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Abstract. This paper uses simulation (written in R) to compare six
methods of decision making under uncertainty: the agent must choose
one of eight lotteries where the six possible (randomly chosen) outcomes
and their probabilities are known for each lottery. Will risk-averse or risk-
preferring or other methods result in the highest mean payoff after the
uncertainty is resolved and the outcomes known? Methods include max-
max, max-min, Laplace, Expected Value, CARA, CRRA, and modified
Kahneman-Tversky. The benchmark is Clairvoyance, where the lotteries’
outcomes are known in advance; this is possible with simulation. The
findings indicate that the highest mean payoff occurs with risk neutrality,
contrary to common opinion.
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Clairvoyance, risk neutrality

1 Introduction

This is not a descriptive paper. It does not attempt to answer the positive
question of how people make decisions under uncertainty. Instead, it attempts to
answer the normative question of how best to make decisions under uncertainty.
How best to choose among lotteries.

We must first define “best” and “uncertainty”. By “best” we mean decisions
that result in the highest payoffs, where the payoffs are the sum of the prizes
won across a series of lotteries. The experimental set-up is that each period the
agent is presented with eight lotteries, each with six possible known outcomes or
prizes (chosen in the range ±$10). No uncertainty about possible payoffs. But
there is uncertainty in each lottery about which payoff or prize will occur. The
best information the agent has are the probabilities of the six possible prizes
or payoffs in each lottery. Each lottery has six possible payoffs, but the values
of these payoffs and their probabilities vary across the eight distinct lotteries.
Choosing among these is what we mean by “decision making under uncertainty.”

2 Decision Making under Uncertainty

We model agents as possessing various approaches to this problem.
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– A simple approach (the Laplace method) is to ignore any information about
the probabilities of payoffs and instead just choose the lottery with the high-
est average or mean payoff, by calculating the mean of each lottery’s six
possible payoffs.

– Another method (modelling an optimistic agent) is to choose the lottery
with the highest possible best payoff, the max-max method.

– Modelling a pessimistic agent, another method is to choose the lottery with
the highest possible worst payoff, the max-min method. Neither of these
methods uses the known probabilities, or even five of the six payoffs.

– A fourth method is to use the known probabilities to choose the lottery with
the highest expected payoff, weighting each possible payoff by the probability
of its occurring, the Expected Value method.

– Three different families of utility functions.

2.1 Clairvoyance

The so-called Clairvoyant decision maker [1] knows the realisation of any un-
certainty, so long as this requires no judgment by the Clairvoyant, and the re-
alisation does not depend on any future action of the Clairvoyant. Here, with
simulation of probabilistic outcomes, we can model a Clairvoyant who knows
the realised outcome (among the six random possibilities) of each of the eight
lotteries, while other decision makers remain ignorant of this. We simulate each
outcome as occurring with its (known) probability: only one realised outcome per
lottery. The Clairvoyant chooses the lottery with the highest realised outcome
of the eight.

We can say something of this: if A1, ...An are i.i.d. uniform on (0,1), then
Mn = max(A1, ...An) has the expectation of n

n+1 . Here, n = 6 and the expected

maximum outcome for any lottery must be 6
7 × 20 − 10 = $7.14.1 But the re-

alisation of any lottery is in general less than its maximum outcome, and its
simulated realised outcome is generated from the weighted random probabil-
ity distribution of the six possible outcomes. The Clairvoyant is faced by eight
lotteries, and chooses the lottery with the highest simulated realised outcome
(which the Clairvoyant knows). It turns out (from the simulation) that the ex-
pected maximum of these eight realised outcomes is $7.788.2 This is the best on
average that any decision maker can achieve, given our experimental platform.
It is our benchmark.

3 Three Utility Functions

The remaining methods map the known possible payoffs to “utilities,” where the
utilities are monotone (but not in general linear) in the dollar amounts of the

1 The lottery outcomes fall randomly in the range ±$10; see Section 4.
2 With 48 outcomes, the expected maximum outcome across the eight lotteries is

$9.59; the expected maximum of the eight simulated realised outcomes is 81.2% of
this maximum.
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possible payoffs. These methods vary in how the utilities are mapped from the
payoffs.

By definition, the utility of a lottery L is its expected utility, or

U(L) =
∑

piU(xi), (1)

where each (discrete) outcome xi occurs with probability pi, and U(xi) is the
utility of outcome xi.

Risk aversion is the curvature (U ′′/U ′): if the utility curve is locally –

– linear (say, at a point of inflection, where U ′′ = 0), then the decision maker
is locally risk neutral;

– concave (its slope is decreasing – Diminishing Marginal Utility), then the
decision maker is locally risk averse;

– convex (its slope is increasing), then the decision maker is locally risk pre-
ferring.

