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Economics has been a predominantly analytical discipline in its search for
necessity—reducing the complex phenomena of interacting agents to
interactions of one or two causes, holding all else unchanging (“ceteris
paribus”) and then attempting to reintroduce the complexity through
additivity, making the assumption of linearity. But sometimes all the king’s
horses and all the king’s men ... and nonlinearities and other complexities
have stymied the search for necessity through additivity. This has led to two
sorts of solutions: nonlinear dynamics, in which second-order interactions
are specifically modeled, and simulations, in which the search for necessary
conditions is abandoned and, rather, sufficiency is the goal: what are the
consequences in the aggregate of individual agents behaving just so—what
assumptions at the micro level are sufficient for the emergence of a specific
pattern of economic phenomena? There are many instances of the search for
sufficient conditions elsewhere in this volume. But one aspect of this
research approach has been relatively neglected: the issue of validation from
historical data. In the standard analytical approach, linear regression has
been used to derive coefficients in the linear relationships among a
dependent variable and a set of independent (causative) variables. In
general, there has been no shortage of data. With the recent approach of
simulation for sufficiency, there has been little use  of historical data: data
series for complex economic repeated interactions are uncommon, and



anyway the nature of sufficiency—“these coefficients in this model may
result in this emergent behavior”—may not be generalizable. But there is a
need for greater use of historical data, both to aid in the derivation of
coefficients and to help validate the models. This latter function is important
in helping convince, first, the profession and, later, skeptical policymakers
that the simulation models are something more than toy stories of how the
economy just might work.

A general characteristic of simulation models, however, results in
difficulties when one attempts to fit them to historical data: in general, the
historical agents will have had many degrees of freedom in which to act, and
have used them. (Indeed, had they not done so, the models would have been
very simple and the level of potential surprise [Lave & March 1975] much
less, and the value of the modeling exercise much reduced.)

With continuous models, this is not an issue, but with discrete models
there is a tradeoff: more degrees of freedom is more realistic, but more
degrees of freedom results in the phenomenon dubbed by Bellman the “curse
of dimensionality” (Rust 1997: fn. 6). What we mean is that with many
degrees of freedom, the number of potential states grows quickly, as we
demonstrate below.

Surely the answer is to use continuous models and to avoid discrete
models? Well, if the phenomena being modeled are such that continuity
holds, so that functional relationships are continuous, then, of course, avoid
discrete models. For relationships in which the variables can be classified or
measured using “interval” or “ratio” scales, continuity holds, but for
“nominal” scales it does not, and for “ordinal” scales it may not.
1 An Example: The Rivalrous Dance
Two petrol stations face each other across an intersection. They sell different
brands of petrol, regarded as perfect substitutes by almost all motorists. As a
consequence, almost all sales go to the station selling cheaper petrol at any
time. Prices are not stable, but move up and down, often in an asymmetric
pattern of gradual falls followed by sharp rises. (Slade 1992 describes such
situations in the Vancouver market.) Sometimes, a move as small as 0.1¢
per litre by one seller will elicit a responding price change by its rival; at
other times there will be no response. How can we model this interaction,
while paying attention to the observations that both sellers are interested in
maximising their profits over time, and that both sellers are economising on
their use of information? To generalise, information of one’s rival’s strategic
behaviour is costly to obtain and to process, so profit maximisation includes
cost-minimising behaviour on the perception and use of information.

In a competitive market, that is, when there are many rivals selling
perfect substitutes to a large number of buyers, this is not an issue, since
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firms will be selling at the going price. But when the products are not
homogeneous and when the number of sellers is small—the case, for
instance, of branded goods sold in oligopolies—there will be a range of
prices (and other marketing instruments’ levels) at any instant, and there
will be a jockeying through time as firms move along their sales-profits
trade-offs: sometimes going for sales and market share at the expense of
profits (at lower prices) and at other times the opposite. We have analysed
this rivalrous dance in the framework of strategic game theory (Midgley et
al. 1997, Marks et al. . 1997, Marks 1998 forthcoming).

We use historical data of actual responses by sellers competing through
time in order to endogenize three aspects of a stimulus-response model of a
seller in such a market: firstly, the way in which each seller partitions the
signals he or she receives of the actions of others; secondly, the way in
which each seller decides on a set of possible responses; thirdly, the best
mapping from perceived signal to best action. The metric used is average
profits over many periods, where we use established market models to map
from the players’ actions, taken together, and each player’s period profit.
When completed, this research programme will allow use of historical data
to estimate each seller’s endogenous decisions of perception, response, and
action.

