
Genetic Algorithms and Neural Networks: A Comparison Based
on the Repeated Prisoner’s Dilemma

Robert E. Marks,1

AGSM, UNSW, Sydney, NSW 2052
bobm@agsm.unsw.edu.au

Hermann Schnabl,
University of Stuttgart and AGSM, UNSW

schnabl@sofo.uni-stuttgart.de

Revised: May 15, 1998.

ABSTRACT Genetic Algorithms (GAs) and Neural Networks (NNs) in a wide
sense both belong to the class of evolutionary computing algorithms that try
to mimic natural evolution or information handling with respect to everyday
problems such as forecasting the stock market, firms’ turnovers, or the
identification of credit bonus classes for banks. Both methods have gained
more ground in recent years, especially with respect to micro-economic
questions. But owing to the dynamics inherent in their evolution, they belong
to somewhat disjunct development communities that interact seldom. Hence
comparisons between the different methods are rare. Despite their obvious
design differences, they also have several features in common that are
sufficiently interesting for the innovation-oriented to follow up and so to
understand these commonalities and differences. This paper is an
introductory demonstration of how these two methodologies tackle the well-
known Repeated Prisoner’s Dilemma.

1. The first author wishes to acknowledge the support of the Australian Research Council.

- 1 -

1. Introduction

The relationship between biology and economics has been long: it is said that
150 years ago both Wallace and Darwin were influenced by Malthus’ writings
on the rising pressures on people in a world in which human population
numbers grew geometrically while food production only grew arithmetically.
In the early 1950s there was an awakening that the processes of market
competition in a sense mimicked those of natural selection. This thread has
followed through to the present, in an “evolutionary” approach to industrial
organisation. Recently, however, computer scientists and economists have
begun to apply principles borrowed from biology to a variety of complex
problems in optimisation and in modelling the adaptation and change that
occurs in real-world markets. There are three main techniques: Artificial
Neural Networks, Evolutionary Algorithms (EAs), and Artificial Economies,
related to Artificial Life. Neural nets are described below. We discuss
Evolutionary Algorithms2 in general, and Genetic Algorithms in particular,
below.3

Techniques of artificial economies borrow from the emerging discipline
of artificial life (Langton et al. 1992) to examine through computer simulation
conditions sufficient for specific economic macro-phenomena to emerge from
the interaction of micro units, that is, economic agents. Indeed, Evolutionary
Algorithms may be seen as falling into the general area of the study of
complexity. In our view, the emergence of such objects of interest as
characteristics, attributes, or behaviour distinguishes complexity studies from
traditional deduction or induction. Macro phenomena emerge in sometimes
unexpected fashion from aggregation of interaction of micro units, whose
individual behaviour is well understood.

Genetic Algorithms (GAs) and Neural Networks (NNs) in a wide sense
both belong to the class of evolutionary computing algorithms that try to
mimic natural evolution or information handling with respect to everyday
problems such as forecasting the stock market, firms’ turnovers, or the
identification of credit bonus classes for banks.4 Both methods have gained

2. Examples of EAs are: Genetic Algorithms (GAs), Genetic Programming (GP), Evolutionary

Strategies (ESs), and Evolutionary Programming (EP). GP (Koza 1992) was developed
from GAs, and EP (Sebald & Fogel 1994) from ESs, but GAs and ESs developed
independently, a case of convergent evolution of ideas. ESs were devised by German
researchers in the 1960s (Rechenberg 1973, Schwefel & Männer 1991), and GAs were
suggested by John Holland in 1975. Earlier, Larry Fogel and others had developed an
algorithm which relied more on mutation than on the sharing of information between
good trial solutions, analogous to “crossover” of genetic material, thus giving rise to so-
called EP.

3. In his Chapter 4, Networks and artificial intelligence, Sargent (1993) outlines Neural
Networks, Genetic Algorithms, and Classifier Systems. Of interest, he remarks on the
parallels between neural networks and econometrics in terms of problems and methods,
following White (1992).

4. Commonalities between both methods are: mimicking events/behaviour as information
flows within a learned or adaptive structure. Differences among EAs include: their
methods of solution representation, the sequence of their operations, their selection
schemes, how crossover/mutation are used, and the determination of their strategy
parameters

- 2 -

more ground in recent years, especially with respect to micro-economic
questions. Despite their obvious design differences, they also have several
features in common that are sufficiently interesting for the innovation-
oriented to follow up and so to understand these commonalities and
differences.5 Owing to the dynamics inherent in the evolution of both
methodologies, they belong to somewhat disjunct scientific communities that
interact seldom. Therefore, comparisons between the different methods are
rare.

Genetic Algorithms (GAs) essentially started with the work of Holland
(1975), who in effect tried to use Nature’s genetically based evolutionary
process to effectively investigate unknown search spaces for optimal
solutions. The DNA of the biological genotype is mimicked by a bit string.
Each bit string is seeded randomly for the starting phase and then goes
through various (and also varying) procedures of mutation, mating after
different rules, crossover, sometimes also inversion and other “changing
devices” very similar to its biological origins in Genetics. A fitness function
works as a selection engine that supervises the whole simulated evolution
within the population of these genes, and thus drives the process towards
some optimum, measured by the fitness function. Introductory Section 2
gives more details on GAs and their potential in solving economic problems.

Neural Networks (NNs) are based on early work of McCulloch & Pitts
(1943), who built a first crude model of a biological neuron with the aim to
simulate essential traits of biological information handling. In principle, a
neuron gathers information about the environment via synaptic inputs on its
so-called dendrites (= input channels) — which may stem from sensory cells
such as in the ear or eye) or from other neurons — compares this input to a
given threshold value, and, under certain conditions, “fires” its axon (= output
channel), which leads to an output to a muscle cell or to another neuron that
takes it as information input again. Thus, a neuron can be viewed as a
complex “IF...THEN...[ELSE]...” switch. Translated into an economic context,
the neural mechanism mimics decision making rules such as “IF the interest
rate falls AND the inflation rate is still low THEN engage in new buys on the
stock market,” where the capital letters reflect the switching mechanism
inherent in the neural mechanism. Still more realistic state-of-the-art
modelling replaces the implicit assumption of weights of unity (for the
straight “IF” resp. the “AND”) by real-valued weights. Thus, the above
IF..THEN example turns into more fuzzy information handling, viz.: “IF
(with probability 0.7) the interest rate is lowered AND (with probability 0.8)
the inflation rate is still low THEN engage in new buys on the stock market”.
This fuzzier approach also reflects different strengths of synaptic impact in

5. This paper aims to be an introductory demonstration of how these two methodologies

tackle the well-known Repeated Prisoner’s Dilemma. A further paper may concentrate on
both methods’ basic approaches in handling the given information in achieving their
goals.

