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Abstract Following the Winner’s Curse and the Optimizer’s Curse, this pa-
per introduces the Satisficer’s Curse. The Winner’s Curse requires compe-
tition between agents in an auction for, usually, a common-value item; the
recently named Optimizer’s Curse is a systematic overvaluation when the de-
cision maker is choosing the highest valued prospect of a set of uncertain
future outcomes. The Satisficer’s Curse is a systematic overvaluation that oc-
curs when any uncertain prospect is chosen because its estimate exceeds a
positive threshold. It is the most general version of the three curses, all of
which can be seen as statistical artefacts.
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1 Introduction

“The good news is you’ve won the bidding; the bad news is you’re paying
too much.” This encapsulates the Winner’s Curse, first formalized forty years
ago. More recently, the Optimizer’s Curse has shown that competitive bidding
is not required to generalize similar ex-post disappointment. Rather, merely
choosing the best of a set of uncertain prospects will result in disappoint-
ment, on average. In this paper, we argue that optimizing is not necessary
either: simply accepting a prospect if its performance has exceeded some hur-
dle will also result in ex-post disappointment as subsequent performance does
not reflect the prior hurdle jumping, on average. We call this the Satisficer’s
Curse. For managers this means that any selection process to choose uncertain
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prospects – investments, employees, contractors, technologies – that relies on
past performance exceeding some threshold will likely result in ex-post disap-
pointment for the decision-maker, as on average the chosen prospect will not
repeat the prior performance, absent an upward trend. All three curses are
statistical artefacts caused by their selection techniques, with no psychological
dimensions. There is no way to avoid the Satisficer’s Curse, but recognition of
the phenomenon will reduce expectations.

Thirty-eight years ago a trio of oil men (Capen et al. 1970) observed and
named the phenomenon of the Winner’s Curse in auctions, later epitomized by
the saying, “The good news is you won; the bad news is you paid too much”.
Their point-estimate model of selection bias was generalized by Harrison and
March (1984), who assumed Gaussian distributions in their modeling, and
further generalized by Smith and Winkler (2006), who argued that there was
no need for the explicit competition of the auction mechanism, and who coined
the phrase, the “Optimizer’s Curse,” to argue that any decision that chooses
the best prospect from a set of possibilities will fall heir to “post-decision”
disappointment, on average.

The first paper to draw attention to the post-decision disappointment as-
sociated with internal capital investment decisions was Brown (1974), but
Harrison and March (1984, p.27) also noted that when a decision-maker was
choosing the best option among a predetermined number of alternatives, or
when the alternatives were considered sequentially until one was identified as
satisfying some predetermined aspiration level or hurdle, then post-decision
disappointment would occur, on average. Compte (2004, p.9) also commented
that selection bias would occur when choosing the best from a set of alterna-
tives, without any recourse to psychological motivation (Camerer and Lovallo
1999, Lovallo and Kahnemann 2003, Tiwana et al. 2007). See Statman and
Tyebjee (1985) and van den Steen (2004) for surveys of evaluation biases and
their psychological and other foundations.

Section 2 presents a formal model of the Satisficer’s Curse and proves the
key theorem of the paper. Section 3 applies this to a firm’s selection of a project
to satisfy a minimum threshold of expected performance. Section 4 extends
the proof to Smith & Winkler’s Optimizer’s Curse. Section 5 discusses our
findings; we discuss the origins of decision-making biases, and ask whether
one can escape the Satisficer’s Curse, once identified.

2 The Formal Model

Choosing prospect i when its predicted value exceeds a threshold is “satis-
ficing.”1 That is, the predicted value is “good enough” to choose or accept,
rather than being the best, or optimized. Previous work by Smith and Win-
kler (2006) demonstrated that choosing the optimal prospect would result in

1 Simon (1957) introduced the verb “to satisfice” as a description of non-optimizing deci-
sion making; satisficing is now institutionalized as a means of making multifarious decisions.
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disappointment, on average. They called this the “Optimizer’s Curse.” Here
we generalize their findings, with the “Satisficer’s Curse.”

Let Si be the expected difference between the predicted value Ŷi and the
ex-post realized value vi of an uncertain future prospect i, conditional on the
predicted value exceeding a positive threshold p > 0. We write this as

Si ≡ E[Ŷi − vi|Ŷi > p > 0], (1)

where the predicted value Ŷi of prospect i is assumed to be the sum of the
true value µi and an error εi:

Ŷi = µi + εi (2)

Theorem 1 Absent a conditional Bayesian expectation of value, Si will be
strictly positive.

