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Abstract: The purpose of this research is to seek the best (highest performing) risk
profiles of agents who successively choose among risky prospects. An agent’s risk
profile is his attitude to perceived risk, which can vary from risk preferring to risk
neutral (an expected-value decision maker) to risk averse, or even a dual-risk
attitude. We use the Genetic Algorithm to search in the complex stochastic space
of repeated lotteries. We examine three families of utility (or value) functions:
wealth-independent CARA and wealth-dependent CRRA, in which an agent’s risk
profile is unchanging, and the Dual-Risk Profile (DRP) function from Prospect
Theory, in which the agent can be risk averse (for gains) or risk preferring (for
losses). Analysis of the simulation results reveals that the best function for risky
decision-making is the risk-neutral linear function.

1. Introduction

Informally, it is widely held that in an uncertain world, with the possibility of the
discontinuity of bankruptcy, the most prudent risk profile is risk aversion. Indeed,
“Risk aversion is one of the most basic assumptions underlying economic
behavior” (Szpiro 1997), perhaps because “a dollar that helps us avoid poverty is
more valuable than a dollar that helps us become very rich” (Rabin 2000). But is
risk aversion the best risk profile? Even with bankruptcy as a possibility?

To answer this question, we use three kinds of utility function: the wealth-
independent exponential utility function, or Constant Absolute Risk Aversion
CARA; the Constant Relative Risk Aversion CRRA function, which is sensitive to
the agent’s level of wealth; and the DRP functions of Prospect Theory, where an
agent’s risk profile can vary depending on prospects of losing or gaining. We run
computer experiments in which each agent chooses among three lotteries, and is
then awarded with the outcome of the chosen lottery k.

Repetition of these choices by many agents allows us use a technique from
machine learning — the Genetic Algorithm or GA (Holland 1992) — to search for
the best function from each family, where “best” means the highest average payoff
when choosing among lotteries.

Modelling the agent’s utility directly allows us to avoid the indirect
inference of Szpiro (1997), who argues that the evolutionary learning technique of

1. Earlier versions of this paper were presented at the IEEE Computational Intelligence for Finance
Engineering & Economics 2014, London, March 29, (Marks 2014a) and the ddfac Symposium
on Intelligent and Evolutionary Systems (IES’2014), Singaporgeiber (Marks 2014b).



the GA does two things: it allows wealth-maximizing agents to succeed even in
highly stochastic environments, and it allows the emergence of risk aversion.
Indeed, Szpiro argues that risk aversion is the best risk profile to adopt in such an
environment. We compare the cumulative winnings (fitness) of our agents to
conclude that risk neutrality is the best profile.

2. Decisions under Uncertainty and Risk Profiles

The von Neumann-Morgenstern formulation of the decision-maker’s attitude to
risk is based on the observation that individuals are not always expected-value
decision makers. That is, there are situations in which people apparently prefer a
lower certain outcome to the higher expected (or probability-weighted) outcome of
an uncertain prospect (where the possible outcomes and their possibly subjective,
or Bayesian, probabilities are known). On the other hand, some people will
sometimes “gamble” by apparently preferring a lower uncertain outcome to a
higher sure thing: this is risk-preferring.

We can formalise this by observing that, by definition, the utility of a lottery
is its expected utility, or

U(L) =2 pU(x), (1)

where each (discrete) outcome x; occurs with probability p;, and U(x;) is the utility
of outcome x;. It is useful to define the Certainty Equivalent x (or C.E.), which is a
certain outcome which has the identical utility as the lottery:

U(X) =U(L) =2 piU(x) (@)

We can use the C.E. to describe the decision-maker’s risk profile (Howard
1968). Define the Expected Value x of the Lottery as:

X=2 PiX. 3)
When x =x, then the decision-maker’s utility function exhibits risk neutrality;
when X < x, then risk aversion; and when X > x, then risk preferring.

2.1 Approximating the Certainty Equivalent
Expand utility U(. ) about the expected value x.
U (%) =U (%) + (%o = Q) U'(X) + 3 (%0 = )*U"(X)

The C. E. X of a continuous lottery is obtained by integration over the
probability density function (p.d.f.) f,(.):

U(X) = I dxo U (Xo) fx(Xo)
O U =U(X)+0+30U"(X), (4)
where ¢? is the variance. But, by expansion,
U(X) = U(X) + (X - X)U'(X). (5)
Therefore, from (4) and (5),
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The ratio U"/U'" is proportional to the curvature of the function, which refelcts the
risk profile modelled.

3. Utility Functions
We consider three types of utility function:

1. those which exhibit constant risk preference across all outcomes (so-called
wealth-independent utility functions, or Constant Absolute Risk Aversion
CARA functions);

2. those where the risk preference is a function of the wealth of the decision
maker (the Constant Relative Risk Aversion CRRA functions); and

3. those in which the risk profile is a function of the prospect of gaining (risk
averse) or losing (risk preferring): the DRP functions from Prospect Theory.