- 3 -

the biological paradigm.
While a single neuron is already a pretty complex “switch”, it is clear

that a system of many neurons, a neural network, comprising certain
combinations of units, mostly in patterns of hierarchical layers, will be able to
handle even more complex tasks.

Development of the NN approach to solving everyday problems made
good progress until the late ’sixties, but withered after an annihilating
critique by Minsky & Papert (1967). This attack was aimed at the so-called
“linear separability problem” inherent in 2-layer models, but was taken as
being true for all NN models. The problem inherent in the criticised models
was that a Multi-Layer-Perceptron (MLP), which could handle non-linear
problems, lacked an efficient learning algorithm and thus was not applicable
in practice. The cure came with the publication of Rumelhart & McClelland
(1986) on the solution of the so-called (Error-) Backpropagation Algorithm
that made nonlinear NNs workable.

The name “Neural Networks” already describes what they try to do, i.e.
to handle information like biological neurons do, and thus using the
accumulated experience of nature or evolution in developing those obviously
effective and viable tools for real-time prediction tasks. (One thinks of
playing tennis and the necessary on-line forecast of where the ball will be so
the player can return it.) There is also a growing list of successful economic
applications, including forecasting stock markets and options and credit
bonus assignments, as well as more technically oriented tasks with economic
implications, such as detecting bombs in luggage, detecting approaching
airplanes including their brand type by classifying radar signals, or
diagnosing diseases from their symptoms. Section 2 is an introduction to
GAs. Section 3 is an introduction to NNs. Sections 4 and 5 then show how
the Repeated Prisoner’s Dilemma (RPD) is tackled by each method.

2. The Genetic Algorithm Approach — A Short Introduction

Genetic algorithms are a specific form of EA. The standard GA can be
characterised by: operating on a population of bit-strings (0 or 1). where
each string represents a solution, and GA individual strings are characterised
by a duality of: the structure of the bit-string (the genotype), and the
performance of the bit-string (the phenotype).6 In general the phenotype (the
string’s performance) emerges from the genotype.

6. We characterise the phenotype as the performance or behaviour when following the now-

standard approach of using GAs in studying game-playing, in particular playing the
Repeated Prisoner’s Dilemma, since the only characteristic of concern is the individual’s
performance in the repeated game. Such performance is entirely determined by the
string’s structure, or genotype, as well, of course, by the rival’s previous behaviour.

- 4 -

2.1 GA: The evolutionary elements:

There are four evolutionary elements:7

1. Selection of parent individuals or strings can be achieved by a “wheel of
fortune” process, where a string’s probability of selection is proportional
to its performance against the total performance of all strings.

2. Crossover takes pairs of mating partners, and exchanges segments
between the two, based on a randomly chosen common crossover point
along both strings.

3. Mutation: with a small probability each bit is flipped. This eliminates
premature convergence on a sub-optimal solution by introducing new bit
values into a population of solutions.

4. Encoding is the way in which the artificial agent’s contingent behaviour
is mapped from the individual’s structure to its behaviour. As well as
the decision of whether to use binary or decimal digits, or perhaps
floating-point numbers, there is also the way in which the model is
encoded.

2.2 Detailed description of a GA8

How can we use the GA to code for the behaviour of the artificial adaptive
agents? How can strategies (sets of rules) for playing repeated games of the
Repeated Prisoner’s Dilemma (RPD) be represented as bit strings of zeroes
and ones, each locus or substring (or gene) along the string mapping uniquely
from a contingent state — defined by all players’ moves in the previous round
or rounds of the repeated game — to a move in the next round, or a means of
determining this next move? This coding problem is discussed in more detail
below.

We describe these behaviour-encoding strings as “chromosomes”
because, in order to generate new sets of strings (a new generation of
“offspring”) from the previous set of strings, GAs use selection and
recombinant operators — crossover and mutation — derived by analogy from
population genetics. Brady (1985) notes that “during the course of evolution,
slowly evolving genes would have been overtaken by genes with better
evolutionary strategies,” although there is some dispute about the extent to
which such outcomes are optimal (Dupré 1987). The GA can be thought of as
an optimization method which overcomes the problem of local fitness optima,
to obtain optima which are almost always close to global (Bethke 1981).

7. There are variants for each of these. Selection: linear dynamic scaling, linear ranking,

stochastic universal sampling, survival of élites. Crossover: n-point crossover, uniform
crossover. Coding: Gray code — small genotype changes → small phenotype changes;
decimal strings; real numbers.

8. For an introduction to GAs, see Goldberg (1989). See also Davis (1991), Michalewicz
(1994), Nissen & Biethahn (1995), and Mitchell (1996).

- 5 -

Moreover, following biological evolution, it treats many candidate solutions
(individual genotypes) in parallel, searching along many paths of similar
genotypes at once, with a higher density of paths in regions (of the space of all
possible solutions) where fitness is improving: the “best” individual improves
in fitness and so does the average fitness of the set of candidates (the
population).

Hereditary models in population genetics define individuals solely in
terms of their genetic information: the genetic structure of an individual —
or genotype — is represented as strands of chromosomes consisting of genes,
which interact with each other to determine the ultimately observable
characteristics — or phenotype — of the individual. A population of
individuals can be viewed as a pool of genetic information. If all individuals
in the population have equal probability of mating and producing offspring,
and if the selection of mates is random, then the information in the gene pool
will not change from generation to generation. But environmental factors
affect the fitness of phenotypes of individuals, and hence affect the future
influence of the corresponding genotypes in determining the characteristics of
the gene pool — the principle of natural selection, which results in a changing
gene pool as fitter genotypes are exploited. Natural selection can be viewed
as a search for coädapted sets of substrings which, in combination, result in
better performance of the corresponding phenotype (the individual’s
behaviour) in its environment.