Before proceeding to prove this, we need some further scaffolding.
In a Bayesian world, the joint distribution over the ex-post realized value

vi and the predicted value Ŷi would be known. This would allow computa-
tion of the conditional Bayesian expectation of value, given a specific ex-post
realization vi of the value estimate Vi:

Y ∗
i (vi) ≡ E[µi|Vi = vi]. (3)

Assumption 1 Decision makers assume that Ŷi = Vi, that is, that the pre-
dicted value equals the estimated value. This is equivalent to assuming (perhaps
implicitly) that E[Ŷi] = µi, which implies ignoring the error εi.

2

Note that E[Ŷi] = E[Y ∗
i (vi)], that is, unconditional errors cancel. We are,

however, concerned with conditional expectations: the expected prediction er-
ror (Ŷi − vi) conditional on Ŷi > p > 0, the predicted value exceeding the
positive threshold.

If Theorem 1 is correct, then for any ex-post value realization vi, high
realizations of the predicted value Ŷi coincide with high realizations of the
error term εi, and hence coincide with over-valuation. That is, the expected
difference between the predicted and realized values, given that the predicted
value exceeds a positive threshold, is positive.

Definition 1 Prospect i exhibits the Satisficer’s Curse when Si > 0.

Definition 2 Define the decision-maker’s optimism Hi as the difference be-
tween the predicted value Ŷi and the conditional Bayesian predicted value
Y ∗

i (vi):

Hi(Vi, Ŷi) ≡ Ŷi − Y ∗
i (vi). (4)

It follows that Si = E[Hi|Ŷi > p > 0].

2 Tiwana et al. (2007) might suggest that this is a version of their bounded rationality
bias. We relax this assumption in Section 5.1 below.
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Proof Proof of Theorem 1. (After Compte (2004), Lemma 1.3) Assumption
1 implies that Ŷi = Vi, so the event {Ŷi > p > 0}, that is, the event that
the predicted value exceeds a positive threshold, is equivalent to the event
{εi > Zi}, the error εi exceeds a value Zi, defined as the difference between
the positive threshold p and the true value µi:

Zi ≡ p − µi (5)

Then, taking expectations of both sides of Eq. (4), the expected optimism,
given that the predicted value exceeds the positive threshold, is given by

E(Hi|Ŷi > p) = E(Vi − Y ∗
i (vi)|εi > Zi) = E(εi|εi > Zi) (6)

But, by construction E(εi) = 0, and εi is independent of values µi for any
realization zi ∈ Zi that falls within the support of εi (which is unbounded if
the p.d.f. gi generating the error εi is Gaussian).

Thus we have E(εi|εi > Zi, Zi = zi) > 0 if Zi > 0.
Since Pr {εi ≥ Zi } ∈ (0,1), the supports of εi and Zi must overlap.
This follows because each support is an interval, and because εi and Zi both

admit of a density that is everywhere positive in its support, by definition.
Hence

E[Hi|Ŷi > p > 0] > 0 (7)

and Theorem 1 is proved.

We can generalize this. If the predicted value Ŷi is based on past observa-
tions, then it is not sufficient for future desired performance (or even future
satisfactory performance) that an observed event has occurred in which the
realized value vi exceeded the threshold p, the positive hurdle. In general, a
satisficing decision-maker will be disappointed in future: the Satisficer’s Curse.

It is understood that setting performance hurdles does not guarantee bet-
ter performance in the future, unless there is trending improvement of perfor-
mance, so that the underlying stochastic process has a rising true value µ(t).
But the Satisficer’s Curse is saying that, in general, future performance of a
stationary stochastic process will not attain the positive threshold, at least in
expected terms.

3 A Model of Project Selection

Assume n independent projects available for internal investment by a company,
each of which has an independent value µi, described by a p.d.f. fi, and an
error term εi, described by a p.d.f. gi. The estimate Vi of the ith project’s
value is the sum of the true value µi and the error term εi:

Vi = µi + εi. (8)

3 The following is an adaptation from Compte (2004), who however treated the Winner’s
Curse in auction selection, not the Satisficer’s Curse, a more general concept.
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The error terms are assumed independent across projects, and are unbiased:
E[εi] = 0. We assume that the distributions over values and errors are non-
degenerate. Formally, we assume that the value µi and the error εi each admit
of a density (as above, denoted by fi and gi respectively), that the support of
each density is an interval, and that each density is positive in its support.

This model states that there is randomness in prediction (sampling), and
randomness in the eventual project outcome. The first randomness is described
by the error-term p.d.f. gi, and the second by the p.d.f. fi of the value term µi

for project i. There is a single realization vi of the value estimate Vi, and (at
most) a single realization xi of the random variable µi. Of course, if project j

is not chosen, there is no realization of its value.

In a Bayesian world the firm would know the joint distribution over the
values µi and the estimates Vi. So the firm would be able to compute, for each
realization vi of the estimate Vi, the conditional probability over the value, and
hence the conditional Bayesian expectation of value denoted by Y ∗

i (vi), given
by Equation (3). Using the correct conditional Bayesian expectation of value
would not guarantee the absence of post-decision disappointment (Y ∗

i (vi) −
xi > 0), since there would still be variance in the estimates, but on average
there would be no overestimation of values: estimate Vi would be unbiased.