In a static setting, it is relatively easy to determine whether a small
price change by a rival should be responded to. In a dynamic interaction,
however, the response is not obvious, since any single change may be part of
a longer-term pattern or may be the start of an attempt to signal the end of a
price war (if upwards, after a period of low prices) or to steal rivals’ sales (if
downwards, after a period of high prices). Just which it might be is not
always clear, especially with costly observing, processing, and recalling of
prices, present and past.

For our stimulus-response agent, the stimulus is the state of the market
and the response is the combination of price and other marketing actions
chosen in the next period—we confine ourselves to discrete time, since our
data show only once-weekly changes in actions: an iterated oligopoly. The
state of the market includes the actions of all players in previous periods,
and the number of weeks remembered is endogenous. This seems to be a
simple model, but when there are more than two players, or more than a
handful of possible prices, or more than one period’s memory of past prices,
the number of possible states grows quickly. In Midgley et al. (1997), we
show that if there are p players, a possible actions per period, and m periods
of memory, then the number of states is given by . With four players,am%p

eight possible actions, and two-period memory, the number of possible states
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is thus almost 4.3 billion. This “curse of dimensionality” poses a severe
problem for estimation of such models.

Although agents may choose their actions from a continuous set, we
believe that partitioning to reduce the number of states is appropriate for two
reasons: firstly, on grounds of tractability, and, secondly, since partitioning
seems a good description of actual behaviour.1 Agents apparently partition
the space of possible actions and respond only when a rival’s action changes
the state, suitably defined using the partitioning. This behavior is consistent
with  the observation that information gathering and processing is a costly
activity, to be economized: small changes in a rival’s price may not be worth
responding to, which brings us back to the observation above: only when a
rival’s price change is sufficiently large to change the state will the seller
(the economic actor) respond.

On the face of it, the best partitioning should be that that loses the least
information. We have operationalized this in Marks (1998 forthcoming), by
searching for the partitioning that minimises the entropy, as we discuss
below. But information is not an end in itself, as we have implicitly
assumed. Rather, information is a means to an end—to maximise net return
in the repeated interaction among the players.2

The next stage of our on-going research program is to search for the
best combination of information partitioning and the consequent mapping
from state to action, using exogenous actions, as we have done previously.
The last stage of the program must be to endogenize the choice of actions
too, so that we are searching for the best combination of perceived states
(partitions), action mappings, and final actions in the repeated interactions.

Such a model is discrete: since the numbers of the states of the model is
arbitrary, and since we have no wish to constrain our machine-learning
algorithm, the model scales are nominal: a change in input from a state, say
number 24, to another, say number 25, will not necessarily result in a
change of action from number 3, say, to number 4. We must use discrete
formulations instead of continuous functions.

This causes no difficulty for digital computing; indeed, it is the
continuous models which in principle are ill-suited to digital computing.
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than another if the maximum expected utility achievable with the first is greater
than the maximum expected utility achievable with the second.” Here, this
corresponds to the maximum average profit of a brand in repeated interaction with
others.

1  Think of the large number of words the Inuit have to describe snow as a measure
of the fineness of their perception partition for kinds of snow.



The problems with discrete models arise when we consider the number of
possible states—the curse of dimensionality—as discussed above.
2 Coffee Sellers
In the course of our earlier work on the U.S. retail ground coffee market, in
which we modelled players as responding simply to the past prices and other
marketing actions of their strategic rivals (Marks et al. 1995; Midgley et al.
1997), we became aware of the importance of modelling not just the patterns
of response of the strategic players, but also their perceptions, both in
looking back and in discerning whether small price movements of their
rivals’ are strategically significant. How might such perceptions be
endogenized? A firm answer to the question of how players partition3 their
perceptions of others’ actions, both through time and across the price space,
will also provide information on how much or how little information they
choose to use: in short, how boundedly rational players are (Rubinstein
1998).

In the coffee market we observed the price to vary from about $1.50 per
pound to about $3 per pound. Since cluster analysis shows that some prices
and marketing actions are used more frequently than are others for each
brand, the earlier studies used four of these by each brand as the actions in
its simulation. But even with this severe partitioning of action space, we
found that the historical profit performances could be improved by our
simple four-action, one-round-memory artificial agents.