Schaffer & Grefenstette (1988) argue that the theory of GAs derived by
Holland (1975) predicts that substrings associated with high performance will
spread through the new populations of bit strings. Paraphrasing Holland
(1984), a GA can be looked upon as a sampling procedure that draws samples
from a potential set T. With each sample is associated a value, the fitness (or
score) of the corresponding genotype (or fundamental hereditary factors).
Then the population of individuals at any time is a set of samples drawn from
T. The GA uses the fitness (scores) of the individuals in the population at
each generation to “breed” and test a new generation of individuals, which
may include the best individuals from the previous generation. The new
generation is “bred” from the old using genetic operators: selection of parents
according to their fitness, crossover of genetic material from both parents,
and random mutation of bits. This process progressively biases the sampling
procedure towards the use of combinations of substrings associated with
above-average fitness in earlier generations (that is, sample individuals
characterized by higher scores because their behaviours are “better”), so the
mean score of successive generations rises owing to selective pressures. A GA
is all but immune to some of the difficulties that commonly attend complex
problems: local maxima, discontinuities, and high dimensionality.

Although realizations of the GA differ in their methods of survival
selection, of mate selection, and of determining which structures will
disappear, and differ in their size of population and their rates of application
of the different genetic operators, all exhibit the characteristic known as
implicit parallelism. Any structure or string can be looked at as a collection
of substring components or schemata which together account for the good or
bad performance of the individual structure. Then Holland’s Schema

- 6 -

Sampling Theorem (Holland 1975, Mitchell 1996) demonstrates that
schemata represented in the population will be sampled in future generations
in relation to their observed average fitness, if we can assume that the
average fitness of a schema may be estimated by observing some of its
members. (Note that many more schemata are being sampled than are
individual structures of the population being evaluated.) Genetic algorithms
gain their power by exploring the space of all schemata and by quickly
identifying and exploiting the combinations which are associated with high
performance.

The most important recombination operator is crossover. Under the
crossover operator, two structures in the mating pool exchange portions of
their binary representation. This can be implemented by choosing a point on
the structure at random — the crossover point — and exchanging the
segments to the right of this point. For example, let two “parent” structures
be

x 1 = 100:01010, and
x 2 = 010:10100.

and suppose that the crossover point has been chosen as indicated. The
resulting “offspring” structures would be

y 1 = 100:10100, and
y 2 = 010:01010.

Crossover serves two complementary search functions. First, it provides new
strings for further testing within the structures already present in the
population. In the above example, both x 1 and y 1 are representatives of the
structure or schema 100#####, where the # means “don’t care, because the
value at this position is irrelevant.” (If 1001 is a point, then 100# is a line,
and 10## is a plane, and 1### is a hyperplane.) Thus, by evaluating y 1, the
GA gathers further information about this structure. Second, crossover
introduces representatives of new structures into the population. In the
above example, y 2 is a representative of the structure #1001###, which is not
represented by either “parent.” If this structure represents a high-
performance area of the search space, the evaluation of y 2 will lead to further
exploration in this part of the search space. The GENESIS package
(Grefenstette 1987), which we use, implements two crossover points per
mating.

A second operator is mutation: each bit in the structure has a chance of
undergoing mutation, based on an interarrival interval between mutations.
If mutation does occur, a random value is chosen from {0,1} for that bit.
Mutation provides a mechanism for searching regions of the allele space not
generated by selection and crossover, thus reducing the likelihood of local
optima over time, but mutation is capable only of providing a random walk
through the space of possible structures.

The GAs do not require well-behaved, convex objective functions —
indeed, they do not require closed objective functions at all — which provides
an opportunity for an exhaustive study of the solution to repeated games.
This is possible because to use the GA to search for better solutions it is

- 7 -

sufficient that each individual solution can be scored for its “evolutionary
fitness:” in our case the aggregate score of a repeated game provides that
measure, but in general any value that depends on the particular pattern of
each individual chromosome will do.

2.3 Applications

For a comprehensive survey of the use of evolutionary algorithms, and GAs in
particular, in management applications, see Nissen (1995). In Industry:
production planning, operations scheduling, personnel scheduling, line
balancing, grouping orders, sequencing, and siting. In financial services:
risks assessment and management, developing dealing rules, modelling
trading behaviour, portfolio selection and optimisation, credit scoring, and
time series analysis.

3. The Neural Network Approach — A Short Introduction

Neural Nets9 can be classified in a systematic way as systems or models
composed of “nodes” and “arcs”, where the nodes are artificial neurons or
units (in order to distinguish them from their biological counterparts, which
they mimic only with respect to the most basic features). Usually, within a
specific NN all units are the same. The arcs, or connections between the
units, simultaneously mimic the biological axons and the dendrites (in
biology, the fan-in or input-gathering devices) including the synapses (i.e. the
information interface between the firing axon and the information-taking
dendrite). Their artificial counterpart is just a “weight” (given by a real-
valued number) that reflects the strength of a given “synaptic” connection.
The type of connectivity, however, is the basis for huge diversity in NN
architectures, which accompanies great diversity in their behaviour. Figure 1
shows the described relationships between the biological neuron and its
artificial counterpart, the unit.

3.1 Units and Neurons

There are two functions governing the behaviour of a unit, which normally
are the same for all units within the whole NN, i.e.

• the input function, and
• the output function.

The input function is normally given by equation (1). The unit under
consideration, unit j, integrates or sums up the numerous inputs:

netj =
i
Σwijxi , (1)

where netj describes the result of the net inputs xi (weighted by the weights
wij) impacting on unit j (cf. the arrows in Figure 1, lower graph). These
inputs can stem from two sources. First, if unit j belongs to the hierarchically

- 8 -

Figure 1. Neuron and Unit

lowest layer of the NN — the input layer — then they are caused by the
environment. Second, if unit j belongs to a hierarchically higher layer of the
NN, such as the hidden layer or the output layer, then the inputs come from
units below unit j in the hierarchy. (In Figures 3 and 4, below, this means
from units on the left.) Thus, in vector notation, the input function (1) sums
the inputs xi of its input vector x according to their “strengths”, using the
appropriate weights of a weight matrix W = {wij}.

