we are abstracting away from these five brands, and focus solely on the first four.

Also notice that only one brand discounts deeply in any week and no brand discounts deeply two

weeks in a row. These are restrictions placed on the brands’ marketing actions by the

supermarket chain. This is a moderated competition: as well as the two restrictions just noted, the

brands’ prices (and other marketing actions) are changed together, at midnight on Saturdays, and

remain unchanged for the next seven days, which makes modelling this synchonized oligopoly

easier.

We believe that these data reveal an strategic interaction among the four (coloured) brand

managers, where any manager’s action next week is a function of the perceived state of the

market this week and perhaps in previous weeks. We simplify the state of the market in any week

as the four players’ prices this week. We assume that the price Pb,w of brand b in week w is a

function of the state of the market Mw at week w, where Mw in turn is the product of the weekly

prices Sw of all brands over sev eral weeks:7

(2)Pb,w = fb(Mw) = fb(Sw−1 × Sw−2 × Sw−3
. . .)

Since our data represent a strategic interaction with the four evidently strategic players

responding to the previous (and perhaps anticipated) actions of other strategic players, and with

the supermarket’s moderation of this rivalrous dance, we first consider a window of four weeks
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when deriving moments from the time-series data: this allows all four brands the possibility of a

deep discount in the period, even if such a pattern is not always observed. It does not imply that

any one brand has four weeks’ memory.

We now face the curse of dimensionality: when is a rival’s price change strategically

significant (to be responded to) and when is it ignored? Assume that there is a threshold (and

assume that it is brand-independent, for the moment). Marks (1998) develops a model of

partitioning that uses the data depicted in Figure 1 to explore the revealed perceptions of the

brand managers by analysing the historical data. By searching for the dichotomous partition (into

“high” and “low”) along the price line between each brand’s highest and lowest price in the data,

and by using the information measure of entropy,8 he concludes that whether or not a rival

changes its price from one week to the next is more significant than by how much the price has

changed, or whether the price has changed from “high” to “low” or vice versa.

This suggests that we could coarsen the historical price data into simple dichotomous

actions — whether the price changed or not — but it may be that further analysis following on

from Marks (1998) would reveal that we were ignoring information that is significant to the brand

managers, and so we do not partition quite as coarsely as this here.9

Nonetheless, partition we must, lest the high measure of dimensionality when each one-

cent-per-pound change in price is strategically significant strangle us in a large number of

irrelevant (from the data) states.

One way of building a simulation model is to choose actions (prices) from a restricted set

of possibilities, and which are brand-specific. For instance, Midgley et al. (1997) use cluster

analysis to determine the set of four (or eight) most frequent actions of each brand in the data.10

This means, of course, that the simulated data must be restricted in their actions (or prices), unlike

the historical data, which suggests that we should partition the historical data before calculating

the historical moments to compare against the simulated moments in measuring the performance

of the simulation model.

Having generated our simulated time-series, and partitioned our historical time-series, just

what moments can we use to compare them? With the fourfold or eightfold partition of the price

line, any brand’s prices is not a particularly powerful moment (however summarised), but the

combination of price responses among the distinct brands becomes more powerful.

With four brands and four possible price intervals, in any week there are 44 = 256 possible

states of the market. With a window of four weeks, when each week’s state can result in any one

of 256 possible combinations next week, and so on, there are 2564 = 4, 294, 967, 296 (or 232)

possible four-week states. Remember: implicit in this are each brand’s possible reactions to the

prices of its three rivals last week, which in turn are responses to the four actions of two weeks

previously, which in turn ...

If we coarsen the number of possible actions by halving it to two per brand per week

(Marks 1998), say “high” and “low”, then the number of possible four-week states falls to

216 = 65, 536. That is, each brand is in one of two possible states per week; with four brands,

there are 24 = 16 possibilities per week; with a four-week window, there are 164 = 65, 536

possibilities. On the other hand, if we refined the number of possible actions by doubling it to

eight per brand per week, then the number of possible four-week states would rise to

264 = 1. 8 × 1019. Figure 2 shows the time-series of Chain 1 prices (from Figure 1) of the four

7. Incidently, in our earlier work, we used the GA to search for “better” brand-specific mappings fb between market

state Mw and brand price Pb,w.