But cluster analysis is a crude technique. We wish to use the data to
examine the price partitions that the players actually used. Such partitions
will generally be in terms of price (and marketing action) levels, but the
boundaries introduced mean that (away from the boundary) a
one-cent-a-pound change in price is not a signal responded to by the other
players, while that (at the boundary) such a small price change will be seen
as strategically significant by the rival players. It may be that we should
partition the first differences of prices, so that a small change in price will
not be perceived as a strategically significant shift (no matter where the
price was before the shift); only a price change (positive or negative,
symmetrically?) will be seen as such.
3 Formalities
We first formalise the process that each player uses in deciding his or her
action in the market from one week to the next, using a framework outlined
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by Lipman (1995). Each week, faced with the actual external state (or
E-state), the player perceives an internal state (or P-state), which will update
his beliefs, on which are conditioned his action for the week, which together
with the actions of his strategic rivals determines his profit that week.

There is a finite set of external states (or E-states). The E-states are
defined by the prices (and marketing actions) that each of the players
determined for its brand for a large number of weeks into the past. 

, where  is the vector of brand i’s prices (or actions)W = A1 % A2 % A3 % A4 A i

for all weeks into the past. Figure 1 illustrates the model from external
E-state to final payoffs.

But it is unlikely that players perceive the information partition at its
objective fineness, as defined in the E-state. Nor is it likely that players
remember more than a few weeks past in determining the internal state .h
There is a function  that tells which perceived P-state  the playerf : W d Q h
observes as a function of the E-state, where  is the perception function: inf
E-state , the player observes P-state z h = f(z).

As a consequence, the true information content of the P-state   is that h
 is one of the E-states generating this P-state: the true E-state  is somez z

element  If the P-state is optimally determined, then the lostf−1(h).
information is valueless to the player—he is no worse off with the coarser
partition of the P-state than with the finer partition of the E-state. But if the
P-state is sub-optimal, then the lost information is valuable, in that its use
would result in a perception of the rivals’ behavior that would on average
result in a higher profit for the player.

There will be a set of actions the player can choose from, denoted by A,
with at least two elements. How or whether these actions are related to the
perceived P-states is an empirical issue. Note that since such perceptions are
subjective, there is no guarantee that different players will perceive the same
sets of P-states.
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External E-states  Ω


ω  = {1.59, 2.40, 2.27; 2.00, 1.75, 2.30; . . . }

Perceived P-states Θ

θ = {low, High, high}

Beliefs ∆

δ

 a = {Low}

Payoffs
{857.3}

partition function ζ

belief function β

action function α

payoff function u

Actions A

Figure  1. From External State to Payoff: The Player Modelled

There will also be a profit function (usually in the form of a payoff
matrix)  which describes how the state affects the value of theu : A % W d R
different actions available to any player. Note that the profit function
includes the true E-state of the market during the present week (including
all players’ current actions), which will not be available to the players until
after they have each chosen their actions. Note, too, that players will only
know their perceived states, not the true external states, even later. In
general, one can assume a prior probability distribution q on , although inW
this model the probability distribution over external states is determined
endogenously by the choices of the players in the market.
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How does the P-state  determine beliefs about the external state? Let ∆h
denote the set of probability distributions on . Then  is the beliefW b : Q d D
function. Beliefs matter because actions are contingent on them. The
mapping from belief to action  is the action function.a : D d A

Following Lipman, we can check the internal consistency of the belief
function . No processing: , which suggests , the priorb d = b(h)≤h d = q
distribution. Full processing:  We expect  to puth g h∏ e b(h) g b(h∏). b(h)
probability 1 on the set  . As Lipman puts it, the player should be ablef−1(h)
to say to himself: “My beliefs are  . But I know I’d have these beliefs if andd
only if . So I shouldn’t be putting any probability on states outsidez c W
W.”

Lipman distinguishes between interim optimality and ex-ante
optimality. For the former, an action function  which maximises thea : a(d)
following function for all  must be derived:d

(1) S
zcW

u(a, z)d

Then a behavior rule must be constructed by letting  equal thef(z)
action  where P-state  results in action  . That is, for each  a(d) f(z) d

,let . This describes how the player will behave inz : b(f(z)) = d f(z) = a(d)
searching any given solution.