The output function exhibits a great variety, and has the biggest impact
on behaviour and performance of the NN. The main task of the output
function is to map the outlying values of the obtained neural input back to a
bounded interval such as [0,1] or [–1,+1].10 Figure 2 shows some of the most
frequently used output functions, oj = f (netj) = f (

i
Σ wij xi).

The output oj for a digital (or Heaviside) function would, for example, be
given by equation (2) (Figure 2a):

oj = D (netj − T) = D (
i
Σwij xi − T), (2)

where the symbol D stands for the Dirichlet operator, which gives a “step
function”. Given, for example, a threshold T = 0.5, then output oj = 1 if netj >
0.5, and oj = 0 otherwise. (See also Figure 2a, but for T = 0.) Other functions
are the semi-linear function (see Figure 2b), and the so-called Fermi or
sigmoid functions (Figure 2c and equation (3)):

9. For a rigorous introduction, see White (1992) or Bertsekas & Tsitsiklis (1996).
10. For this reason, the output function is sometimes known as the “squasher” function

(Sargent 1993, p.54.)

- 9 -

netj

oj1

0

2a

netj

oj1

0

2b

netj

oj1

0

2c

Figure 2. Output Functions

oj =
1 + e −γ netj

1__________, (3)

where γ is the “gain” of the function, i.e. the slope at netj = 0. This function
has some advantages, due to its differentiability within the context of finding
a steepest descent gradient for the backpropagation method and moreover
maps a wide domain of values into the interval [0,1].

3.2 Net architecture

Two basic types of architecture can be distinguished: feed-forward and
recurrent nets. In principle, each unit could be connected to all others
(recurrent nets), while the feed-forward types propagate information strictly
only forward from the input to the output and are organized in layers (one
input layer, one output layer, and at least one so-called hidden layer, lying
between the input and output layers, as in Figure 3 below).

The Hopfield net, the BAM (Bidirectional Associative Memory), and the
so-called Boltzmann machine are recurrent networks. They handle

- 10 -

nonlinearities very well, but have a very limited “memory”, i.e. they can
generalize only for less differentiated cases, compared to the feed-forward
type. It turns out that the MLP (Multi-Layer Perceptron), a standard feed-
forward type of NN, is best suited to use in the economic context, because its
ability to take into account complex situations is much higher than those of
the recurrent nets. We therefore focus on this type of NN architecture here.

3.3 Learning strategies

In addition to the output function used and the net architecture, the way they
learn is a third criterion defining the structure and performance of NNs. We
distinguish, first, supervised learning (where the “trainer” of the net knows
the correct result and gives this information to the net with each learning
step) and, second, unsupervised learning (where the net itself has to learn
what is correct and what is not correct, mainly by using measures of
similarity with events encountered earlier in the “learning history”).
Moreover, the way a NN learns also depends on the structure of the NN and
cannot be examined separately from its design. Therefore, we again focus on
the most common type of learning, developed for the MLP, which is Error
Backpropagation, although we also consider its predecessors.

There is a history of learning rules which starts with the so-called Hebb
rule, formulated following Donald Hebb’s observation in neurology that the
synaptic connection between two neurons is enhanced if they are active at the
same time (Hebb 1949). As learning in the NN is simulated by adapting the
(information-forwarding) weights between the different layers, this leads to
equation (4) for an appropriate weight adaptation:

∆wij =η oi oj , (4)

where η is an appropriate learning rate (mostly 0 < η < 1) and wij stands for
the weight connecting, for example, input unit i and a unit j, located in the
hidden layer.

Further development yielded the so-called Delta rule, which is a kind of
“goal-deviation correction” (Widrow & Hoff 1960). Its formula is given by
equation (5):

∆wij =η (zj − oj) oi , (5)

where η again gives the learning rate, and where zj is the jth element of the
goal vector. Thus, δδ = z − o describes the vector of deviations between the
output propagated by the actual weight structure of the NN and the desired
values of the target vector. The so-called generalized Delta rule at the heart
of the Backpropagation Algorithm is given by equation (6) in a general form,
for a weight matrix between any two layers, and must be further specified,
when applied, with respect to the layers to which the weight matrix then is
contingent:

∆wij =η δ j oi. (6)

This specification is done in defining the error term δ j in (6), since unit j is a
member of the output layer or any hidden layer. For an output unit j, the
Fermi output function (see Figure 2c and equation (3)) is mostly used, so that

- 11 -

the derivative is easy to calculate:

δ j = oj(1 − oj)(zj − oj). (7)

For the weight matrices lying to the left of the hidden layer (cf. Figure 3),
however, the errors are not observable and therefore must be imputed. This
imputation is performed according to equation (8):

δ i = oi(1 − oi)
j
Σ wij δ j . (8)

The basic structure of this MLP type of NN, as well as the backward
propagation of errors δ j occurring at the output unit j, can be seen in Figure
3. While the deviations δ j

o in the output layer can be observed directly, the
corresponding δ i

h are not known and cannot be observed. They must be
inferred from their contribution in causing an error in the propagated output.

3

2

δ 2
h

1

4

3

2

1

w 23

w 22

w 21

δ 3
o

δ 2
o

δ 1
o

Input
Hidden
layer Output

Figure 3. Error Backpropagation of j

In Figure 3 this is shown for the hidden layer unit 2. The weights connecting
this unit to the output units 1 through 3 — w 21, w 22, and w 23 — may be
wrong to a certain extent and thus would cause errors in the output of units

- 12 -

1, 2 and 3. Correcting them in an appropriate manner, which takes into
account their contribution in causing the errors, is called Error
Backpropagation, since the errors δ j are imputed in a backwards direction
and the weights concerned are adjusted in a manner such that a quadratic
error function of the difference between target and NN output is minimized.

