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I. Sufficiency and Necessity

Simulation demonstrates existence, sufficiency,

but not necessity.

Simulation can demonstrate the untruth of a proposition,
but not provide proofs or theorems,

simulations cannot provide generality.

What, never?

Does this matter?
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Formal Simulation

Mathematical “model A” comprises the conjunction
(a,a,la5---1a,), where [I means “AND”, and the a;
denote the elements (equations, parameters, initial
conditions, etc) that constitute the model.

Sufficiency: If model A exhibits the desired target behaviour

B, then model A is sufficient to obtain exhibited behaviour
B: Al B

Thus, any model that exhibits the desired behaviour is
sufficient, and demonstrates one conjunction of conditions
(or model) under which the behaviour can be simulated.

But if there are several such models, how can we choose

among them? And what is the set of all such conjunctions
(models)?
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Necessity

Necessity: Only those models A belonging to the set of
necessary models 7\ exhibit target behaviour B.

Thatis, (AUOA)J B,and (D O N\) 4 B.

A difficult challenge: determine the set of necessary models,
A,

Since each model A = (a{a,llas---L1a,), searching for the
set 7\ of necessary models means searching in a high-
dimensional space, with no guarantee of continuity, and a
possible large number of non-linear interactions among
elements.
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Lack of Necessity Means ...

For instance, if D [/ B, it does not mean that all elements a;
of model D are invalid or wrong, only their conjunction, that
is, model D.

It might be only a single element that precludes model D
exhibiting behaviour B.

But determining whether this is so and which is the
offending element is a costly exercise, in general, for the
simulator.

Therefore, without clear knowledge of the boundaries of the
set of necessary models, it is difficult to generalise from
simulations.
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Simulation Can Demonstrate Necessity . . .

only when the set 7\ of necessary models is known to be
small (such as in the case of DNA structure by the time
Watson & Crick were searching for it) is it relatively easy to
use simulation to derive necessity.

They had much information about the properties of DNA
(from others):

when they hit on the simulation we know as the "double
helix", they knew it was right.

But still "A structure ...", not "The structure” in the title of
their 1953 Nature paper.
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2. Formalisation of Validation

Let set P be the possible range of observed (historical)
outputs of the real-world system.

Let set M be the exhibited outputs of the model in any
week.

Let set S ] P be the specific, historical output of the real-
world system in any week.

Let set Q be the intersection, if any, between the set M and
thesetS, Q =M n S.

We can characterise the model output in several cases.
(Mankin et al. 1977).
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Five Cases for Validation

a. no intersection between M and S (Q = (1), then the model is
useless.

b. intersection @Q is not null, then the model is useful, to some
degree: will correctly exhibit some real-world system
behaviours, will not exhibit other behaviours, and will exhibit
some behaviours that do not historically occur. Both
incomplete and inaccurate.

c. If Mis a proper subset of S (M [ S) then all the model’s
behaviours are correct (match historical behaviours), but the
model doesn’t exhibit all behaviour that historically occurs:
accurate but incomplete.

d. If S is a proper subset of M (S U M) then all historical
behaviour is exhibited, but will exhibit some behaviours that
do not historically occur: complete but inaccurate.

e. If the set M is equivalent to the set S (M = S), then (in your
dreams!) the model is complete and accurate.
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Or Graphically ...

(e)
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Figure 1: Validity relationships (after Haefner (2005)).
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complete and accurate
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Modelling Goals
One goal: to construct and calibrate the model so that

M = Q = S: there are very few historically observed behaviours
that the model does not exhibit,

and there are very few exhibited behaviours that do not occur
historically.

The model is close to being both complete and accurate.

In practice, a modeller might be happier to achieve case d.,
where the model is complete (and hence provides sufficiency
for all observed historical phenomena), but not accurate.