If  , then . If the player has the sameb(f(z)) = b(f(z∏)) f(z) = f(z∏)
beliefs in two E-states, then his behaviour is the same in those E-states; that
is, f is measurable with respect to .b(f)

In our earlier studies, we derived equation (1), and we used firms’
profits to proxy for u. Our action function was  , where  is the player’sa(d) d
belief of the E-state: we explicitly separated the determination of    and thed
determination of  .a

Lipman raises the question: Is it odd to model bounded rationality by
assuming optimal information processing? Why not just choose optimally a
given  ? Well, we assume general knowledge, that is, how to solve, not thez
specific solution. The model shows how to choose  and f contingent on .b z
Moreover, if players do not achieve optimal  and f, then the model of theb
world as the player sees it is not completely specified.
4 Radner’s Framework
Radner (1972: 3-8) presents a non-strategic antecedent of our model. An act
is a function from the set S of states of the world to the set C of
consequences. For any act a and any state s, let a(s) denote the
corresponding consequence that follows from a choice of a and the
occurrence of s. A function u on the set of consequences C is the utility
function. A function   on the set of states of the world S is the subjectivev
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probability function, such that the expected utility function U, defined on
acts by

,U(a) = S
s

u[a(s)]v(s)

represents the ordering. (The state of the world could include others’
actions, but Radner is not interested explicitly in strategic interactions.)

Let Y denote the set of alternative signals that the decision maker can
receive. (These are our partitions of P-states.) The information function g
associates to each state s a signal . (This is our partition function.)y = g(s)
Let D be the set of alternative decisions available. Let  be theq(s, d)
consequence of decision d if state s obtains. The decision is chosen
according to a decision function , so that, if state s obtains, then the signald
will be , and the decision taken will be , and the consequence willg(s) d(g(s))
be . Therefore to each information function  and each decisionq(s, d(g(s))) g

function  there corresponds an act . The set of acts
d

a(s) = q(s, d(g(s)))
available depends on the set of available information and the decision
functions, which are mappings from P-state to actions, in our terms.

For a given information (or partition) function , therefore, the problemg
is: choose an optimal decision function  from the set of all possible decisiond
functions from the set Y of signals to the set D of signals. For each signal, an
optimal decision maximizes the conditional expected utility of the
consequence, given the signal, which is Radner’s principle of maximum
expected utility.

For any state s and decision d, he defines the payoff w(s,d) as

w(s, d) = u[q(s, d)]
where w is the payoff function. The expected utility of an information
function  and a decision  function can be expressed asg d

U(g, d) = S
s

v(s)w(s, d[g(s)])

For the given information function, to each signal  is associated the  g
set   of all states that give rise to the signal y, that is, the  set of states sSy

such that . For any decision function  that uses the informationg(s) = y d
function , all states in the same set must lead to the same decision.g Sy

 the expected utility of  is â (g, d)

,

U(g, d) = S
s

v(s)w(s, d(g(s)))

= S
y

P(y) S
scSy

s

P(s|y)w(s, d(y))
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where P(y) is the probability of the signal y, and P(s|y) is the  conditional
probability of the state s, given the signal y, that is,

P(y) = S
scSy

v(s)

P(s|y) = v(s)/P(y)

for s in . We assume that  for every signal y in Y.Sy P(y) g 0
So maximizing  is equivalent to choosing for each signal (of aU(y, d)

partition) y  a decision d that maximizes the conditional expectation 
. If two decision functions use the same information (orS

scSy
P(s|y)w(s, d)

partition) function, then we can say that the first is better than the second if
(with the given information function) it gives a higher expected utility than
the second. But the comparison of information functions is not as simple: we
must compare the expected utility of information functions when used with
their corresponding optimal decision functions.
5 Comparisons of Information Structures
McGuire (1972) presents a version of Blackwell’s Theorem and discusses its
importance for deriving measures of informativeness.

Blackwell’s Theorem: An information structure P is regarded as “generally
more  informative” than information structure Q  if for all payoff(P r Q)
matrices U the  set u(Q,U) is contained in the set u(P,U).

Let partitions or information structures P and Q possess a common
(finite)  state-of-the-world set S and finite signal sets Y and Z respectively.
Then the following is true:

,P r Q
which imposes a very incomplete ordering on the set of all information  
structures or partitions.