For example, the error of the hidden layer unit 2 is imputed by the
contribution of its forward-directed information to the errors in the output
layer, which were produced by these signals. The forward-directed signals
(from each unit — here, unit 2 — of the hidden layer to several units of the
output layer — here, units 1, 2, and 3) contribute to the output errors (here
δ 1

o , δ 2
o , and δ 3

o , the errors in the signals from units 1, 2, and 3 in the output
layer, respectively). The greater the error (δ 2

h) at the hidden unit 2, the
greater the errors δ 1

o , δ 2
o , and δ 3

o at the output units 1, 2, and 3, respectively.
So, in order to calculate the error (δ 2

h) at hidden unit 2, we must sum the
errors observed from all output-layer units to which the hidden unit 2
contributes, suitable adjusted by the three weights of the signals from hidden
unit 2 to the output layer units wij (shown in Figure 3 as linking output-layer
unit j and hidden-layer unit i; see the big-headed arrows). Therefore it is
important in using a steepest-descent mechanism that the alterations of the
weights can be found by differentiating the various output functions of the
appropriate units (cf. Rumelhart & McClelland 1986).

Besides the Backpropagation Algorithm, which because of its gradient
method approach may suffer the problem of converging to local minima, there
are other methods for “learning”, i.e. adapting the weights, in the basket of
evolutionary computing including GAs and the Evolutionary Strategies, all of
which use a fitness function as an implicit error function. But these more
evolutionary algorithms of learning do not use backpropagation.

Using NNs for everyday problems shows that there can be a tendency for
a NN to “overfit” by learning the noise contained in the data too well, which
reduces the potential for generalizing or the possibility of forecasting. This
has led to different approaches to avoid overfitting of the weights to noise.
One approach is to split the data set about 70%, 20% and 10%, using the first
set for training and the second for validation and to end learning if the
reported value of the error function increases again after a longer phase of
reduction in the first part of the learning. Another approach takes into
account that the architecture or final structure of a NN is highly dependent on
the data. It then “prunes” the least important units and/or links of the NN
before it continues learning data noise, and restarts learning. With the last
data set covering 10% of the data, one can then test the “true” forecasting
potential of the net, as these data are still unknown to the NN.

4. The GA Solution to the Repeated Prisoner’s Dilemma

To apply the GA to the solution of the Repeated Prisoner’s Dilemma (RPD),
each individual string can be thought of as a mapping from the previous state
of the game to an action (coöperate C or defect D) in the next round. That is,
the players are modelled as stimulus-response automata, and the GA in effect
searches for automata which score well in a RPD.11 The RPD can pit each

- 13 -

individual in each population, or it can pit each individual against an
environment of unchanging automata. The first method results in
bootstrapping or coevolution of individuals, since each generation changes
and so provides a changing niche for other players. The second method was
used by Axelrod and Forrest (Axelrod 1987) in the first use of the GA to
simulate the RPD — their niche of rivals was obtained by using the
algorithms — some stochastic — that had been submitted to Axelrod’s now-
famous computer tournaments (Axelrod 1984). Bootstrapping was first used
by Marks (1992a), and it is this we describe here.

Choice of the environment is determined by the issue one is examining.
For the RPD there is then the issue of how to model each artificial agent.12

The state of the game is defined by the realisation of each player’s actions
over the past three moves. With two players, each with two possible actions,
there are 2 × 2 = 4 combinations of actions possible in any one-shot game (see
the corresponding payoffs in Table 1).

Player A Player B
Coöperate Defect

Coöperate (3,3) (0,5)
Defect (5,0) (1,1)

TABLE 1. The Prisoner’s Dilemma Payoffs

We model players as responding to the states (or combinations of actions)
over the past three moves. This implies 4 × 4 × 4 = 64 possible states or
combinations of actions. We calculate the state s (r) at round r as:

s (r) = 32 S (r −3) + 16 O (r −3) + 8 S (r −2) + 4 O (r −2) + 2 S (r −1) + O (r −1), (9)

where S (z) and O (z) are respectively the moves of the player and his
opponent in round z, either 0 for C or 1 for D.

How to map from state s (r) to action S (r)? We use a string of 64
actions, one per possible state. With only two possible actions in the
Prisoner’s Dilemma, each position on the string need only be a single bit — 0
maps to C, 1 to D — so we need 64 bits. Then, calculate the state s (r) from
the actions of both players during the past three rounds (or games), using
equation (9), and look at the s (r)th position on the string for the action S (r)
to be undertaken next round.

Since at the first round there are no previous actions to remember,
following Axelrod and Forrest we code in a “phantom memory”, which each

11. For a comprehensive survey of the use of finite automata as models of boundedly rational

players in repeated games, see Marks (1992b).
12. Here we describe the Axelrod/Forrest linear-mapping representation also used by Marks,

but Miller (1996) describes a different representation, in which each agent is explicitly
modelled as a finite automaton.

- 14 -

agent uses during the first three rounds in order to have a state from which to
map the next action. We model this with an additional 6 bits — 2 bits per
phantom round — which are used in equation (9) to establish the states and
hence moves in the first three rounds; for succeeding rounds in the RPD, the
actual moves are remembered and used in equation (9). For each repeated
game, the history of play will be path-dependent, so by encoding the phantom
memory as a segment of the bit string to be evolved by the GA over successive
generations, we have effectively endogenised the initial conditions of the RPD.

Each player is thus modelled as a 70-bit string: 64 bits for the state-to-
action mappings, plus 6 bits to provide the phantom memory of the three
previous rounds’ moves at the first round. This string remains unchanged
during the RPD, and is only altered when a new population of 50 artificial
agents is generated (see Step 4 below) by the GA, which uses the “genetic”
operations of selection, crossover, and mutation. The first generation of
strings are chosen randomly, which means that the mappings from state to
action are random too.