3.1 CARA Utility Functions

If an increase of all outcomes in a lottery L by an equal amount A increases the
C.E. of the lottery by A, then the decision maker exhibits wealth independence:

U(X+4)=U(L") = 2 pU(x +A4). (7)

Acceptance of this property restricts possible utility functions to be linear (risk
neutral) or exponential, constant-absolute-risk-aversion (CARA) functions
(Howard 1968).

CARA utility functions characterise risk preference by a single number, the
risk aversion coefficient, y. Since CARA utility functions are wealth-independent,
any aversion to bankruptcy is thus precluded, by definition. Whether a human
decision maker exhibits a wealth-independent utility function is an empirical
question.

When utility is linear in outcomes, the decision maker is risk-neutral, across
all outcomes, but here we instead consider the exponential constant absolute risk
averse (CARA) functions, where utility U is given by

Ux)=1-¢e7*, (8)
where U(0) = 0 and U(oo) = 1, and where y is the risk aversion coefficient:
_ U”(X)
y - UI(X) . (9)

From (6) and (9), for exponential utility,
G g_1 2
X=X 5 gy

which indicates that when y =0, then X =x (risk neutrality), when y > 0, then
X < x (risk averse), and when y <0, then x> x (risk preferring), with positive



variance.
3.2 CRRA Utility Functions

We want a utility function which is not wealth-independent, to see whether that
will result in risk-averse agents doing best.
The Arrow-Pratt measure of relative risk aversion (RRA) p is defined as

uw _
U’ (w)
This introduces wealth w into the agent’s risk preferences, so that lower
wealth can be associated with higher risk aversion. The risk aversion coefficient y
is as in (9).
We use the Constant Elasticity of Substitution (CES) utility function,

p(W) =-w (10)

wl

1-p'

with positive wealth, w > 0, which exhibits constant relative risk aversion CRRA,
as in (10).

In the CRRA simulations, we use the cumulative sum of the realisations of
payoffs won (or lost, if negative) in previous lotteries chosen by the agent plus the
possible payoff in this lottery as the wealth w in (11). Each agent codes for p.

From (6), the C.E. with CES utility is approximated by

U(w) = (11)

Iff %502 >0 (or p/w>0), then then C.E. X < the expected mean x, and the

decision maker is risk averse. With w >0, p> 0 is equivalent to risk aversion.
With w >0 and p=1, the CES function becomes the (risk-averse) logarithmic
utility function, U(w) = log(w).? With w >0 and p<O0, it is equivalent to risk
preferring. With p =0, the CRRA function is risk neutral.

3.3 The DRP fuunctions from Prospect Theory

From Prospect Theory (Kahneman and Tversky 1979) we model the DRP Value
Function, which maps from quantity X to value V with the following two-
parameter equations (with 8> 0 and ¢ > 0):

1-¢ePX
1-efX
V:_Jm, -100< X <0. (13)

The parameter B >0 models the curvature of the function, and the parameter
0 =1, the asymmetry associated with losses. The DRP function is not wealth-
independent.’

2. Since we are only interested in the ranking of the three lotteries, wherd we easure that the
argments of the logs are pogdi
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Figure 1: A DRP Function§ = 1.75).
This function (see Figure 1, with § = 1.75, for prizes between + $100) exhibits the
S-shaped asymmetric function postulated by Kahneman and Tversky (1979). It
exhibits risk seeking (loss aversion) when X is negative with respect to the
reference point, X = 0, and risk aversion when X is positive. We use here a linear
probability weighting function (hence no weighting for smaller probabilities). As
Figure 1 demonstrates, as d -1 and B-0, the value function asymptotes to a
linear, risk-neutral function (in this case with a slope of 1).

4. The Simulations

We employ a numerical simulation method: the Genetic Algorithm (GA). The GA
is an optimisation technique used here to search the space of risk-profile
parameters of each family of utility functions for those parameters that result in the
highest payoff in the process of choosing risky lotteries, as described below. Our
prior was that the best parameters would reflect slight risk aversion (at least in the
case of CARA and CRRA functions).

The GA also reports the value of the maximand for each set of parameters,
which allows the experimenter to compare the relative performances of the best
sets of parameters for the CARA, CRRA, and DRP functions. This provides an
important insight for our search (below).

3. That s, it does not satisfy (7). This does not require that we include weattlhhe ranking of the
lotteries, as in the CRRA case; instead we choose a reference point at the ardrefitMealth, and
consider the possible gains and losses of the three lotteries.



Each lottery is randomly constructed: the two payoffs (“prizes”) are
uniformly chosen in the interval [-$100, +$100], and the probability is chosen
uniformly from [0,1]. (Each lottery has, of course, a single degree of freedom for
probability.) Each agent chooses the lottery with the highest expected utility of the
three from (1) and (8), based on its value of y (respectively, p and wealth w), or
from (12) and (13), based on its values of B and 5. To do this, agents know the
prizes and probabilities of all three lotteries.