Any search for a one-dimensional measure of “informativeness” is a  
vain one: there exists no real-valued function f on the set of  information
structures or partitions such that 

f(P) m f(Q) iff P r Q
In particular, entropy cannot individually serve as an indicator of  
informativeness.
6 Partition Models
Information processing can be summarised by a partition Π of the set of
E-states Ω. A partition Π of a set Ω is a collection of subsets of Ω  with the
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property that  is in exactly one of  these subsets. The elements of thez c W
partition Π are often referred to as events. Intuitively, a partition Π is said to
be finer than a partition  when learning which event of Π contains a givenP∏

  conveys more information than learning only which event of contains z W∏
; the converse is a coarser partition.z

The partition Π is easily interpreted in terms of information  
processing: if Π has only one event (the entire set Ω), then the  player is not
processing his input P-states at all, which corresponds to the case  where 

 for every P-state . By contrast, a partition that has a different eventb(h) = q h
for each different  E-state  involves complete processing: the playerz
processes the  information so thoroughly that he recognises every possible
distinction  between inputs. His partition could not be finer.

Because Π summarizes information processing, write V(Π) instead  of 
 , for the expected profit associated with information processingV(b)

according to the belief function , which is identical to the expected profitb
associated with the information partition Π. If we further assume that the
cost of a given information processing  function  depends only on theb
partition   generates, then we  can work with c(Π) instead of   for theb c(b)
expected information processing costs.
7 Players as Stimulus-Response Machines
One reason for studying game-playing machines is that they can be used to
give a formal description of the concept of “bounded rationality” (Simon
1972, Rubinstein 1998), since finite machines must by definition be
bounded. An automaton consists of a number of internal states, one of which
is  designated the initial state; a transition function, which specifies how  the
automaton changes states in response to the other players’ actions;  and an
output function, which maps state to action. See Marks (1992) for a fuller
treatment. In our earlier studies, (Marks et al. 1995; Midgley et al. 1997) we
used the genetic algorithm to determine the  initial state and the mapping
from state to action.

Let I denote the set of possible histories of play (of actions). Then with  
three players , where  is the history of player i’s actions inI = A1 % A2 % A3 A i

the game. A strategy in the game is a function  that specifies an action as  ar
function of the state of the game, which in turn is a function of the  history
of the game. If the game has an unlimited number of rounds, then after any
history h  the remaining game is still infinite. Hence a strategy for the
overall game, , specifies a continuation strategy following h for the game.r
Kalai & Stanford (1988) call this the induced strategy,  . We can say thatr|h
two histories, h and , are equivalent under if they lead to the sameh∏ r
induced strategy; .r|h = r|h∏
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Lipman argues that it is easy to show that this is an equivalence  
relation, so that it generates a partition of the history set I, which  can be
denoted by . If the player knows which event of this partition a historyI(r)
lies in, then he knows enough about the history to determine the strategy it  
induces. Kalai & Stanford show that the number of internal states of the  
smallest automaton which plays a given strategy is equal to the number of  
sets in this partition, when the “Moore machine” representation is  used.

In our earlier studies, the set of external states  is the set of histories W
, where we model the strategic interaction of three brandI = A1 % A2 % A3

managers as players. We arbitrarily chose a time partition of one-round
memory, so that no actions of more than a week ago were directly perceived
by the players (although indirect influences through others’ actions last
week were not, of course, excluded). To partition the large number of
possible prices, we used cluster analysis on historical data of the oligopoly in
order to partition the price space into four bands, again an arbitrarily chosen
number. The partitions varied with brand.

These techniques allowed us to map the E-state of brands’ prices (and
other marketing actions) for many weeks into a much coarser P-state of one
week’s data, suitably partitioned; an exogenous perception function  

. As described, we then used machine-learning to search for betterf : W d Q
mappings from P-state to action, or . Note that, using machinea(b(h))
representations, we did not explicitly model beliefs , or a belief function d

 or how actions are mapped from . Instead, we defined(b : Q d D) (a : D d A)
our response function as a mapping from P-state to action: .c : Q d A

