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Abstract. The purpose of this research is to seek the best (highest
performing) risk profiles of agents who successively choose among risky
prospects. An agent’s risk profile is his attitude to perceived risk, which
can vary from risk preferring to risk neutral (an expected-value decision
maker) to risk averse, or even a dual-risk attitude. We use the Genetic
Algorithm to search in the complex stochastic space of repeated lotter-
ies. We examine three families of utility (or value) functions: wealth-
independent CARA and wealth-dependent CRRA, in which an agent’s
risk profile is unchanging, and the Dual-Risk-Profile (DRP) functions
from Prospect Theory, in which the agent can be risk-averse (for gains)
or risk preferring (for losses). Statistical analysis of the simulation re-
sults suggests that the best (profit-maximizing) CRRA functions are
risk neutral, while the other functions remain slightly risk-averse. The
most profitable are slightly risk-averse DRP functions.

Keywords: decision making under risk, comparing utility functions,
Prospect Theory, Genetic Algorithms, risk aversion, risk neutrality

1 Introduction

Informally, it is widely held that in an uncertain world, with the possibility of
the discontinuity of bankruptcy, the most prudent risk profile is risk aversion.1

Indeed, “Risk aversion is one of the most basic assumptions underlying economic
behavior” [2], perhaps because “a dollar that helps us avoid poverty is more
valuable than a dollar that helps us become very rich” [3]. But is risk aversion
the best risk profile? Even with bankruptcy as a possibility?

To answer this question, we use three kinds of utility function: the wealth-
independent exponential utility function, or Constant Absolute Risk Aversion
CARA; the Constant Relative Risk Aversion CRRA function, which is sensitive
to the agent’s level of wealth; and the DRP functions of Prospect Theory, where
an agent’s risk profile can vary depending on prospects of losing or gaining. We
run computer experiments in which each agent chooses among three lotteries,
and is then awarded with the outcome of the chosen lottery k.

1 An preliminary version of this paper was presented at the IEEE Computational
Intelligence for Finance Engineering & Economics 2014, London, March 29 [1].
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Repetition of these choices by many agents allows us to use a technique from
machine learning – the Genetic Algorithm or GA [4] – to search for the best
function from each utility family, where “best” means the highest average payoff
when choosing among lotteries.

Modelling the agent’s utility directly allows us to avoid the indirect inference
of Szpiro [2], who argues that the evolutionary learning technique of the GA
does two things: it allows wealth-maximizing agents to succeed even in highly
stochastic environments, and it allows the emergence of risk aversion. Indeed,
Szpiro argues that risk aversion is the best risk profile to adopt in such an
environment. We compare the cumulative winnings (fitnesses) of our agents to
see whether this is so.

2 Decisions under Risk and Risk Profiles

The von Neumann-Morgenstern formulation of the decision-maker’s attitude to
risk is based on the observation that individuals are not always expected-value
decision makers. That is, there are situations in which people apparently prefer
a lower certain outcome to the higher expected (or probability-weighted) out-
come of an uncertain prospect (where the possible outcomes and their possibly
subjective, or Bayesian, probabilities are known). An example is paying an in-
surance premium that is greater than the expected loss without insurance. On
the other hand, people will sometimes “gamble” by apparently preferring a lower
uncertain outcome to a higher sure thing: this is risk-preferring.

We can formalise this by observing that, by definition, the utility of a lottery
is its expected utility, or

U(L) =
∑

piU(xi), (1)

where each (discrete) outcome xi occurs with probability pi, and U(xi) is the
utility of outcome xi. It is useful to define the Certainty Equivalent x̃ (or C.E.),
which is a certain outcome which has the identical utility as the lottery:

U(x̃) = U(L) =
∑

piU(xi). (2)

We can use the C.E. to describe the decision-maker’s risk profile [5]. Define
the Expected Value x̄ of the Lottery as:

x̄ =
∑

pixi. (3)

When x̃ = x̄, then the decision-maker’s utility function exhibits risk neutral-
ity; when x̃ < x̄, then risk aversion; and when x̃ > x̄, then risk preferring.