The process of artificial evolution proceeds as follows:

1. In order to determine how well it performs in playing the RPD (in
evolutionary terms its “fitness”), each of the population of 50 strings is
pair-wise matched against all other strings. This implies 2,500
matchings, but symmetry of the payoff matrix means that only 1,275
matchings are unique.13

2. Each pair-wise match consists of 22 rounds of repeated interactions,
with the Prisoner’s Dilemma payoffs (see Table 1) for each interaction
and each unchanging 70-bit string.14

3. Each string’s fitness is the mean of its scoring in the 1,275 22-round
encounters.

4. After all matches have occurred, a new population is generated by the
GA, in which strings with a high score or fitness are more likely to be
parents and so pass on some of their “genes” or fragments of their string
structures to their offspring.

5. After several generations, the selective pressure towards those strings
that score better means that individual strings emerge with much
higher scores and that the population’s average performance also
rises.15

13. The diagonal elements of an n × n matrix, plus half the off-diagonal elements (the upper

or lower half) number n (n +1)/2.
14. As discussed in Marks (1992a), a game length of 22 corresponds to a discount factor of

0.67% per round. Note that the strings do not engage in counting (beyond three rounds)
or in end-game behaviour.

15. Since there is coevolution of one’s competing players, this improvement may not be as
marked as the improvements seen when playing against an unchanging environment of
players, as in Axelrod (1987). A recent book by Gould (1996) discusses this issue.

- 15 -

6. The evolutionary process ends after convergence of the genotype (as
measured by the GA) or convergence of the phenotype (as seen by the
pattern of play in the RPD.

4.1 Results of the GA Approach

As mentioned above, Axelrod and Forrest (Axelrod 1987) were the first to use
the GA in simulating the RPD. Axelrod (1984) had earlier invited submissions
of algorithms for playing the RPD in two computer tournaments. Rapoport’s
simple Tit for Tat emerged as an extremely robust algorithm in both
tournaments. One can consider Axelrod’s use of the GA as a way of searching
for new algorithms, and indeed this was explicitly done by Fujiki & Dickinson
(1987), but using an early form of Genetic Programming, not a Genetic
Algorithm. Axelrod and Forrest bred their mapping strings against a fixed
niche of strategies, a weighted combination of algorithms submitted to the
earlier tournament.

We describe results first presented at the annual ASSA meetings in New
York in 1988 under the auspices of the Econometric Society, and later
published (Marks 1992a), in which the niche — comprised of all other
individuals in each generation — evolves as a consequence of the
improvements of the individual mappings, generation from generation. This
is bootstrapping, or coevolution, and was also pioneered by Miller (1996).

With coevolution, the outcome of interest is emergence of converging
phenotypic characteristics, not the emergence of common genotypes. In our
example, this means the emergence of behaviour in the RPD, not the
emergence of common mappings. The main reason is that, given the selective
pressures towards mutual coöperation (CC), as reflected in the payoff matrix
of Table 1, there is selective pressure against other behaviour (phenotypes),
and hence against positions on the string (genes) which correspond to one or
more defections in the past three rounds.

As one would expect, mutual coöperation (CC) soon emerges as the
outcome of coevolution of mapping strings, although high rates of mutation
may occasionally disrupt this for some time.

5. The NN Solution to the Repeated Prisoner’s Dilemma

The RPD can also be tackled by a NN. As with the GA solution, we assume
three rounds back of “memory”, i.e. the players take into account their own
last three moves as well as the last three moves of their opponent in order to
reach their own decision. As the decision encompasses only two possible
moves — to coöperate or to defect — we can translate it to +1 (coöperate) or
–1 (defect) as the only output of the NN. Thus, the input layer and the output
layer are fixed, due to the specificity of the task, and only the hidden layer
(besides the weights) offers a chance of adaptation towards an optimum.

This network structure is shown in Figure 4 and was taken from Fogel
& Harrald (1994), whose experiments with this type of NN we follow here.16

- 16 -

Self (t −3)

Self (t −2)

Self (t −1)

Opp (t −1)

Opp (t −2)

Opp (t −3)

Self (t)

•
•
•

Input layer Hidden layer Output layer

Figure 4. Neural Net Architecture to Reflect RPD Behavior
(After Fogel & Harrald 1994)

The logical structure of this NN, due to the task outlined here, is a kind
of dual to the normal NN: while in the normal case the net gets inputs from
the environment of data and tries to forecast future behaviour, here it
“makes” the data by creating behaviour of the actual move (i.e. coöperate or
defect). The data input of the net then is the history of one’s own and one’s
opponent’s moves. Due to this somewhat unusual reversal of the significance
of the propagation step of the NN, the learning method also belongs to a class
which is — as described in Section 3.3 — not frequently used. Fogel &
Harrald used an Evolutionary Strategy (ES) to adjust the weights, i.e.
adapting the randomly initialized weights (wij ∈ [–0.5, +0.5]). The weights
were “mutated” by adding a small number taken from Gaussian distribution
(not specified by the authors). Then the weights’ fitness was tested according
to a fitness function reflecting the payoff of the behavioural output as a result

16. Cho (1995) models the Prisoner’s Dilemma and other two-person games played by a pair

of perceptrons (or neural networks). In an infinitely repeated (undiscounted) Prisoner’s
Dilemma, he shows that any individually rational payoff vector can be supported as an
equilibrium by a pair of single-layer perceptrons (with no hidden layer) — the Folk
Theorem. When mutual cooperation is not Pareto efficient, at least one player’s
perceptron must include a hidden layer in order to encode all subgame-perfect
equilibrium strategies.

- 17 -

of the simulation. This fitness function was given by equation (10):

f (a,b) = −0.75a + 1.75b + 2.25, (10)

where a and b: a,b ∈ [–1,+1], reflect players A’s and B’s behaviour,
respectively.

This fitness function had to approximate the payoff matrix used by
Axelrod (1987), as seen in Table 2.

Player A Player B
Coöperate Defect

(3,3) (0,5)Coöperate 3.25 0.25
(5,0) (1,1)Defect 4.75 1.25

TABLE 2. Approximations to the PD Payoffs

The original payoffs are given in parenthesis while Player A’s approximated
payoffs used in the NN approach are given in italics.

Fogel & Harrald proceeded as follows:
A population of fixed size (the simulations were done with five population
sizes: 10, 20, . . . , 50 “parent” nets) was “seeded” with uniformly distributed
random weights in [–0.5, 0.5].