The set of actions, A, is the set of strategies for the repeated game.
Hence, following Lipman, any strategy can be described as a behaviourr
rule f from  into A, where . Thus we can separate the choice ofI(r) f(h) = r|h
a strategy into the choice, first, of a partition on the set of histories , and,r P
second, of a function from  to the set of strategies or actions. If used, theP
cost function  is usually taken as an increasing function of the number ofc
events of the partition only, , although other functions are possible.c(P)
8 Optimal Partitioning
Lipman (1995) discusses a class of models in which, although the E-state is
observed directly, it is classified according to which of two sets it falls:
whether or not it is above a certain real-valued threshold.4 There seems no
reason why the concept should not be generalized to multiple thresholds.
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The exogenous partitioning of our earlier studies was into four regions,
requiring three thresholds, but we have considered finer partitions, although
the programming effort increases in the fineness.

A First Cut
We start by considering the simplest partition of the price space, into two
regions, a dichotomous partition between “low” and “high” prices. The
question is where best to draw the boundary between the two regions. To
explore this issue, we set up a model in which the choice of where to divide
the region between the lowest price and the highest price is one of eight
points, dividing the price space into nine equal regions. See Marks (1998)
for an operationalization of these techniques.

From above, the set of external states Ω of the market with three
strategic players is the set of histories , but we wish to defineI = A1 % A2 % A3

a new set of market states based on the perceived states . Instead of the setQ
of E-state histories I, define a set of histories , where isÎi = Â1i % Â3i % Â3i Â ji

the history of actions of player j as perceived by player i. As soon as we
introduce subjective perceptions into the game, we introduce the possibility
of subjective histories too, but, so long as the partitioning which gives rise to
the perceived actions of self and others is endogenous, no player could
improve his or her payoffs by changing his or her partitioning of the price
space, at least in equilibrium. From a learning or evolutionary viewpoint,
players will adjust their perceptions (their partitioning) so as to end up close
to their notional equilibrium partitioning.

Measures of Optimality
Which partitioning is best? To attempt to answer this question, consider the
simplest nontrivial partition: high or low.

A dichotomous partition divides the price line into two regions only:
“low” (below some partition point ) and “high” (above it); there remainsk
the empirical issue of the optimal location of the dichotomous partition
point. Since there is only one degree of freedom in its choice, we can plot
any measure against its location. Two measures are:

(1) The number of perceived states; and
(2) The closely related measure of sample alog entropy across all

perceived states, from equation (3).
The two measures are brand- or player-independent, since they don’t

require consideration of the actions that result from the perceived states, by
player.
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Consider the partition that loses the least amount of information.5 One
candidate is the partition (or partitions) which result in the highest number
of perceived states, but there is a more informative measure: Theil (1981), in
discussing the general issue of information measures associated with events,
suggests entropy.6 Entropy H is given by

(2) H h − S
i=0

N−1
p i logbp i

where there are N perceived states, and the probability (or observed
frequency) of state i is . Theil argues on axiomatic grounds that entropy isp i

justified.
The maximum number of perceived states is equivalent to entropy as an

information measure only when each state is equally likely or frequent, as is
readily seen in equation (2) with . With non-uniform distributionp i = 1/N, ≤i
of states, the measure of the maximum  number of states N throws away
information about each state’s frequency. None the less the two measures are
empirically close at determining the optimal partition point with
dichotomous partitioning. In order to better compare the two measures, we
use the antilogarithm of entropy, or alog entropy (AE), which is given by the
expression:

(3) AE hantilogbH h bH = 1

P
i=0

N−1
p i

pi

where b is the base of the logarithm used in equation (2). This measure,
unlike entropy, has the additional benefit of being independent of the base b.
The units of the measure of alog entropy are “equivalent states”.

Marks (1998) reports empirical studies of these two measures using a
data set of historical interactions in a mature, iterated oligopoly.
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6  Of course, information is merely the means to an end: the player’s profits, or
expected profits in a stochastic game. But, as McGuire (1972) argues, the search
for a one-dimensional measure of “informativeness”—the value of a “information
structure” or partition—is in vain; entropy included. See Section 3.2 above. See
also Radner (1987: 300): “...there is no numerical measure of quantity of
information that can rank all information structures [partitions] in order of value,
independent of the decision problem in which the information is used”.

5  Later we shall heed McGuire and Radner and consider a metric not of
information but of profit, as a function of partitioning.



A Player-Specific Measure
There is the possibility of a third, brand- or player-specific measure, since
there is no constraint on players to respond identically to the same observed
state, and they do not.