2.1 Approximating the Certainty Equivalent

Expand utility U(.) about the expected value x̄.

U(x0) ≈ U(x̄) + (x0 − x̄)U ′(x̄) +
1

2
(x0 − x̄)2U ′′(x̄).
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The C. E. x̃ of a continuous lottery is obtained by integration over the prob-
ability density function (p.d.f.) fx(.):

U(x̃) =

∫
dx0U(x0)fx(x0).

∴ U(x̃) ≈ U(x̄) + 0 +
1

2
σ2U ′′(x̄), (4)

where σ2 is the variance. But, by expansion,

U(x̃) ≈ U(x̄) + (x̃− x̄)U ′(x̄). (5)

Therefore, from (4) and (5),

x̃− x̄ ≈ 1

2
σ2U

′′(x̄)

U ′(x̄)
.

∴ x̃ ≈ x̄+
1

2
σ2U

′′(x̄)

U ′(x̄)
. (6)

2.2 Risk Aversion

Risk aversion is not indicated by the slope of the utility curve: it’s the curvature
(U ′′/U ′): if the utility curve is locally –

– linear (say, at a point of inflection, where U ′′ = 0), then the decision maker
is locally risk neutral;

– concave (its slope is decreasing – Diminishing Marginal Utility), then the
decision maker is locally risk averse;

– convex (its slope is increasing), then the decision maker is locally risk pre-
ferring.

3 Utility Functions

We consider three types of utility function:

1. those which exhibit constant risk preference across all outcomes (so-called
wealth-independent utility functions, or Constant Absolute Risk Aversion
CARA functions);

2. those where the risk preference is a function of the wealth of the decision
maker (the Constant Relative Risk Aversion CRRA functions); and

3. those in which the risk profile is a function of the prospect of gaining (risk
averse) or losing (risk preferring): the DRP Value Functions from Prospect
Theory.
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3.1 CARA Utility Functions

If an increase of all outcomes in a lottery by an equal amount ∆ increases the
C.E. of the lottery by ∆, then the decision maker exhibits wealth independence:

U(x̃+∆) = U(L′) =
∑

piU(xi +∆).

Acceptance of this property restricts possible utility functions to be linear (risk
neutral) or exponential – constant-absolute-risk-aversion (CARA) functions.

CARA utility functions charactise risk preference by a single number, the risk
aversion coefficient, γ. Since CARA utility functions are wealth-independent,
any aversion to bankruptcy is thus precluded, by definition. Whether a decision
maker exhibits a wealth-independent utility function is an empirical question.

When utility is linear in outcomes, the decision maker is risk-neutral, across
all outcomes, but such a simple constant-risk-profile utility function is of no
further interest. Instead, we consider the exponential CARA functions, where
utility U is given by

U(x) = 1− e−γx, (7)

where U(0) = 0 and U(∞) = 1, and where γ is the risk aversion coefficient :

γ = −U
′′(x)

U ′(x)
. (8)

From (6) and (8), for exponential utility,

x̃ ≈ x̄− 1

2
σ2γ,

which indicates that when γ = 0, then x̃ ≈ x̄ (risk neutrality), when γ > 0, then
x̃ < x̄ (risk averse), and when γ < 0, then x̃ > x̄ (risk preferring), with positive
variance.

3.2 CRRA Utility Functions

We want utility functions which are not wealth-independent, to see whether such
functions will result in risk-averse agents doing best.

The Arrow-Pratt measure of relative risk aversion (RRA) ρ is defined as

ρ(w) = −wU
′′(w)

U ′(w)
= wγ. (9)

This introduces wealth w into the agent’s risk preferences, so that lower
wealth can be associated with higher risk aversion. The risk aversion coefficient
γ is as in (8).

The Constant Elasticity of Substitution (CES) utility function:

U(w) =
w1−ρ

1− ρ
, (10)

with positive wealth, w > 0, exhibits constant relative risk aversion CRRA, as
in (9).
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Risk Aversion with CES Utility. In the CRRA simulations, we use the
cumulative sum of the realisations of payoffs won (or lost, if negative) in previous
lotteries chosen by the agent plus the possible payoff in this lottery as the wealth
w in (10). Each agent codes for ρ.