8. Marks (1998) acknowldges that a better metric would be the profits earned as a function of the coarseness or

fineness of the players’ perceived partitions of prices, and exactly where the partitions occur, but this analysis has

not yet been accomplished for these data.

9. Here, the time dimension of the data set is naturally discrete (the historical brands change their prices

synchronously, as mentioned above), but other data sets would demand time partitioning as well.

10. The set could have the same number of elements as the perceived strategic partition, although this identity is not

necessary.
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strategic brands after dichotomous partitioning into the two price ranges, “high” and “low”.
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Figure 2: Partitioned Weekly Prices of the Four Chain-One Brands

We believe that the partitioning captures the essence of the strategic interactions among the four

rivalrous brands, as suggested by visual comparison of Figures 1 and 2.

With dichotomous (mid-price-range) partitioning and four-week windows, there are

65,536 possible states. With seven sets of time-series,11 each of 78 weeks, there are 75 × 7 = 525

weekly historical observations (after subtracting three weeks initially). That is, the raw historical

data provide a sample which equals less than 1 percent of the possible states, whereas, with

simulated data, we can generate as many data as we wish.12 Could we bootstrap the historical data

to obtain more?

With sufficient historical data and simulated data, we could derive distributions of the

historical and simulated states across the 65,536 possibilities. One possible measure of closeness

of fit of the simulated output to the historical data could be defined as the sum of the differences

Dsh
ad between the two time-series:

(3)Dsh
ad =

i=n−1

i=0
Σ |N s

i − N h
i |,

where N s
i is the number of state i observed in the simulated data, N h

i is the number of state i

observed in the historical data, and n is the number of possible states, here 65,536. These

measures could also be used to compare the behaviour observed in separate historical

oligopolistic markets.

This number DAB
ad is the distance between two time-series sets A and B. This new

moment is called the State Similarity Measure (SSM).

5. The Historical Data

The seven historical time-series do not include all of same brands, which means that direct

comparison of the strategic behaviours across the seven chains is not always possible. All seven

contain Brands 1, 2, and 3, while Chains 1, 2, 3, and 7 contain Brands 1, 2, 3, 4, and 5. Chains 4,

5, and 6 do not include either of Brands 4 or 5. Various of the chains include one or more of

another seven brands, although several chains have only four brands. The 78 weeks of all time-

series cover the same historical dates, however.

11. Corresponding to the seven supermarket chains in the historical data.

12. We shall find, however, that most possible states are never observed, in either the historical data or the simulated

output.
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5.1 Comparing History: Four Chains with Four Brands

For this reason, we calculate the frequencies of four-week states of the Chains 1, 2, 3, and 7,

using dichotomous, mid-point (“high” versus “low”) pricing. The six absolute differences (or

SSMs, from equation 3) between these four chains are given in Table 1, as measured by the

differences in the frequency of each state being observed in each chain. (See the Appendix for

the method of deriving these.) Table 1 also gives the absolute distances between each of these

four chains and a single realisation of a random pattern of pricing from the four brands, where in

any week each brand is equally likely to price “high” or “low”.

Chain 1 Chain 2 Chain 3 Chain 7

Chain 1 0 128 112 110

Chain 2 128 0 132 138

Chain 3 112 132 0 124

Chain 7 110 138 124 0

Random 150 150 150 150

Table 1: SSMs Between Chains 1, 2, 3, 7 (with Brands 1, 2, 4, 5)

How can we understand these numbers? There are 65,536 possible states, but the

historical data that we have for each chain only include 75 overlapping four-week windows, or

data points. Define C as the maximum number of window states in the data. Here C = 75. At

least 65,536 − 75 = 65,461 states will not be observed in the data from any one of our historical

chains. (Some states may be observed multiple times.) If each state is observed the same number

of times in the data from any two chains (perhaps zero times), then the difference between the two

chains is zero for that state. If we observe state k occurring twice in one chain’s data and zero

times in the other’s, then the difference between the two chains is two for that state. The numbers

in Table 1 are the sums across all possible states of the differences between the historical data of

the two chains being compared.