Then:

1. “Mutation” (as described above) of a parent NN produced a single
offspring.

2. All networks played against each other for 151 rounds, in order to test
the fitness, which was defined as the average payoff per round from
equation (10).

3. The top-ranking half of the population of NNs were selected as parents
to produce the next generation of offspring.

4. Until the 500th generation was reached, the process was repeated from
Step 1.

As seen from the above process, only the weights were adapted in the
evolutionary procedure. The number of units in the hidden layer was held
constant for each simulation and given in advance. Variation of the number
of hidden-layer units thus was exogenous; their number n was varied from n
= 2 (the minimal possible) to n = 20 (the maximum admitted). Besides the
insight into the structure and mechanics of the NN in solving the RPD (which
is the main goal of this paper), the results are very interesting.

5.1 Results of the NN Approach

Fogel & Harrald varied two essential determinants of the experiment: the
number of “parent NNs” (from 10 to 50 in steps of 10) and the number of
hidden-layer units (between 2 and 20), with the expectation that there should

- 18 -

be enough units in the hidden layer to enable sufficient behavioural
complexity. Thus, it hardly could be expected that a 6–2–1 NN (a short-hand
way of describing a NN with 6 input units, 2 hidden units and 1 output unit)
would develop stable coöperative behaviour, and in fact it did not. On the
other hand, a 6–20–1 NN most of the time showed — in Fogel & Harrald’s
words — “fairly” persistent coöperative behaviour, and thus, to a certain
extent, met the expectations, but could never establish a stable regime of
coöperation like Axelrod’s paradigmatic results. Although delivering the best
performance of all tested architectures, the level of coöperation as measured
by the average payoffs was below what could be expected if all had always
coöperated, and was worse than the Axelrod simulations.

There also seemed to exist an increasing probability of stabilizing
coöperation with population size, but it was never stable, and could instead
produce a sudden breakdown of coöperation, even after generation 1,200,
from which it mostly did not recover.

5.2 Critique and Conclusions to the NN Approach

The results described above are surprising, and invite further investigation.
A standard critique of the NN approach could be of the simulation design,
which makes the evolutionary adaptations of weights and the network
complexity (given here only by the number n of hidden units) disjunct parts of
the trials. If we extrapolate “normal” NN experiences, then there is an
inherent dependence of weights and NN structure with respect to an optimal
adaptation. In this sense only coadaptation would make sense, but this was
not implemented in the experiment of Fogel & Harrald’s.

The results contrast with the GA results, but give also rise to
speculation about the different approaches of both methods: GAs work by a
strict zero–one mapping within the genome string, while the above NN design
admits of real values varying between –1 or +1, thus weakening the
boundedness or “degree of determinism” within the model, and possibly
allowing a more “fuzzy” behavioural context between the opponents.

Unfortunately, the authors of this paper do not possess an appropriate
NN simulator which would enable us to rerun the above experiments and to
add elements or alter the design with respect to the above speculation, which
could be tested by the so-called gain γ (i.e. the “steepness” of the sigmoid
transfer function, cf equation (3)) of a unit and thus changing the behaviour
gradually towards a more discrete (digital) one. Thus, these remarks can
only be tentative and remain speculative.

6. Comparison of the Two Approaches and Concluding Remarks

As the results may suggest, a close interpretation may be that the RPD is
more the domain of the GA approach than that of the NN. In Section 3.3 we
mention that the NN architecture must be specified with respect to the data it
processes. Indeed, it is one of the wisdoms of NN expertise that the data
structure will require — and, if allowed by pruning, will form — its special
architectural form. In the above NN example, there was only limited
opportunity for achieve this — only the number of hidden units.

- 19 -

Moreover, the NN tried to approximate the overt zero–one type of RPD
problem — each player has only two choices, either Coöperate (C ≡ 0) or
Defect (D ≡ 1) — at two points by real-valued functions:

— in simulating the integer-valued payoffs by a “best” equation, which
provides for a much more linear approach (Table 2), as does the original
(Table 1) used by the GA approach;

— in approximating the zero–one actions by real-valued numbers.

So the NN formulation is not as close to the problem as is the GA
structure, which uses a zero–one approach and thus operates much more
closely to the focus of the RPD problem. It may well be that the contrast of
zero–one encoding of the GA solution against the more fuzzy, real-valued
encoding of the NN are sufficient to explain the lower stability of performance
of the NN compared to the GA, since it is readily imagined that the basin of
attraction for the final solution of a typical zero–one problem such as the RPD
is much more clear-cut and thus much more stable than it is for a smooth
“landscape” explored by a NN. This conclusion may well be reversed for a
problem which is formulated in real-valued solutions, such as the forecast of a
stock price. It is certainly the case, at least when using the binary-string
representation of solutions with the GA, that the number of significant digits
is in general a prior decision: the length of the bit string places an upper
limit on the precision of the solutions.

In conclusion we make some more general observations. Evolutionary
algorithms are well suited for high-dimensional, complex search spaces. With
EAs there are no restrictive requirements on the objective function (if one
exists), such as continuity, smoothness, or differentiability; indeed, there may
be no explicit objective function at all. The basic EA forms are broadly
applicable across many diverse domains, and, with flexible customising, it is
possible to incorporate more knowledge of the domain, although such domain
knowledge is not required. They have been found to be reliable, and are
easily combined with other techniques, to form so-called hybrid techniques.
They make efficient use of parallel-processing computer hardware.

Evolutionary algorithms are heuristic in nature (with no guarantee of
reaching the global optimum in a specific time); indeed, finding good settings
for strategy parameters (population size and structure, crossover rate,
mutation rate in the GA) can require some experience. They are often
ineffective in fine-tuning the final solution. The theory of EAs is still being
developed. They have comparatively high CPU requirements, although with
Moore’s law in operation, this is less and less a problem.

7. References

Adeli, H., & Hung S.-L. (1995) Machine Learning: Neural Networks, Genetic
Algorithms, and Fuzzy Systems, NY: Wiley.

Axelrod, R. (1984) The Evolution of Coöperation, New York: Basic Books.