From (6), the C.E. with CES utility is approximated by

x̃ ≈ x̄− 1

2

ρ

w
σ2.

Iff 1
2
ρ
wσ

2 > 0 (or ρ/w > 0), then then C.E. x̃ < the expected mean x̄, and the
decision maker is risk averse.

With w > 0, ρ > 0 is equivalent to risk aversion. With w > 0 and ρ = 1,
the CES function becomes the (risk-averse) logarithmic utility function, U(w) ≈
log(w). With w > 0 and ρ < 0, it is equivalent to risk preferring.

3.3 The Dual-Risk-Profile DRP function from Prospect Theory

From Prospect Theory [8], we model the DRP Value Function, which maps from
quantity X to value V with the following two-parameter equations (with β > 0
and δ > 0):

V (X) =
1− e−βX

1− e−100β
, 0 ≤ X ≤ 100, (11)

V (X) = −δ 1− eβX

1− e−100β
,−100 ≤ X < 0. (12)

The parameter β > 0 models the curvature of the function, and the parameter
δ > 0 the asymmetry associated with losses. The DRP function is not wealth
independent. This function (in Fig. 1, with δ = 1.75, for prizes between ±$100)
exhibits the S-shaped asymmetry postulated by Kahneman and Tversky [8].
It exhibits risk seeking (loss aversion) when X is negative with respect to the
reference point X = 0, and risk aversion when X is positive. We use here a linear
probability weighting function (hence no weighting for smaller probabilities). As
Fig. 1 suggests, as δ → 1 and β → 0, the value function asymptotes to a linear,
risk-neutral function (in this case with a slope of 1).

We use the GA to search the joint plane (β, δ) as the agents (each charac-
terised by a point in the (β, δ) plane) choose the lottery that has the greatest
expected value of the three. Each lottery has two known prizes in the interval
of [−$100, +$100] of known probabilities, pi. So the agent chooses the lottery k
with the highest expected value:

Uk =

2∑
i=1

pkiV (Xki, β, δ).

The GA jointly searches for points in (β, δ) that result in high payoffs after the
payoff of each chosen lottery is subsequently realised, based on the probabilities
of the possible outcomes.
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Fig. 1. A Prospect Theory (DRP) Value Function

4 The Simulations

Each lottery is randomly constructed: the two payoffs (“prizes”) are randomly
chosen in the interval between − and + MAP, (where the Maximum Absolute
Prize, MAP, is $100); and the probability is also chosen randomly. (Each lottery
has, of course, a single degree of freedom for probability). Each agent calculates
the expected utility of each of the three lotteries, using its utility or value function
(a function of its γ or ρ/w or (β, δ)), and chooses the lottery k with the highest
expected utility. Doing this, agents know the prizes and probabilities of all three
lotteries.

Then the actual (simulated) outcome of the chosen lottery k is randomly
realised, using its probability. The winnings of the agent (that is, the wealth of
the CRRA agent) is incremented accordingly. Each agent successively chooses
1000 lotteries.

Calculate the three expected utilities for lotteries X, Y, and Z, functions of
γ (or ρ and w, or (β, δ)):

U(X) = pxU(x1) + (1− px)U(x2)

U(Y ) = pyU(y1) + (1− py)U(y2)

U(Z) = pzU(z1) + (1− pz)U(z2)

Choose the lottery I with the highest expected utility or value. Win (or
lose) whichever prize (i1 or i2) is realised in that lottery, based in the lottery’s
probability pi.
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4.1 Searching with the Genetic Algorithm

We use a population of 100 agents, each of which has an average winnings or a
cumulative level of wealth, based on its risk profile and the successive outcomes
of its choices among the lotteries. The GA’s mutation rate is controllable by the
simulator, on-screen.