We consider three types of utility function:

1. those which exhibit constant risk preference across all outcomes (so-called
wealth-independent utility functions, or Constant Absolute Risk Aversion
CARA functions; see equation (2) below);

2. those where the risk preference is a function of the wealth of the decision
maker (the Constant Relative Risk Aversion CRRA functions; see equation
(5) below); and

3. those in which the risk profile is a function of the prospect of gaining (risk
averse) or losing (risk preferring): the DRP Value Functions from Prospect
Theory. See equations (6) and (7) below.

Since the utility functions are monotone transformations of the possible pay-
offs, it would be pointless to consider the max-max, max-min, or Laplace meth-
ods using utilities instead of payoff values.

3.1 Constant Absolute Risk Aversion, CARA

Using CARA, utility U of payoff x is given by

U(x) = 1− e−γx, (2)

where U(0) = 0 and U(∞) = 1, and where γ is the risk aversion coefficient :

γ = −U
′′(x)

U ′(x)
. (3)

When γ is positive, the function exhibits risk aversion; when γ is negative, risk
preferring; and when γ is zero, risk neutrality, which is identical with the Ex-
pected Value method.
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3.2 Constant Relative Risk Aversion, CRRA

The Arrow-Pratt measure of relative risk aversion (RRA) ρ is defined as

ρ(w) = −wU
′′(w)

U ′(w)
= wγ. (4)

This introduces wealth w into the agent’s risk preferences, so that lower
wealth can be associated with higher risk aversion. The risk aversion coefficient
γ is as in (3).

The Constant Elasticity of Substitution (CES) utility function:

U(w) =
w1−ρ

1− ρ
, (5)

with positive wealth, w > 0, exhibits constant relative risk aversion CRRA, as
in (4). In the CRRA simulations, we use the cumulative sum of the realisations
of payoffs won (or lost, if negative) in previous lotteries chosen by the agent plus
the possible payoff in this lottery as the wealth w in (5). It can be shown that
with w > 0, ρ > 0 is equivalent to risk aversion. With w > 0 and ρ = 1, the CES
function becomes the (risk-averse) logarithmic utility function, U(w) ≈ log(w).
With w > 0 and ρ < 0, it is equivalent to risk preferring.

3.3 The Dual-Risk-Profile DRP function from Prospect Theory

From Prospect Theory [2], we model the DRP Value Function, which maps from
quantity x to value V with the following two-parameter equations (with β > 0
and δ > 0):

V (x) =
1− e−βx

1− e−100β
, 0 ≤ x ≤ 100, (6)

V (x) = −δ 1− eβx

1− e−100β
,−100 ≤ x < 0. (7)

The parameter β > 0 models the curvature of the function, and the parameter
δ > 0 the asymmetry associated with losses. The DRP function is not wealth
independent.3 Three DRP functions in Fig. 1 (with three values of β, and δ =
1.75, for prizes between ±$100) exhibit the S-shaped asymmetry postulated
by Kahneman and Tversky [2]. The DRP function exhibits risk seeking (loss
aversion) when x is negative with respect to the reference point x = 0, and risk
aversion when x is positive. We use here a linear probability weighting function
(hence no weighting for smaller probabilities). As Fig. 1 suggests, as δ → 1 and
β → 0, the value function asymptotes to a linear, risk-neutral function (in this
case with a slope of 1).

3 This does not require that we include wealth w in the ranking of the lotteries, as in
CRRA case; instead we choose a reference point at the current level of wealth, and
consider the prospective gains and losses of the eight lotteries.
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β ≈ 0

Fig. 1. A Prospect Theory (DRP) Value Function ([3])

4 The Experiments, by Simulation

The experimental set-up is to generate eight lotteries, each with six possible
outcomes, each outcome with its own probability of occurrence. The outcomes
are chosen form a uniform distribution between +$10 and −$10; the probabilities
are chosen at random so they add to unity for each lottery. The agent has
complete information about the outcomes and their probabilities. Then the agent
chooses the “best” lottery, based on the method of choice.

The actual realisation of one of the six possibilities from the chosen lottery
is simulated, using the generated probabilities: a payoff with a probability of 0.x
will be realised on average with a frequency of 100x%. The realisation of outcome
in the chosen lottery is the agent’s score (in dollars, say). In each iteration, payoff
realisations are derived for each of the eight lotteries.