Marks R.E., (2007), Validating Simulation Models: A General
Framework and Four Applied Examples, Computational
Economics, 30(3): 265—290.
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Four Levels of Validation (Axtell & Epstein 1994)

Level 0: Qualitatively similar at the micro level of individuals
(agents)

Level I: Qualitatively similar at a higher, macro, level

Level 2: Quantitative agreement of macro structures
eg. means, moments, distributions, statistical tests

Level 3: Quantitative agreement at the micro level
eg. agents behave exactly the same.

Here we address Level 2, with a new moment, the SSM.
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Measurement

Q: how can we measure the degree of similarity of two sets of
time-series?

One: the historical record of the rivalrous dance among the
sellers in an oligopoly, while

The other: the output from a (agent-based) simulation model of
the market, where each seller agent prices this week as a
function of the state of the market last week (or earlier).

Q: how can we output validate our model against history?

Or: how can we derive a degree of confidence in the model
output?



Sydney Agents 19 August 2010 Page 14

3. The Issue: Heterogenous Agents and Time-series Price

Two reasons to compare such model output against history:

I. To choose better parameter values, to "calibrate” or
(more formally) "estimate" the model against the
historical record.

2. To measure how closely the output reflects history, to
validate the model.

We are interested in the second, having used machine learning
(the GA) to derive the model parameters in order to improve
each agent’s weekly profits (instead of fitting to history) in our
agent-based model.

Figure 2 shows historical data from a U.S. supermarket chain’s
sales of (heterogeneous) brands of sealed, ground coffee, by
week in one city (Midgley et al. 1997).
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Historical Data: Prices and Volumes in Chain |
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Figure 2: Weekly Sales and Prices (Source: Midgley et al. 1997)
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Stylised facts of the historical data:

I. Much movement in the prices and volumes of four
strategic brands — a rivalrous dance.

2. For these four (coloured) brands, high prices (and low
volumes) are punctuated by a low price (and a high
volume).

3. The remaining five brands exhibit stable prices and
volumes, by and large. For this reason we abstract away
from these five brands, and focus solely on the first four.

In addition, the competition is not open slather: the
supermarket chain imposes some restrictions on the timing and

identity of the discounting brands.
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A Model of Strategic Interaction

We assume that the price P, , of brand b in week w is a
function of the state of the market M, at week w, where M,,
in turn is the product of the weekly prices S,, of all brands over
several weeks:

Pb,w — fb(Mw) — fb(sw—1 X Sw—2 X Sw—3 -t )

Earlier in the research program undertaken with David Midgley
et al., we used the Genetic Algorithm to search for "better”
(i.e. more profitable) brand-specific mappings, f;,, from market
state to pricing action.

And derived the parameters of the model, and derived its
simulated behaviour, as time-series patterns (below).
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4. The Method — Measuring the Distance Between Sets of
Time-series using the State Similarity Measure

The SSM method introduced here reduces the dimensionality of
the historical behaviour (and sometimes the model output too)
by partitioning the price line in order to derive a measure of
similarity or distance beween two sets.

Marks (1998) explores partitioning while maximising
information (using an entropy measure); maximising profits
would be a better criterion. Finds that dichotomous partition is
sufficient.

Here: use symmetric dichotomous partitioning: a brand’s price is
labelled 0O if above its midpoint, else 1 below.

Then defining market states first by week S,, and then by
multi-week window M,,, counting the frequency of each state,
subtracting the two sets’ frequencies, and summing the
absolute difference.
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Dichotomous Symmetric Price Partitioning of Chain |
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Figure 3: Partitioned Weekly Prices of the Four Chain-One Brands
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Calculating the Weekly S,, and Window M,, States

Week Red Purple 0 Sy, 0 M,

18 0 0 0 0

19 0 0 0 0

20 0 0 0 0 0
21 I 0 0 4 256
22 0 I 0 2 160
23 I 0 0 4 276
24 I I 0 6 418
25 0 0 I I 116
26 0 0 0 0 14
27 0 0 0 0 I
28 0 I 0 2 128
29 I 0 0 4 272
30 I I 0 6 418