We use an implementation [6] of the GA to search for the best risk profile.
That is, we select the best-performing agents to be the “parents” of the next
generation of agents, which is generated by “crossover” and “mutation” of the
chromosomes of the pairs of parents. Each of the new generation of agents chooses
the lottery k with highest expected utility a thousand times. Again, the best are
selected to be the parents of the next generation.

We use the GA simulation in this search as an empirical alternative to solving
for the best (highest performing) risk profile analytically. Note that Rabin [3]
asserts that “theory actually predicts virtual risk neutrality.” We return to this
in the Discussion below.

4.2 Simulations with Utility-Maximizing (or Value-Maximizing)
Agents

Using NetLogo [7], we model each agent as a binary string which codes to its risk-
aversion coefficient/s, (γ for CARA agents, ρ for CRRA agents, and (β, δ) for
DRP agents) in the interval ±1.048576. The DRP agents search for 0 ≤ β < 0.21
and for δ in the interval ±10.48.

Each lottery is a two-prize lottery, where each prize is chosen from a uniform
distribution, between − and + MAP (Maximum Absolute Prize), where MAP
can be set up to $100 by the simulator, and the single probability is chosen
randomly from uniform [0,1].

Each agent chooses the lottery k with the highest expected utility from (7)
and (10), based on its value of γ (respectively, ρ and wealth w), or from (11)
and (12), based on its value of β and δ. Then a realised outcome is calculated
for that lottery, based on its probability.

Each agent faces 1000 lottery choices, and the cumulative winnings that
agent’s “fitness” for the GA. Because all agents face the same probabilistic lot-
teries, we can also compare the the three utility families based on their average
winnings or fitnesses. The processes are stochastic. For each model we perform
a number n of Monte Carlo simulation runs to obtain sufficient data to analyse
the results statistically.

4.3 The CARA Results

The on-line simulations 2 show three things clearly:

2 See http://www.agsm.edu.au/bobm/teaching/SimSS/NetLogo4-models/

RA-CARA-EU-3l2p.html for a Java aplet and the Netlogo code.
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1. The mean (black) fitness (cumulative winnings) grows quickly to a plateau
after 20 generations or so;

2. the mean, maximum, and minimum risk-aversion coefficients γ converge to
close to zero (risk neutrality) over the same period, and

3. Any γ deviation from zero up (more risk-averse) or down (more risk-preferring)
leads to the minimum fitness in that generation collapsing from close to the
mean fitness.

These observations show that CARA agents perform best (in terms of their
lottery winnings) who are closest to risk neutral (γ = 0). Too risk averse, and
they forgo fair lotteries; too risk preferring and they choose too many risky
lotteries.

Eye-balling single output plots, however, is not sufficient to reach clear con-
clusions about the best utility functions. We have preferred 55 independent
Monte Carlo runs using the GA to search for better CARA utility functions.

The correlation between γ and Fitness in these MC simulations (where Fit-
ness is the winnings averaged across 100 agents, each of which chooses the ex-
pected “best” of three lotteries 1000 times per generation, for 200 generations)
is 0.7148. This suggests that the larger the value of γ, the higher the value of
Fitness. The p-value for γ against a null hypothesis of H0 : µγ = 0 is 0.0006,
which provides a very strong presumption against the null, that is, although it
is close to the risk-neutrality of γ = 0, the CARA function does not converge
to exact risk neutrality.3 The final means of γ in the 55 runs are significantly
positive, suggesting weak risk-aversion.

The wealth-independent CARA utility function precludes bankruptcy. What
of utility function that does not exclude this possibility?

4.4 The CRRA Results

We could, of course, put a floor on agent wealth, below which is oblivion, but
better to use a utility formulation that is not wealth independent and repeat the
search. We use the CES utility functions (10) that exhibits CRRA.

The results are surprising.4 We have performed 109 independent Monte Carlo
runs using the GA to search for better CRRA utility functions.

The correlation between ρ and Fitness is 0.0907. This suggests that ρ and
Fitness are not correlated. The p-value for ρ against a null hypothesis of H0 :
µρ = 0 is 0.2996, which provides no presumption against the null, that is, the
data suggest that the mean µρ = 0, or the CRRA function converges to risk
neutrality, despite our prior expectations for this function.