If the two patterns of strategic behaviour are sufficiently distinct, then none of the states

oberved in one chain will be seen in the other, and vice versa. This would give a measure of 2 ×
C (here, 2 × 75 = 150), as the maximum difference between two of our 75-week windows. The

minimum would be zero: the strategic patterns (as measured by the coarse “high” and “low”

partitions) would be identical.

None of the pairs of historical data is particularly close: the differences range from a low

of 110 between Chains 1 and 7, to a high of 138 between Chains 2 and 7. We see that Chain 1 is

closest to Chain 7, that Chain 2 is closest to Chain 1, that Chain 3 is closest to Chain 1, and that

Chain 7 is closest to Chain 1. The differences are not, of course, additive, because of the

underlying complexity of the processes and measures.

What of the time-series of random “highs” or “lows” of the four brands in any week?

Choosing actions at random is equivalent to choosing 2 × C = 75 of 65,536 states at random

(given the length of the time-series), or 0.114 percent, at random. We should not be surprised that

there is virtually no overlap of states between any of our historical time-series and a time-series of

randomly chosen actions for the four brands each week (see Figure 3 below).

If we use the null hypothesis that each of two sets of time-series is random, then we can

set 1% and 5% one-sided confidence intervals to the SSM numbers. With four brands and C =

75, the largest SSM is 150. Monte Carlo simulation shows that 99% of pairs of sets of four

random time series are at least 148 apart.13 This means that, in Table 1, all six pairs of chains’

time-series are significantly non-random, and the null hypothesis is rejected for each pair (except,

of course, for the pairwise comparisons with a random realisation).

13. This number was determined by a parameter bootstrap simulation of 100,000 replications of pairs of sets of four

quasi-random time-series, calculating the SSM between each pair, and examining the distribution to derive the

one-sided confidence intervals. The lowest observed SSM of 140 appeared twice, that is, with a frequency of

2/100,000, or 0.002 percent.

Section on Statistics and Marketing – JSM 2010

545



We show this in Figure 3, which plots the Cumulative Mass Function (CMF) of the Monte

Carlo parameter bootstrap simulation against the SSMs of the six pairs. The red lines are the

CMF of pairs of sets of random series (4 series, 75 observations) from 100,000 Monte Carlo

parameter bootstraps.

SSMs

C
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1
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• • • •
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Figure 3: Chains 1, 2, 3, 7; Brands 1, 2, 3, 5; SSMs against Random CMF.

5.2 Comparing History: Seven Chains with Three Brands

Table 2 shows the 21 differences between all seven chains when we focus on the strategic

interactions of the three Brands 1, 2, and 3, using three-week windowing and dichotomous

pricing. Table 2 also gives the absolute distances between each of these seven chains and a single

realisation of a random pattern of pricing from the three brands, where in any week each brand is

equally likely to price “high” or “low”. With three brands each with two possible states, there are

23 = 8 possible states of the market in any week. With a window of three weeks (so that each

brand has the opportunity to deep discount), there are 83 = 512 possible three-week states.

C h a i n

1 2 3 4 5 6  7

Chain 1 0 70 82 76 102 132* 74

Chain 2 70 0 82 98 90 120† 98

Chain 3 82 82 0 100 96 122† 102

Chain 4 76 98 100 0 80 128* 58

Chain 5 102 90 96 80 0 114 92

Chain 6 132* 120† 122† 128* 114 0 130*

Chain 7 74 98 102 58 92 130* 0

Random 144 136 148 144 140 146 144

Table 2: SSMs Between All Chains (with Brands 1, 2, 3)

(* : cannot reject the null of random at the 5% level)

(† : cannot reject the null of random at the 1% level)

With the three brands and three-week window of Table 2, there are 512 possible states, but the

historical data only include C = 76 overlapping three-week windows. The greatest distance

between any two chains is 2 × C (here 2 × 76 = 152). No two pairs are that dissimilar, although

the randomly derived pattern is at least 136/154 states different from any of the historical time-

series.14 The closest two chains are Chains 4 and 7, with 152 − 58 = 94 states in common, or

94/152 = 61.84 percent. The least similar chain to any of the others appears to be Chain 6.