Here, in contrast, we assume that the firm is aware that values µi are
distributed independently, but that, conditional on Vi, the firm forms an er-
roneous prediction Ŷi of the value µi. (Thus Ŷi 6= Y ∗

i necessarily. This could
also be explained by use of an erroneous conditional distribution of value µi

given estimate Vi; other possible reasons are discussed in Section 5.1 below.)

Assumption 1 above states that the predicted value Ŷi is given by the
estimated value Vi. This assumption models the polar case in which the firm
believes that the estimate Vi has a higher predictive content than it really
has, by ignoring the error term in Equation (8). This does not imply that Ŷi

is greater than Y ∗
i , only that the firm ignores the error in estimation, and

underestimates the error in the realization xi of µi. To summarize: For some
projects the firm will be too optimistic about the value, meaning that: Ŷi >

Y ∗
i (vi), and for other projects the firm will be too pessimistic: Ŷi < Y ∗

i (vi).

4 The Optimizer’s Curse

In this section, we extend our framework to prove the existence of Smith
and W inkler’s (2006) optimizer’s curse. We denote the difference between
the actual prediction and the conditional Bayesian prediction Y ∗

i (vi) from

Equation (3) by the optimism Hi associated with project i: Hi(Vi, Ŷi) ≡ Ŷi −
Y ∗

i (vi), Equation (4). Note that under Assumption 1, by assumption E(Vi) =
E(µi), the estimate Vi is an unbiased estimate of value µi, so that on average
there is no optimism associated with any project i, and the prediction errors
cancel: E(Hi) = 0.
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Let ∆i denote the expected difference between predicted and realized val-
ues, conditional on being chosen, that is:

∆i ≡ E[Ŷi − µi | i is chosen] = E[Ŷi] − vi (9)

Definition 3 Project i exhibits the Optimizer’s Curse when ∆i > 0.

In other words, the Optimizer’s Curse refers to situations in which the
value of the chosen project was overestimated. Following Compte (2004), note
that ∆i can be rewritten as:

∆i = E[Ŷi − Y ∗
i | i is chosen] = E[Hi | i is chosen], (10)

since E[Y ∗
i | i is chosen] = E[µi | i is chosen] by construction.

When we consider competing bidders in an auction, in the limiting case of a
single bidder (who is thus certain to win), the prediction errors cancel, and the
bidder does not suffer the Winner’s Curse on average. But in the case of a firm
choosing a single project from a set, with possibly erroneous predictions of the
values of each, almost always the firm will suffer the Optimizer’s Curse, even
though each prediction is an unbiased estimate of that project’s value. Only if
there were a single project to choose from would the firm not experience the
Optimizer’s Curse on average.

How is this so? The act of choosing the project with the highest predicted
(net) value induces a selection bias in favor of projects with (overly) optimistic
value predictions.

Under what circumstances would such a firm not suffer a once-off occur-
rence of post-decision disappointment? When both of the following conditions
are met: when project k is chosen, because Ŷk > Ŷi for all i 6= k, or Ŷk >

maxi6=k Ŷi, and when the highest value prediction Ŷk (of project k) is less than

the realization vk, so that Hk ≡ Ŷk − Y ∗
k (vk) < 0.

That is, ∆k = E(Ŷk − µk | k is chosen ) < 0. Of course, that a single oc-
currence is profitable does not preclude the Optimizer’s Curse from occurring
over several repetitions: given the stochastic nature of the net returns, it is
the expectation of these returns that indicates the existence of the Optimizer’s
Curse, or not.

Theorem 2 With Ŷi = Vi (Assumption 1), if 0 < Pr{i wins} < 1, then ∆i

> 0, that is, if the decision maker uses the naive forecast (Assumption 1), and
the project could be chosen (its choice is neither certain nor impossible), then
the project exhibits the Optimizer’s Curse.

Theorem 2 will follow from Theorem 1 because project i is only chosen
(wins) in events where its predicted value is equal to or greater than p̄ =
maxj 6=iŶj , the highest prediction across other projects.

Proof Proof of Theorem 2. (After Compte (2004), Proposition 1.) Define

p̄ ≡ maxj 6=iŶi (11)
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We have

∆i = E[Hi | Ŷi > p̄], (12)

given that i is preferred to all others. Since 0 < Pr{i is chosen} < 1, the
support of p̄ and Ŷi must overlap, for the same reason as the proof of Theorem
1 above. Thus, from Theorem 1, the result follows:

∆i > 0, (13)

and Theorem 2 is proved (under Assumption 1): the chosen project exhibits
the Optimizer’s Curse.