Remember: γ = ρ
w , so dividing the ρ values by the high w values attained

implies corresponding minute values of γ here.

3 For the detailed statistics of this and the other four analyses, see the Appendix in
the paper at http://www.agsm.edu.au/bobm/papers/singapore14.pdf.

4 See http://www.agsm.edu.au/bobm/teaching/SimSS/NetLogo4-models/

DRA-CRRA-EU-revCD-3l2p.html for a Java aplet and the NetLogo code.
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4.5 The Dual-Risk-Profile Results

We considered first the marginal results: holding β constant at zero, asking what
values of δ emerge as conditionally best, then, holding δ constant at unity, asking
what values of β emerge as conditionally best. That is, first considering a kinked
function, possibly linear, and then a symmetric DRP function, possibly linear.

We performed 55 independent Monte Carlo runs using the GA to search
for better δ, while holding β = 0. The correlation between δ and Fitness in
these MC simulations (where Fitness is the winnings averaged across the 100
agents, each of which chooses the expected “best” of three lotteries 1000 times
per generation, for 200 generations) is 0.5602. This suggests that the larger the
value of δ, the higher the value of Fitness. The p-value for δ against a null
hypothesis, H0 : µδ = 1, is effectively zero (< 0.00001), which provides a very
strong presumption against the null, that is, the data suggest that the mean
µδ 6= 1.

We then performed 50 independent Monte Carlo runs using the GA to search
for better β, while holding δ = 1. The correlation between β and Fitness in these
MC simulations is 0.0941. This suggests that β and Fitness are not correlated.
The p-value for β against a null hypothesis, H0 : µβ = 0 is 0.0012, which provides
a strong presumption against the null, that is, the data suggest that the mean
µβ 6= 0.

Then we undertook a search in the (β, δ) plane. We performed 54 independent
Monte Carlo runs using the GA to search for better β and δ jointly. Fig. 2
shows the result with the two variables’ final means across these runs, where
β = 0.007186 and δ = 1.2598: almost risk neutral (in which an expected-value
decision maker becomes an expected-outcome decision maker).5

The correlation between δ and β (which is −0.0015) suggests that there is
little if any trade-off between the two values in maximizing Fitness.6 This is not
surprising: from the two marginal explorations, we see that with fixed β = 0,
the best mean δ = 1.4658 (compared to 1.2598 when the search is in the (β, δ)
plane), while with fixed δ = 1, the best mean β = 0.003846 (compared with
0.007186 when the search is in the joint plane). That is, fixing δ constrains the
Fitness more than fixing β.

4.6 Comparing Models

This can be seen in another way. All five sets of Monte Carlo simulations are
searching the same space: given the known prizes (between $100 and $100) and
known probabilities, choose the expected “best” lottery. This means we can

5 See http://www.agsm.edu.au/bobm/teaching/SimSS/NetLogo4-models/

RA-PTh-EV-both.html for a Java aplet and the NetLogo code of a DRP Value
Function model.

6 Another formalization of Prospect Theory Value Functions is to model separate
curvature parameters for gains (X > 0) and losses (X < 0), but this does not really
capture the full asymmetry between gains and losses that our model includes. And
δ 6= 1 implies a different slope (given β = 0) for losses.



10 Searching for Agents’ Best Risk Profiles

X

Va
lu
e

-100 -50 0 50 100
-2

-1

0

1

............
............
............
............
.............
.............
.............
..............
..............
..............
...............
...............
...............
...............
................
................
................
.................
..................

..................
..................

....................
...................

.....................
.....................

......................
.......................

.......................
.........................

..........................
...........................

............................
.............................

...............................
.................................

..................................
.....................................

.......................................
..........................................

............................................
.................................................

....................................................
......................................

............................................
..........................................

........................................
.....................................

...................................
.................................

...............................
..............................

............................
...........................

..........................
.........................

........................
.......................

......................
.....................

.....................
....................

...................
...................