With one-week memory, three players, and dichotomous partitioning,
there are 23 = 8 possible states of the market, as defined by the partition
point between “low” and “high”. Modeling the players as stimulus-response
automata, capable of perceiving eight market states for the previous week’s
prices, we classify each player’s prices into eight possible regions, equally
spread between that brand’s minimum and maximum prices.

If we have specified the model correctly, and if the partition point is
optimally chosen, we might expect that there is a one-to-one mapping of
perceived state to action. (With, say, four price regions, we might expect a
two-to-one mapping, in which perceived information is abandoned in the
choice of action.)

The brand- or player-specific measure of the mean number of action
mappings per observed state given the maximum number of observed states
could result in three thresholds or points of partitioning per player, Πij,
player i’s point of partitioning player j ‘s price actions into “low” and “high”
regions. This allows subjective partitioning across players, and also each
player to customize his perceptions of each of his rivals and himself.

The measure of “best” used with this measure means that the definition
of states which follows from the partitioning is better when, in the limit,
each action is supported by a unique state. If, in the limit, we find that we
cannot reduce the number of actions per state to one across all states, then
this may be thought of as one or more of several possibilities: a
misspecification of the model (it may be, for instance, that players respond
to the first differences in prices—price changes—rather than where in price
space a rival player has chosen to act), or that the assumption of a
deterministic state ® action behavior for each player is wrong, with some
mixed-strategy element instead. Another possibility is that players did not
have the data that we are using when they made their choice; and a further
possibility is that weekly marketing actions (prices etc.) were decided not on
a weekly basis, but beforehand over a block of weeks:

(1) For a given partition point and for a given brand, determine into
which region of 8 equally spaced regions between the minimum
and maximum prices for that brand the next week’s price falls.

(2) With the discrete states for a given partition point and the price
regions for a given brand as determined above, now calculate an 8
times 8 matrix whose elements indicate the number of times state i

362 Robert Marks



resulted in a price for a given brand in range j after one week,
across all weeks of data. With one-week memory, 8 price regions
provides the coarse, dichotomous partitioning of the price space
with something to support: with fewer than 8 price ranges there is
unnecessary information, which will in general be costly to obtain.
The matrix is brand- or player-specific. Since the row dimension of
the matrix is equal to the number of possible states, a different
definition of state may result in a different number of rows for this
matrix.

(3) This matrix allows easy counting of the number of distinct action
mappings from state to price region, for the brand or player under
examination, and for the given partition point. (Some states may
not appear in the data.)

(4) Use a lexicographic ranking: if the number of states is less than all,
then ignore this partition. If the number of states is equal to the
maximum, then the best partition is that which minimizes the mean
number of mappings from state to price region. A (minimum)
single mapping for each state would correspond to an ideal fit
between partition (and states) and the brand’s pricing behavior (as
segmented into price regions). Call this measure the state-mapping
brand-specific measure.

We have not derived comparative empirical results for this third
measure.
9 Conclusion
As the power of computers has grown and numerical techniques have
improved, there has been a growing demand for simulation techniques in
economics. This has been reflected by the emer gence of new journals and
conferences which specialise in the theory, development, and application of
simulation techniques in economics. A relatively undeveloped area of
application has been the use of simulation with historical data, and we have
argued that there are particular issues and problems associated with the
validation of these models, in particular the issue of the need to partition the
historical data. From a learning or evolutionary viewpoint, we assume that
players will have adjusted their perceptions (their partitioning) so as to end
up close to their notional equilibrium partitioning.

Partitioning enables validation to occur by reducing the large number of
states that the unpartitioned historical data would demand, but partitioning
does not come without a cost: the loss of some information. Whether the lost
information is important can only be answered by examination of lost
opportunities for profit-making on the part of the simulated firms, since,
first, information is not an end in itself, but only a means to performing
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better in the oligopoly markets such as those we have discussed here, and,
second, despite the attractiveness of entropy as a measure of information,
there can be no one-dimensional measure of informativeness.

None the less, we have discussed three measures that might be used in a
first cut at examining almost optimal partitioning: the number of perceived
states, a player-specific measure, and, of course, entropy. Ideally, we should
consider the impact on the firm’s profitability of changes in the partitioning
scheme. But this must await further research.
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