Three Brands, 3-Week Window
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Calculating the SSM Between to Two Sets of Time Series

More formally:

I. For each set, partition the time-series {P}, , } of price
Py w of brand b in week w into {0,1}, where 0
corresponds to "high" price and 1 corresponds to "low"
price to obtain time-series {P}, ,,'};

2. For the set of 3- or 4-brand time-series of brands’
partitioned prices {P, '}, calculate the time-series of
the state of the market each week {S, };

3. For each set, calculate the time-series of the state of the
3- or 4-week moving window of partitioned prices {M,},
from the per-week states {S, };
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4. Count the numbers of each state observed for the set of
time-series over the given time period; convey this by an
n x 1 vector ¢, where ¢[s] = the number of observations
of window state S over the period;

5. Subtract the number of observations in set A of time-

series from the number observed in set B, across all n

possible states; d“*f = ¢# - ¢B;

6. Sum the absolute values of the differences across all
possible states:

DAB:-IrxldABl (1)

This number DA? is the distance between two time-series
sets A and B.

This method is called the State Similarity Measure.
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5. The Results

Having derived the distance between two sets of time-series
using the State Similarity Measure, by calculating the sum of
absolute differences in observed window states between the
two set, so what?

First, the greater the sum, the more distant the two sets of
time-series.

Second, we can calculate the maximum size of the summed
difference: zero intersection between the two sets (no states in
common) implies a measure of 2 x S where S is the number of
possible window states, from the data.

Third, we can derive some statistics to show that any pair of
sets in not likely to include random series (below).
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The Historical Data: A Diversity of Brands in the Chains
There are seven chains, containing a variety of brands, some (I,
2, 4, 5) active rivals, the rest non-strategic.

Brands

I 2|1 3|1 4|56 |7 |89 10 11 12
Chain1 | U | O3 o gyg g
Chain2 | U | 010 O | O []
Chain3 | U | 010 O | O
Chain 4 | 0 |0 ] [] []
Chain5 | U | [] [] [] [] []
Chain6 | [ |[J [] []
Chain7 | U |U 010 O []

Table 1: The Historical Data: The Seven Chains and the Twelve Brands

(Brand I=Folgers, 2=Maxwell House, 3=Master Blend, 4=Hills Bros,
5=Chock Full O Nuts, 6=Yuban, 7=Chase & Sanbourne, etc.)
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SSMs Between Four Chains (with Brands I, 2, 4, 5)

Chain | Chain2 Chain3 Chain7

Chain | 0 128 112 110
Chain 2 128 0 132 138
Chain 3 112 132 0 124
Chain 7 110 138 124 0
Random 150 150 150 150

Table 2: SSMs Between Four Chains (with Brands I, 2, 4, 5)

With two possible states per week per brand and four brands:
24 possible weekly states; with a four-week window, there are
16? = 65, 536 possible window states.

With 75 overlapping four-week windows, S = 75, and the
maximum measure (distance) is 150.
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Testing for Randomness Figure 4
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The red lines are the CMF of pairs of sets of random series (4
series, 75 observations) from 100,000 Monte Carlo parameter
bootstraps.

All six measured SSMs are significantly not random.
The one-sided c.i. at 1% corresponds to a SSM of 148, much

exceeding the greatest distance (between Chains 2 and 7) of
138.
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Percentage Matches Between Four Chains (with Brands 1, 2, 4,
5)

Chain | Chain2 Chain3 Chain7

Chain 1 100 14.67 25.33 26.67
Chain 2 14.67 100 12.0 8.0
Chain 3 25.33 12.0 100 17.33
Chain 7 26.67 8.0 17.33 100
Random 0 ) 0 )
Table 3: Percentage Matches Between Four Chains (with Brands
I, 2, 4, 5)

Table 3 is derived from Table 2, with 150 the maximum possible
distance between sets.