If we use the null hypothesis that each of two sets of time-series is random, then we can

14. With two orders of magnitude fewer possible states, there is a much greater probability that random strategic

processes will share some states with historical time-series, as we see here.
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set 1% and 5% one-sided confidence intervals to the SSM numbers. With three brands and C =

76, the largest SSM is 152. 95% of pairs of sets of three random time-series are at least 122 apart,

and 99% of pairs of sets of three random time series are at least 118 apart.15 This means that, in

Table 2, we reject the null hypothesis of random data for all chains but Chain 6, since all SSMs

between Chains 1, 2, 3, 4, 5, and 7 are less than 118, so the data are significantly non-random, and

the null hypothesis is rejected. For Chain 6, however, we cannot reject the null hypothesis for

comparisons with Chains 1, 4 or 7 (5 percent) and with Chains 2 and 3 (1 percent); only with

Chain 5 is the null rejected.

We show this in Figure 4, which plots the CMF of the MC parameter bootstrap simulation

against the seven greatest SSMs of the pairs. The red lines are the CMF of pairs of sets of

random series (3 series, 76 observations) from 100,000 Monte Carlo parameter bootstraps.
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Figure 4: Seven Chains; Brands 1, 2, 3; SSMs against Random CMF.

6. Simulated Data

We use three runs from simulations undertaken for Marks et al. (1995). Each run has three

interacting brands (Brands 1, 2, and 5, above), and each brand agent chooses its price from its

own set of four possible prices in order to maximise its weekly profit, learning using the Genetic

Algorithm. Each agent’s action is determined by the state of the market in the previous week,

which means 64 possible market states for each agent to respond to. The GA chooses the

mapping from perceived state to action for each brand (with weekly profit as its “fitness”).

The three runs imply three different models of the brands’ interactions. Each run

corresponds to a separate run of the GA search for model parameters, using weekly profits of the

brands as the GA “fitness”. Given the complexity of the search space and the stochastic nature of

the GA, each run “breeds” a distinct model, with distinct mappings from state to brand price, and.

hence different patterns of brand actions associated with each run.

Figure 5 shows a fifty-week period of simulated interactions between three brand agents

(Run 26a).

Table 3 presents the distances between historical Chain 1, and the three simulations Run

11, Run 26a, and Run 26b from Marks et al. (1995). We hav e truncated the historical data to 50

weeks, to match the simulated data. With three-week windowing, the number of possible states is

50 − 2 = 48, which means that the maximum distance apart any two time-series could be is 96.

From Table 3, the three simulation runs are closer to each other than any of them is to the Chain 1

historical data, although Run 26a is only slightly more similar to Run 11 than it is to Chain 1 (66

compared to 68/96 in distance). The two runs 26a and 26b are quite close to each other: only

15. This number was determined by a Monte Carlo bootstrap simulation of 100,000 pairs of sets of four quasi-

random time-series, calculating the SSM between each pair, and examining the distribution. The lowest observed

SSM of 104 appeared six times, that is, with a frequency of 6/100,000, or 0.006 percent.
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Figure 5: Example of a Simulated Oligopoly (Marks et al. 1995)

Chain 1 Run 11 Run 26a Run 26b

Chain 1 0 82* 68 68

Run 11 82* 0 66 60

Run 26a 68 66 0 30

Run 26b 68 60 30 0

Table 3: SSMs Between Chain 1 and Three Runs (Brands 1, 2, 5)

(* : cannot reject the null at the 5% level)

30/96 = 31.25 percent apart. Longer weekly data, either from longer simulation runs or from

resampling the historical data would allow closer examination of the differences and similarities.