Axelrod, R. (1987) The evolution of strategies in the iterated Prisoner’s
Dilemma, in: Genetic Algorithms and Simulated Annealing, L. Davis (ed.)

- 20 -

(Pitman, London) pp.32–41.

Bertsekas, D.P., Tsitsiklis, J.N. (1996), Neuro-Dynamic Programming,
Belmont, Mass.: Athena Scientific.

Bethke, A.D. (1981) Genetic algorithms as function optimizers. (Doctoral
dissertation, University of Michigan). Dissertation Abstracts International
41(9): 3,503B. (University Microfilms No. 81–06,101)

Brady, R.M. (1985) Optimization strategies gleaned from biological evolution.
Nature 317: 804–806.

Cho, I.-K. (1995) Perceptrons play the repeated Prisoner’s Dilemma, Journal
of Economic Theory, 67: 266–284.

Davis, L. (1991) A genetic algorithms tutorial. In: Davis L. (ed.) Handbook of
Genetic Algorithms. New York: Van Nostrand Reinhold.

Dupré, J. (ed.) (1987) The Latest on the Best: Essays on Evolution and
Optimality. Cambridge: MIT Press.

Fogel, D.B., Harrald, P.G. (1994) Evolving continuous behaviors in the
iterated Prisoner’s Dilemma in: Sebald, A., Fogel, L. (eds.) The Third
Annual Conference on Evolutionary Programming, Singapore: World
Scientific, pp.119–130.

Fujiki, C., Dickinson, J. (1987) Using the genetic algorithm to generate Lisp
source code to solve the Prisoner’s Dilemma. In: Grefenstette J.J. (ed.)
Genetic Algorithms and their Applications, Proceedings of the 2nd.
International Conference on Genetic Algorithms. Hillsdale, N.J.:
Lawrence Erlbaum.

Goldberg, D.E. (1989) Genetic Algorithms in Search, Optimization and
Machine Learning, Reading, Mass.: Addison-Wesley

Gould S.J. 1996, Full House: The Spread of Excellence from Plato to Darwin,
New York: Harmony Books. (Also, for some reason, published in London
as Life’s Grandeur.)

Grefenstette, J.J. (1987) A User’s Guide to GENESIS. Navy Center for
Application Research in Artificial Intelligence, Naval Research
Laboratories, mimeo., Washington D.C.

Hebb, D. (1949) The Organization of Behavior, New York: Wiley.

Holland, J.H. (1975) Adaptation in Natural and Artificial Systems. Ann
Arbor: Univ. of Michigan Press. (A second edition was published in 1992:
Cambridge: MIT Press.)

Holland, J.H. (1984) Genetic algorithms and adaptation. In: Selfridge O.,
Rissland E., & Arbib M.A. (eds.) Adaptive Control of Ill-Defined Systems.
New York: Plenum.

Koza, J.R. (1992) Genetic Programming, Cambridge: MIT Press.

- 21 -

Langton, C.G., Taylor, C., Farmer, J.D., Rasmussen, S. (ed.) (1992) Artificial
Life II, Reading: Addison-Wesley.

Marks, R.E. (1989) Niche strategies: the Prisoner’s Dilemma computer
tournaments revisited. AGSM Working Paper 89–009.
<http://www.agsm.unsw.edu.au/∼bobm/papers/niche.pdf>

Marks, R.E. (1992a) Breeding optimal strategies: optimal behaviour for
oligopolists, Journal of Evolutionary Economics, 2: 17–38.

Marks, R.E. (1992b) Repeated games and finite automata in: Creedy, J.,
Borland, J., Eichberger, J. (eds.) Recent Developments in Game Theory.
Aldershot: Edward Elgar.

McCulloch, W.S., Pitts, W. (1943) A logical calculus of the ideas immanent in
nervous activity, Bulletin of Mathematical Biophysics 5.

Michalewicz, Z. (1994) Genetic Algorithms+Data Structures = Evolutionary
Programs, Berlin: Springer Verlag, 2nd ed.

Miller, J.H. (1996) The coevolution of automata in the repeated Prisoner’s
Dilemma. Journal of Economic Behavior and Organization, 29: 87–112.

Minsky, M., Papert, S. (1969) Perceptrons, Cambridge: MIT Press.

Mitchell, M. (1996) An Introduction to Genetic Algorithms, Cambridge: MIT
Press.

Nissen, V. (1995) An overview of evolutionary algorithms in management
applications, in Evolutionary Algorithms in Management Applications, ed.
by J. Biethahn & V. Nissen, Berlin: Springer-Verlag, pp.44–97.

Nissen, V., Biethahn, J. (1995) An introduction to evolutionary algorithms, in
Evolutionary Algorithms in Management Applications, ed. by J. Biethahn
& V. Nissen, Berlin: Springer-Verlag, pp.3–43.

Rechenberg, I. (1973) Evolutionsstrategie. Optimierung technischer Systeme
nach Prinzipien der biologischen Evolution, Stuttgart: Frommann-
Holtzboog.

Rumelhart, D.E., McClelland, J.L. (1986) Parallel Distributed Processing:
Explorations in the Microstructure of Cognition, Vol. 1: Foundation, 2.
Aufl., Cambridge: MIT Press.

Sargent, T.J. (1993) Bounded Rationality in Macroeconomics, Oxford: O.U.P.

Schaffer, J.D., Grefenstette, J.J. (1988) A critical review of genetic
algorithms. Mimeo.

Schwefel, H.P., Männer, R., (1991) Parallel Problem Solving from Nature,
(Lecture Notes in Computer Science 496). Berlin: Springer-Verlag.

Sebald, A., Fogel, L. (eds.) (1994) The Third Annual Conference on
Evolutionary Programming, Singapore: World Scientific.

- 22 -

White, H. (1992) Artificial Neural Networks: Approximation and Learning,
Oxford: Basil Blackwell.

Widrow, B., Hoff, M.E. (1960) Adaptive switching circuits, In: Institute of
Radio Engineers, Western Electronic Show and Convention, Convention
Record, Part 4, pp.96–104.

- 23 -