..................
..................

..................
.................
................
................
...............
...............
...............
...............
..............
..............
.............
.............
.............
.............
............
............
............
............
............
...........
...........
...........
...........
...........
..........
..........
..........
..........
..........
..........
......

β = 0.0072
δ = 1.2598

... . .
. . . . .

. . . . .
. . . . .

. . . . .
. . . . .

. . . . .
. . . . .

. . . . .
. . . . .

. . . . .
. . . . .

. . . . .
. . . . .

. . . . .
. . . . .

. . . . .
. . . . .

. . . . .
. . . . .

. . . . .
. . . . .

. . . . .
. . . . .

. . . . .
. . . . .

. . . . .
. . . . .

. . . . .
. . . . .

. . . . .
. . . . .

. . . . .
. . . . .

. . . . .
. . . . .

. . . . .
. . . . .

. . . . .
. . . .

. . . .
. . . .

. . . .
. . . .

. . . .
. . . .

. . . .
. . . .

. . . .
. . . .

. . . .
. . . .

. . . .
. . . .

. . . .
. . . .

. . . .
. . . .

. . . .
. . . .

. . . .
. . . .

. . . .
. . . .

. . . .
. . . .

. . . .
. . . .

. . . .
. . . .

. . . .
. . . .

. . . .
. . . .

. . . .
. . . .

. . . .
. . . .

. . . .
. . . .

. . . .
. . . .

. . . .
. . . .

. . . .
. . . .

. . . .
. . . .

. . . .
. . .

Fig. 2. The Best Prospect Theory (DRP) Value Function

compare the Fitnesses (dollar winnings) across the simulation runs. This is shown
in Table 1.

Table 1: Mean Fitnesses of the Five Models

Model Mean Fitness ($)
CARA 37,650
CRRA 29,403
DRP with β = 0 37,666
DRP with δ = 1 38,879
DRP joint β, δ 37,721

It is clear that CRRA, the only model whose “best” parameter reflects risk-
neutrality, performs worst at maximizing Fitness, while the best model is the
DRP model from Prospect Theory with symmetric (δ = 1) loss-averting and
gain-preferring (its utility is convex for losses and concave for gains). This is
strange: a constrained optimization outperforming an unconstrained optimisa-
tion, when the constrained value is available to the unconstrained. The GA
search of the joint model could/should find that Fitness is higher when δ ≈ 1
but hasn’t. This suggests that the runs be lengthened, perhaps because the joint
search in (β, δ) is hard. Indeed, from Table 1, the apex of the hill of optimal
fitness is quite flat. It is likely that this anomaly suggests that the GA optimi-
sations have been prematurely terminated; would longer runs change our risk
profile results? Further work will tell.

At any rate, Table 1 shows that CARA, DRP with β = 0, and DRP with
joint β, δ search are very close in terms of best Fitness.
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5 Discussion

Like the GA simulations of Szpiro [2], we find that the best-performing CARA
agents are risk-averse, not risk-neutral. Because of the indirect way in which
Szpiro modelled the risk profiles of his agents (unlike a referee’s suggestion,
footnote 3, Szpiro’s model “only distinguishes between risk-averse automata and
all others”), while our models allow any CARA risk profile to emerge, we argue
that our results are more general than Szpiro’s.

Rabin [3] suggests a reason why risk-neutral functions will not do better
than risk-averse functions, at least for small-stakes lotteries. He argues that von
Neumann-Morgenstern expected-utility theory is inappropriate for reconciling
actual human behaviour as revealed in risk attitudes over large stakes and small
stakes. If there is risk aversion for small stakes, then expected-utility theory
predicts wildly unrealistic risk aversion when the decision maker is faced with
large stakes. Or risk aversion for large stakes must be accompanied by virtual
risk neutrality for small stakes.

But we do not appeal to empirical evidence or even to prior beliefs of what
sort of risk profile is best. Whereas there has been much research into reconciling
actual human decision making with theory (see [9]), we are interested in seeing
what is the best (i.e. most profitable) risk profile for agents faced with risky
choices.