Agents are presented with n iterations of the proceeding choice, and each
iteration generates new lotteries with new possible payoffs and new probabilities
of the payoffs. The mean payoff over these n choices is the score of the specific
decision method being tested.4

General opinion is that firms, at least, are better served by slightly risk-
averse behaviour. Too risk averse and attractive prospects are ignored (“nothing
ventured, nothing gained”), but too risk preferring is the same as gambling, with
the risk of losing heavily. What do our simulations tell us about the best method
of decision making under uncertainty?

4 See the R[4] code at http://www.agsm.edu.au/bobm/papers/riskmethods.r
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5 Results

Table 1 presents the mean results of 10,000 iterations (independent samples) of
the eight lottery/six prize experimental platform, with results for:

1. The benchmark Clairvoyant method
2. the Expected Value method
3. the Laplace method
4. the max-max method
5. the max-min method
6. random choice among the eight lotteries

Table 1. Mean payoffs by method.

Method Payoff ($) % Clairvoyant % EV

Clairvoyant 7.7880 100
Expected Value 3.8718 49.7143 100
Laplace 3.3599 43.1425 86.7800
max-max 1.3917 17.8702 35.9500
max-min 2.4279 31.1752 62.7100
Random 0.0216 0 0

The Clairvoyant would have won $7.79 with perfect foresight. The other meth-
ods, of course, cannot see the future, which is the essence of decision making
under uncertainty. Expected Value (the risk-neutral decision maker) is second,
with 49.7% of the Clairvoyant’s score; Laplace is third, with 43.1%. Surprisingly,
the (pessimist’s) max-min, at 31.2%, is almost twice as good as the (optimist’s)
max-max, at 17.9%. Unsurprisingly, choosing among the eight lotteries randomly
is worst, with effectively a zero mean payoff (of 2.16 cents, or 0.56% of EV).

Table 2 presents the mean results of 10,000 iterations of the CARA method
with different values of the risk-aversion coefficient γ: the results show that the
best decisions are made when γ ≈ 0, that is when the method is risk neutral and
approximates the Expected Value method.

Table 3 present the mean results of 10,000 iterations of the CRRA method
with different values of the RRA parameter ρ and reveals that with a CRRA
decision maker, again the best profile (the value of ρ that results in the highest
expected payoff) is close to zero. That is, as with the CARA method, there is in
this set-up no advantage to being risk averse or risk preferring (even a little): the
best profile is risk neutrality, as reflected in the Expected Value method. Note
that the logarithmic utility method (with ρ = 1.0) performs at only 98.88% of
the Expected Value method.

Table 4 presents the mean results of 10,000 iterations of twelve DRP func-
tions, combinations of three values of δ and four values of β. The results are
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Table 2. CARA mean payoffs, varying γ.

gamma γ Payoff ($) % Clairvoyant % EV

−0.2000 3.4714 44.5739 89.6600
−0.1600 3.6111 46.3670 93.2669
−0.1200 3.7005 47.5160 95.5782
−0.0800 3.8196 49.0448 98.6532
−0.0400 3.8582 49.5405 99.6503

1 × 10−4 3.8718 49.7151 100.0016
0.0400 3.8330 49.2163 98.9982
0.0800 3.7840 48.5873 97.7330
0.1200 3.7290 47.8818 96.3138
0.1600 3.6534 46.9111 94.3613
0.2000 3.5615 45.7301 91.9858

Table 3. CRRA, mean payoffs, varying ρ.

rho ρ Payoff ($) % Clairvoyant % EV

−2.5000 3.7570 48.2408 97.0360
−2.0000 3.8114 48.9391 98.4407
−1.5000 3.8350 49.2426 99.0512
−1.0000 3.8490 49.4222 99.4124
−0.5000 3.8665 49.6475 99.8656

1 × 10−4 3.8718 49.7143 100
0.5000 3.8577 49.5343 99.6379
1.0000 3.8284 49.1581 98.8812
1.5000 3.8056 48.8655 98.2926
2.0000 3.7773 48.5012 97.5598
2.5000 3.7521 48.1780 96.9098

Table 4. DRP, % of EV, varying δ and β.

beta β δ = 1.001 δ = 1.2 δ = 1.4

0.0010 100 99.8069 99.4421
0.1000 99.5989 98.5836 98.6017
0.2000 98.2308 97.9890 97.2238
0.4000 96.9848 95.9122 95.2202

the percentages of the EV method. From the mean result for Random in Ta-
ble 1 (which is +0.56% of EV), we can conclude that the errors in Table 4 are
about 1.12% (±0.56%) of EV. Again we see that risk-neutral behaviour, here
with δ → 1 and β → 0, is the best method for choosing among risky lotteries.
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6 Discussion

Whereas there has been much research into reconciling actual human decision
making with theory [5], we are interested in seeing what is the best (i.e. most
profitable) risk profile for agents faced with risky choices. Rabin [6] argues that
loss aversion [2] rather than risk aversion, is a more realistic explanation of how
people actually behave when faced with risky decisions. This is captured in our
DRP function, which nonetheless favours risk neutrality as a method.