If we use the null hypothesis that each of two sets of time-series is random, then we can

set 1% and 5% one-sided confidence intervals to the SSM numbers. With three brands and C =

48, the largest SSM is 96. 95% of pairs of sets of three random time-series are at least 80 apart,

and 99% of pairs of sets of three random time series are at least 76 apart.16 This means that, in

Table 3, we reject the null hypothesis of random data for all pairs but Chain 1 and Run 11, since

all SSMs between the five other pairs are less than 76, so the data are significantly non-random,

and the null hypothesis is rejected. For the pair of Chain 1 and Run 11, however, the SSM of 82

is not significantly (5%) different from random, and the null hypothesis cannot be rejected. By

construction, none of the simulated data sets is random, although they are not particularly similar,

except for the pair of Run 26a and Run 26b.

We show this in Figure 6, which plots the CMF of the MC parameter bootstrap simulation

against the six SSMs of the pairs. The red lines are the CMF of pairs of sets of random series (3

series, 48 observations) from 100,000 Monte Carlo parameter bootstraps.

7. Conclusion

This measure, the State Similarity Measure (SSM), is sufficient to allow us to put a number on the

degree of similarity between two sets of time-series which embody strategic reactions among

agents, as formalised by equation (2). Such a metric is necessary for scoring the distance between

any two sets, which previously was unavailable for such sets of time-series. Using simulation of

16. This number was determined by a Monte Carlo bootstrap simulation of 100,000 pairs of sets of four quasi-

random time-series, calculating the SSM between each pair, and examining the distribution. The lowest observed

SSM of 64 appeared twice, that is, with a frequency of 2/100,000, or 0.002 percent.
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Figure 6: Chain 1 and Three Runs; Brands 1, 2, 5;SSMs against Random CMF.

sets of random time-series, we have been able to derive confidence interval SSMs as a statistical

test for this measure. (We note that the PMDs suggest binomial distributions, which could be

estimated from the simulated data.)

We assume that the time-series are the results of interactions among the three (or four)

brand managers, where each manager’s action this week is a function of all managers’ actions last

week and in previous weeks (equation 2). (Here we consider a window of weeks equal to the

number of strategic brands.) Although we have devised the SSM for use in examining the

rivalrous dance among these brands, this moment could be used to measure the similarity between

two sets of time-series generated by any similar interactions.

Here, the SSM has been developed to allow us to measure the extent to which a simulation

model that has been chosen on some other criterion (e.g. weekly profitability) is similar to

historical sets of time-series with dynamic responses among sellers. The SSM will also allow us

to measure the distance between any two such sets of time-series and so to estimate the

parameters, or to help calibrate a model against history.

Appendix: Calculating the SSM

1. For each set, partition the time-series {Pb,w} of price Pb,w of brand b in week w into

{0,1}, where 0 corresponds to “high” price (above brand b’s mid-point) and 1 corresponds

to “low” price to obtain {Pb,w ′};

2. For the set of 3- or 4-brand time-series of brands’ partitioned prices {Pb,w ′}, calculate the

time-series of the state of the market each week {Sw}, where Sw = P1,w ′ × P2,w ′ . . .;

3. For each set, calculate the time-series of states of the 3- or 4-week moving window of

partitioned prices {Mw}, from the per-week states {Sw}, where Mw = Sw−1 × Sw−2
. . .;

Week Red Purple Green ∴ Sw ∴ Mw

18 0 0 0  0

19 0 0 0  0

20 0 0 0  0 0

21 1 0 0  4 256

22 0 1 0  2 160

23 1 0 0  4 276

24 1 1 0  6 418

25 0 0 1  1 116
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26 0 0 0  0 14

27 0 0 0  0 1

28 0 1 0  2 128

29 1 0 0  4 272

30 1 1 0  6 418

Table 4: Three Brands, 3-Week Window

4. Count the numbers of each state Mw observed for the set of time-series over the given

time period; convey this by an n × 1 vector cc, where cc[s] = the number of observations of

window state s over the period;

5. Subtract the number of observations in set A of time-series from the number observed in

set B, across all n possible states; dd AB = ccA − ccB;

6. Sum the absolute values of the differences across all possible states:

DAB
ad = 11′ × |dd AB |

This number DAB
ad is the distance between two time-series sets A and B. This is the State

Similarity Measure.
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