We find that for wealth-independent CARA utility functions (exponential)
agents do not learn to become risk-neutral decision makers in order to maximise
their returns when choosing among risky propositions. But for wealth-dependent
CRRA utility functions (CES) our agents do learn to be risk neutral, despite the
possibility (even if small) of bankruptcy, or the loss of all accumulated wealth.

Rabin [3] argues that loss aversion [8], rather than risk aversion, is a better
(i.e. more realistic) explanation of how people actually behave when faced with
risky decisions. This is captured in our DRP Value Function.

An analytical study of Prospect Theory Value Functions [10] posits an adap-
tive process for decision-making under risk such that, despite people being seen
to be risk averse over gains and risk seekers over losses with respect to the cur-
rent reference point [8] – the so-called dual risk attitude, with utility convex for
losses and concave for gains – the agent eventually learns to make risk-neutral
choices. Their result appears consistent with our results for the CRRA model,
although the learning in their model is not that of the GA, but rather agents
observing how their choices result in systemic undershooting (or overshooting)
of their targets, which then results in more realistic targets and choices. Their
lotteries are symmetrical (for tractability), unlike ours. Our results suggest that
their results might generalise to asymmetric lotteries, such as ours, at least for
CRRA utility.

A simulation study [11] examines the survival dynamics of investors with
different risk preferences in an agent-based, multi-asset, artificial stock market
and finds that investors’ survival is closely related to their risk preferences. Ex-
amining eight possible risk profiles, the paper finds that only CRRA investors
with relative risk aversion coefficients close to unity (log-utility agents) survive
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in the long run (up to 500 simulations). This does not appear consistent with
our results.

Our last finding is obtained by comparing the mean fitnesses (accumulated
winnings) of the five models. We find that a symmetric DRP model (with δ = 1)
does better than any of the other models, while the only model which learns to
be risk-neutral (the CRRA model) does worst.

6 Conclusion

Using a demonstrative agent-based model – which demonstrates principles, rather
than tracking historical phenomena – we have used the Genetic Algorithm to
search the complex, stochastic space of decision making under risk, in which
agents successively choose among three (asymmetric) lotteries with randomly
allocated probabilities and outcomes (two per lottery), in order to maximize
their expected utilities. The GA searches for the best-performing utility func-
tion, among CARA (or wealth-independent), CRRA (when wealth, and hence
bankruptcy, matters), or for the best-performing Value Function, which exhibits
the DRP of Prospect Theory, although we use the same parameter β to describe
the curvature of both risk averse (gains) and risk preferring (losses), which is a
restriction that could be relaxed with further study.

Consistent with our prior belief that a risk-averse agent does best in these
circumstances, we find that only one of our three models – CRRA – converges to
risk neutrality. Our findings are therefore only partly consistent with analytical
work that proves that with symmetric lotteries, and agents with dual risk atti-
tude, risk-neutral decisions are the eventual outcome of agents adjusting their
aspirations and targets in response to the realisations of their choices. But the
other two models – CARA and the DRP from Prospect Theory – converge on
(slightly) risk-averse parameters, when we search using accumulated winnings
as the Fitness.

Comparing the mean accumulated winnings across our models, we find that
the best performing model is a symmetric DRP model. This might prove of use
to future simulators.

Simulations, of course, can not prove necessity, only sufficiency [12], so our
results for each of the three functions – CARA, CRRA, and DRP Value Functions
– are existence proofs only: the best (highest performing) functions, in choosing
among lotteries of known prizes and known probabilities, do not generally tend
to risk neutral (linear). The results suggest relaxing the assumption of known
probabilities might also be of interest. These results therefore tend to confirm
the common knowledge that a small amount of risk aversion is best in a risky
world.
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Note: Java aplets of the simulation models and the NetLogo code are available
online, together with graphical output of the simulation results, as referenced
in the three footnotes above. These models will also generate real-time results,
including graphs of their performance, when one’s computer’s Java security al-
lows. Moreover, one can explore the impact of the GA mutation rate on the
simulation evolution.
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