An analytical study of Prospect Theory DRP Value Functions [7] posits an
adaptive process for decision-making under risk such that, despite people being
seen to be risk averse over gains and risk seekers over losses with respect to
the current reference point [2], the agent eventually learns to make risk-neutral
choices. Their result is consistent with our results.

A simulation study [8] examines the survival dynamics of investors with dif-
ferent risk preferences in an agent-based, multi-asset, artificial stock market and
finds that investors’ survival is closely related to their risk preferences. Examin-
ing eight possible risk profiles, the paper finds that only CRRA investors with
relative risk aversion coefficients close to unity (log-utility agents) survive in the
long run (up to 500 simulations). This is not what we found (see Table 3 with ρ
= 1).

Our results here are consistent with earlier work on this topic ([3], [9]) in
which we used machine learning (the Genetic Algorithm) to search for agents’
best risk profiles in decision making under uncertainty. Our earlier work was
in response to [10], which also used machine learning in this search, and which
wrongly concluded that risk aversion was the best profile.

7 Conclusion

As economists strive to obtain answers to questions that are not always amenable
to calculus-based results, the use of simulation is growing, and answers are be-
ing obtained. This paper exemplifies this: the question of which decision-making
method gives the highest payoff in cases of uncertainty (where the possible pay-
offs and their probabilities are known) is not, in general, amenable to closed-
form solution. The answer is strongly that risk-neutral methods are best, as
exemplified by the Expected Value method. We believe that exploration of other
experiments in decision making under uncertainty (with complete information)
will confirm the generality of this conclusion. Will relaxing our assumptions of
complete information about possible outcomes and their probabilities result in
different conclusions? This awaits further research.

8 Acknowledgments

The author thanks Professor Shu-Heng Chen for his encouragement, and discus-
sants of the previous papers ([3], [9]) in this research program. An anonymous
reviewer’s comments have improved the paper.



Decision Making 9

References

1. R. A. Howard, “The foundations of decision analysis,” IEEE Trans. on Systems
Science and Cybernetics, vol. ssc-4, pp. 211-219, 1968.

2. D. Kahneman, and A. Tversky, “Prospect theory: an analysis of decision under
risk,” Econometrica, vol. 47, pp. 263-291, 1979.

3. R.E. Marks, “Searching for agents’ best risk profiles”, In the Proceedings of the
18th Asia Pacific Symposium on Intelligent and Evolutionary Systems (IES’2014),
Chapter 24, Volume 1, ed. by H. Handa, M. Ishibuchi, Y.-S. Ong, and K.-C. Tan. In
the Series: Proceedings in Adaptation, Learning and Optimization, Vol. 1. Springer,
pp. 297-309, 2015. http://www.agsm.edu.au/bobm/papers/marksIES2014.pdf

4. R Core Team. R: A Language and Environment for Statistical Computing. R Foun-
dation for Statistical Computing, Vienna, Austria. 2013. http://www.R-project.
org/

5. W. B. Arthur, “Designing economic agents that act like human agents: A behavioral
approach to bounded rationality,” American Economic Review Papers & Proceed-
ings, vol. 81, pp. 353-360, 1991.

6. M. Rabin, “Risk aversion and expected-utility theory: a calibration theorem,”
Econometrica, vol. 68, pp. 1281-1292, 2000.

7. S. DellaVigna and M. LiCalzi, “Learning to make risk neutral choices in a symmetric
world,” Mathematical Social Sciences, vol. 41, pp. 19-37, 2001.

8. S.-H. Chen, and Y.-C. Huang, “Risk preference, forecasting accuracy and survival
dynamics: simulation based on a multi-asset agent-based artificial stock market,”
Journal of Economic Behavior and Organizations, vol. 67(3-4), pp. 702-717, 2008.

9. R. E. Marks, “Learning to be risk averse?” In Proceedings of the 2014 IEEE Com-
putational Intelligence for Finance Engineering & Economics (CIFEr), London,
March 28-29, ed. by A. Serguieva, D. Maringer, V. Palade, and R.J. Almeida, IEEE
Computational Intelligence Society, pp. 1075-1079, 2015.

10. G. G. Szpiro, “The emergence of risk aversion,” Complexity, vol. 2, pp. 31-39, 1997.


