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I. Introduction

What is the best choice among lotteries (when the prizes
and their probabilities are known) in a risky world?

“Best” means that the agent’s average net winnings from
choosing successive lotteries is highest: this is risky decision
making.

By “risky” is meant that both the possible outcomes and
probabilities are known.
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2. Example: Four Lotteries

Figure I:
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Which is the best lottery?
The agent’s choice depends on her method of choice.

But after the lottery is realised, which method is best?
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The agent’s choice varies with method:

I. Expected Value — C
A: 107.5 B: 89.76 C: D: 94.75

2. Laplace (equal likelihoods) — C
A: 258.33 B: 89.33 C: D: 2.5

3. Max-Max (ignore probabilities) — C
A: 600 B: 98 C: D: 105

4. Max-Min (ignore probabilities) — B
A: 25 B: C: —20 D: —100

5. Risk-averse CARA (y = 0.00111) -~ A
A: B: 0.095 C: 0.086 D: 0.074
(see equation (1) below)
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2. Simulating the Choice

Instead of four lotteries (as above), we generate eight
lotteries, each with six prizes, chosen uniformly between
$10 and —$10, with their probabilities chosen at random.

Then run 10,000 experiments where each time, for each of
the 5 methods, a lottery is chosen, and then, using the
known probabilities of that lottery’s prizes, the lottery is
realised, and the method’s score is added (or subtracted, if a
negative realisation) to its previous score.

The Clairvoyant is the benchmark: if the agent knew the
outcome for each of the lotteries, she would choose the
lottery with the highest outcome. With simulation, we can
determine each lottery’s realised outcome before the
Clairvoyant chooses.

See R code at

http://ww. agsm edu. au/ bobnm papers/ri sknet hods. r
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Table I: Simulations, the mean scores by method:

Method Payoff ($) % Clairvoyant % EV
Clairvoyant 7.7880 100

Expected Value 3.8718 49.7143 100
Laplace 3.3599 43.1425 86.7800
Max-Max 1.3917 17.8702 35.9500
Max-Min 2.4279 31.1752 62.7100
Random 0.02 0 0

The Random is zero, as it should be, given the prizes are
chosen randomly.

The Expected Value dominates the 4 methods, although the
Laplace method is not too bad (almost 87% of EV). But,
surprisingly, the Max-Min (choosing the lottery with the
highest worst possible prize) is almost twice as good (63%)
as the Max-Max method (36%):

Does pessimism dominate optimism?
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3.1 CARA Utility Functions
The exponential CARA utility function is
U(x)=1-e7, (1)

where U (0) =0 and U (c0) = I, and
where 7 is the risk aversion coefficient:

U "(x)

= — . 2
T="00) (2)
Sign of 7y Risk profile Curvature
r=0 risk neutral U"(x)=0
r>0 risk averse U"(x)<o0

r<o0 risk preferring U "(x)>0
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Table 2: Simulations of CARA, mean payoffs, varying 7

gamma 7  Payoff (§) % Clairvoyant % EV

—0.2000 3.4714 44.5739 89.6600
—0.1600 3.6111 46.3670 93.2669
—0.1200 3.7005 47.5160 95.5782
—0.0800 3.8196 49.0448 98.6532
—0.0400 3.8582 49.5405 99.6503
=0 3.8718 49.7151 100
0.0400 3.8330 49.2163 98.9982
0.0800 3.7840 48.5873 97.7330
0.1200 3.7290 47.8818 96.3138
0.1600 3.6534 46.9111 94.3613
0.2000 3.5615 45.7301 91.9858

It is clear that the best (mean payoffs) occur with 7 = 0: risk

neutral.
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3.2 CRRA Utility Functions

The Constant Elasticity of Substitution (CES) CRRA utility

function: -
w P
U(w) = , W >0, (3)
I=p
where W is agent’s wealth, and p is the Arrow-Pratt measure
of relative risk aversion (RRA):

U 14 (W )
U'(w)
This introduces wealth W into the agent’s risk preferences,

so that lower wealth can be associated with higher risk
aversion. The coefficient 7 is as in (2).

pW)=-w =Wy (4)

As p - 1, (3) becomes logarithmic: u(w) = In(w ), risk
averse. Withw > 0, p > 0 is equivalent to risk averse, while
P < 0 is equivalent to risk preferring; p = 0: risk neutral.
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Table 3: Simulations of CRRA, mean payoffs, varying p

rho p Payoff ($) % Clairvoyant % EV

—2.5000 3.7570 48.2408 97.0360
—2.0000 3.8114 48.9391 98.4407
—1.5000 3.8350 49.2426 99.0512
—1.0000 3.8490 49.4222 99.4124
—0.5000 3.8665 49.6475 99.8656
=0 3.8718 49.7143 100
0.5000 3.8577 49.5343 99.6379
1.0000 3.8284 49.1581 98.8812
1.5000 3.8056 48.8655 98.2926
2.0000 3.7773 48.5012 97.5598
2.5000 3.7521 48.1780 96.9098

As with CARA, the simulations show that CRRA performs
best when p = 0, the risk-neutral, Expected Value method.
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3.3 The DRP function.

This function is inspired by Prospect Theory (Kahnemann &
Tversky 1979):

| —e PX
v:l_e_looﬁ, 0<X <100 (5)

| —ePX
V:—al_e_moﬁ, -100< X <0. (6)

f5 > 0 models the curvature of the function, and 6 > I, the
asymmetry associated with losses. The DRP function is not
wealth-independent.

DRP exhibits the S-shaped asymmetric function of Prospect
Theory. It exhibits risk seeking (loss aversion) when X is
negative with respect to the reference point, X =0, and risk
aversion when X is positive.
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Figure 2: Dual-Risk-Profile DRP Functions
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A DRP Function (o = 1.75).

As 0 - 1 and 5 0, the value function asymptotes to a linear,
risk-neutral function.
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Table 4: Simulations of DRP, % of EV, varying 0 and [

beta | 6=1.001 0=12 o0=14
0.0010 100 99.8069 99.442I
0.1000 99.5989 98.5836 98.6017
0.2000 98.2308 97.9890 97.2238
0.4000 96.9848 95.9122 95.2202

Again, the best results from the DRP functions occur when
3 =0 and 6 = I: this is risk-neutral, Expected Value decision

making.
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Discussion

Previous views: “Risk aversion is one of the most basic
assumptions underlying economic behavior” (Szpiro 1997),
perhaps because “a dollar that helps us avoid poverty is more
valuable than a dollar that helps us become very rich”
(Rabin 2000).

But is risk aversion the best risk profile? Even with
bankruptcy as a possibility?
Previous researchers’ answers:

o Szpiro (1997): risk averse,

e Chen et al. (2008): risk averse (log utility), and

e DellaVigna & LiCalzi (2001) model Kahneman-Tversky
agents which learn to make risk-neutral choices.

Our answer: NO. RISK NEUTRAL IS BEST.