Note that there is a 100% own match, and that there is zero
match between the Random pricing process and any of the
historical chains.
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SSMs Between All Seven Chains (with Brands I, 2, 3)

Chain

I 2 3 4 5 6 7
Chain 1 0 70 82 76 102 132* 74
Chain 2 70 0 82 98 90 1201 98
Chain 3 82 82 0 100 96 1221 102
Chain 4 76 98 100 0 80 [128* 58
Chain 5 102 90 96 80 0 114 92
Chain 6 132* 1201 1221 128* 114 0 130*
Chain 7 4 98 102 58 92 130* 0

Random 144 136 148 144 140 146 144

Table 4: SSMs Between All Chains (with Brands I, 2, 3)
(* : cannot reject the null of random at the 5% level)
(1 : cannot reject the null of random at the 1% level)
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Table 4 — Historical Sets Compared using the SSM

Wi ith three brands (I, 2, 3) treated as strategic, and three-week
windowing, there are 8% = 512 possible window states.

The historical data include S = 76 overlapping three-week
windows, so the maximum distance between any two chains is
152.

The Random results are almost the maximum possible distance
from the chains.

The closest chains are Chain 4 and 7, with 152 — 58 = 94 states
in common, or 61.84%.
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Testing for Randomness Figure 5
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The red lines are the CMF of pairs of sets of random series (3
series, 76 observations) from 100,000 Monte Carlo parameter
bootstraps.

The one-sided c.i. at 1% corresponds to a SSM of 118, and at
5% 122.

Cannot reject the null hypothesis (random sets) for Chain 6 and
Chains 1, 4, or 7 (5%) or for Chain 6 and Chains 2 or 3 (1%).
The null is rejected for all other pairs.
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Example of a Simulated Oligopoly (Marks et al. 1995)

Simulating rivalry between the three asymmetric brands: I, 2,
and 5, Folgers, Maxwell House, and Chock Full O Nuts.

3
2.5-
—
N
2-
l's | | | |
10 20 30 40 50
Week

Figure 6: Example of a Simulated Oligopoly (Marks et al. 1995)
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SSMs Between Chain | and Three Runs (Brands I, 2, 5)

Chain 1| Run 11 Run 26a Run 26b

Chain | 0 82* 68 68

Run 11 82* 0 66 60
Run 26a 68 66 0 30
Run 26b 68 60 30 0

Table 5: SSMs Between Chain 1 and Three Runs (Brands I, 2, 5)
(* : cannot reject the null at the 5% level)

Here, S, the maximum number of states = 48, so the maximum
distance apart is 96. The three Runs are closer to each other
than to historical Chain I; Runs 26a and 26b are very close,
only 30/96 = 31.25% apart.
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Testing for Randomness Figure 7
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The red lines are the CMF of pairs of sets of random series (3
series, 48 observations) from 100,000 Monte Carlo parameter
bootstraps.

The one-sided c.i. at 1% corresponds to a SSM of 76, and at 5%
80.

Cannot reject the null hypothesis (random sets) for Chain I and
Run 11; reject the null (random) hypothesis for all other pairs.
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6. Conclusions — the State Similarity Measure

This measure, the State Similarity Measure (SSM), is sufficient to
allow us to put a number on the degree of similarity between
two sets of time-series which embody dynamic responses.
There is no limit to the number of time-series in each set,
although the two sets must contain an equal number of series.

Such a metric is necessary for scoring the distance between any
two such sets, which previously was unavailable.

Here, the SSM has been developed to allow us to measure the
extent to which a simulation model that has been chosen on
some other criterion (e.g. weekly profitability) is similar to
historical sets of time-series.

The SSM will also allow us to measure the distance between
any two sets of time-series and so to estimate the parameters,
or to help calibrate a model against history, or to compare any
two such sets.