5 Discussion

The Satisficer’s Curse is similar to the Peter Principle (when no competition
for promotion or tenure exists, just a performance hurdle), although Lazear
(2004) points out that those decisions are special cases in the estimates (our
Vi) are based on past performance alone. There is no such restriction on how
our estimates are derived; indeed, for many proposals there will be no past
performance to observe.

Van der Steen (2004) argues in effect that overly attractive predictions may
stem from, first, estimation errors, as discussed above, and, second, from the
range of attractivenesses (i.e. diversity across projects).

Compte (2004) notes that our Theorem 2 is connected to Capen et al.’s
(1971) insight, and relies on neither point estimates, nor values being common
or interdependent. Its proof does not rely on Gaussian distributions, either. He
further notes that Theorem 2 illustrates how competition induces a selection
bias in favor of overly attractive projects. Theorem 1 illustrates that a similar
selection bias may occur without competition, when a project is undertaken
if it exceeds some positive hurdle p. If a project i is chosen whenever it looks
attractive (whenever its NPV is greater than some positive threshold p), that
is, whenever (Ŷi−p) is positive, then the higher the error term, the more likely
the project is to be undertaken, and, as a result, conditional on accepting the
contract, project i is overly attractive.

A corollary of Theorem 2 is that the same combination of factors (viz. es-
timation errors and choice among various alternative projects) generates over-
attractiveness (relative to true prospects). Selecting the project which appears
to have the highest value (estimate) to the firm is equivalent to choosing the
agent with the highest estimate of the item being sold in an auction. Theorem
2 says that whichever projects the firm ends up selecting (optimally) will turn
out to have been valued optimistically, on average.

Will competition among firms reduce the Satisficer’s Curse? As Massey
and Thaler (2006) note, the Winner’s Curse can persist in competitive markets
because there are limits to arbitrage: the winners either go broke or learn; wiser
heads must watch from the sidelines and hope for the former. “Since there is
no way to sell the oil leases short, the smart money cannot actively drive the
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prices down.” Since the Satisficer’s Curse does not assume any interaction
between firms, competition plays no direct role here.4

5.1 Origins of Biases

As Compte (2004) suggests, we could have modeled Assumption 1 as:

Vi = µi + λεi, (14)

where λ ∈ [0,1). That is, the firm realizes that estimation error is possible but
downplays the magnitude of its own errors by a factor λ. The factor λ can
be interpreted as a measure of “model risk,” a major concern in financial risk
management (Kato and Yoshiba 2000).5 The firm’s prediction Ŷi of the value
µi is:

Ŷi ≡ Eλ[µi |Vi], (15)

where the superscript λ means that the expectation is taken assuming a joint
distribution over Vi and µi is characterized by Equation (14).

We have already shown that (Theorem 2) a project chosen under the naive
Assumption 1 will exhibit the Optimizer’s Curse (in its expected sense), and a
moment’s thought about Equation (14) shows that only if the full error term
εi is acknowledged (λ = 1) does Ŷi = Y ∗

i ; for any λ less than 1 Theorem 2 still
holds.6 Indeed, it is easily shown that ∆i is decreasing in λ.

5.2 Learning to Avoid the Satisficer’s Curse?

What about learning? Discussing sealed-bid tenders to sell in procurement
auctions, Compte (2004) proposed a model in which bidders learn to set a
mark-up on their cost estimates to reduce the risk of suffering the Winner’s
Curse, and argued that this leads to increased cautiousness in bidding, whether
with private or common values.

In the case we consider of a firm choosing a prospect from a range of
prospects, what is the decision-maker to learn? Should he or she ignore the
ranking by predicted value because of the error terms εi? To do so would be to
throw information away. Raising any return hurdle p̂ that some projects are
predicted to exceed will not obviate the Satisficer’s Curse (from Theorem 1)
so long as the error term is ignored (λ = 0) or discounted (λ ∈ [0,1)).

If the hurdle is an institutional threshold, then an understanding of the
Satisficer’s Curse should result in the institution learning to put procedures in
place to reduce the prospect of performance reverting to the mean in future.

4 Frank Milne has suggested that, although here ex-post under-performance is a “curse,”
in other models it is plausible to construct games where optimism confers strategic advange.

5 I am grateful to Frank Milne for pointing this out.
6 This is what Goeree and Offerman (2003) term the “news” curse: decision-makers neglect

the fact that a high estimate makes a positive error more likely.
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For example, accreditation (of a business school to the AACSB, for instance)
should be followed by the school using the accreditation inspection process
to institutionalize assurance procedures for maintaining or even improving
future performance, lest entropy increase after the hurdle has been surpassed
and accreditation achieved, leading to consequent withdrawal of accreditation.

If such learning is for whatever reason not available to the decision makers
or those who benefit from jumping the hurdle, then acknowledgment of the
Satisficer’s Curse should qualify expectations that future performance will
reflect past estimates; on average it will not.
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