Then the actual (simulated) outcome of the chosen lottery is randomly
realised, using its probability. The winnings of the CARA agent or the DRP agent
(respectively, the wealth of the CRRA agent) are incremented accordingly. This
becomes the agent’s “fitness” in the GA search. Each agent successively chooses
1000 lotteries.

4.1 Searching with the Genetic Algorithm

We use a population of 100 agents, each of which has a average winnings or a
cumulative level of wealth, based on its risk profile and the successive outcomes of
its 1000 choices among the lotteries. Using NetLogo (Wilensky 1999), we use an
implementation of the GA (Gilbert 2004) to search for the best risk profile, using
each agent’s cumulative winnings as its “fitness.”.

We model each agent as a binary string which codes to its risk-aversion
coefficient (y, for CARA agents, p, for CRRA agents) in the interval +1.048576.
The DRP agents search for 0 < < 0.21 and for ¢ in the interval + 10.48. We
select the best-performing agents after the 1000 choices to be the “parents” of the
next generation of agents, generated by “crossover” (exploiting the genetic
information already present in the populations of agents) and “mutation”
(exploring the solution space by generating new genetic information) of the
chromosomes of the pairs of parents. The “sexual” process of selecting the best-
performing agents in the population and then pairing them off to produce the next
generation of agents results in a new population inheriting the better characteristics
(here, risk profiles) of its parents’ generation.

We use the GA simulation in this search as a numerical alternative to
solving for the best (highest performing) risk profile analytically. Note that Rabin
(2000) asserts that “theory actually predicts virtual risk neutrality.” We return to
this paper in the Discussion below.

Each agent faces 1000 lottery choices, and its cumulative winnings is that
agent’s “fitness” for the GA. The processes are stochastic. For each model we
perform a number of Monte Carlo simulation runs to obtain sufficient data to
analyse the results.

Unlike the GA simulations of Szpiro (1997), we find that the best-
performing agents are risk-neutral, not risk-averse. Because of the indirect way in
which Szpiro modelled the risk profiles of his agents (unlike a referee’s suggestion,
footnote 3, Szpiro’s model “only distinguishes between risk-averse automata and
all others”), while our models allow any risk profile to emerge, we argue that they
are more general than Szpiro’s.



5. The Results
5.1 The CARA Results
The on-line NetLogo simulations* show three things clearly:

1. The mean (black) fitness (cumulative winnings) grows quickly to a plateau
after 20 generations (along the x axis) or so;

2. the mean, maximum, and minimum risk-aversion coefficients y
(respectively, black, green, red) converge to close to zero (risk neutrality)
over the same period, and

3. Any y deviation from zero up (more risk-averse) or down (more risk-
preferring) leads to the minimum (red) fitness in that generation collapsing
from close to the mean fitness.

These observations suggest that CARA agents perform best (in terms of
their lottery winnings) who are closest to risk neutral (y = 0). Too risk averse, and
they forgo fair lotteries; too risk preferring and they choose too many risky
lotteries.

Eye-balling single output plots, however, is not sufficient to reach clear
conclusions about the best utility functions. We have performed 55 independent
Monte Carlo runs using the GA to search for better CARA utility functions.
Appendix A.1 presents the results in Table 2. The data suggest that the CARA
function has not (yet) converged to risk neutrality. (We reject the null.) The
wealth-independent CARA utility function precludes bankruptcy. What of a utility
function that does not exclude this possibility?

5.2 The CRRA Results

We could, of course, put a floor on agent wealth, below which is oblivion, but
better to use a utility formulation that is not wealth independent and repeat the
search. We use the CES utility functions (11) that exhibit CRRA.

The results are surprising:®> We have performed 109 independent Monte
Carlo runs using the GA to search for better CRRA utility functions. Appendix
A.2 presents the results in Table 3. The data suggest that the CRRA function has
converged to risk neutrality. (We do not reject the null.)

5.3 The DRP Results

We use the GA to search the joint plane (83, J) as the agents (each characterised by
a point on the (B, J) plane) choose the one of three lotteries that has the greatest
expected value. Each lottery has two known prizes in the interval of [-$100,
+$100] of known probabilities, p;. So the agent chooses the lottery k& with the
highest expected value

4. See http:/lwwwagsm.edu.au/bobm/teaching/SimSS/NetLogo4-models/RA-CARA-EU-312p.html for a

Java gplet and the NetLogo code of a CARA model.

5. See http://mwwagsm.edu.au/bobm/teaching/SimSS/NetLogo4-models/DRA-CRRA-EU-

revCD-3I12p.html for a Ja gplet and the NetLogo code of a CRRA model.



2
Uy = Zl PV (X, B, 9)

We considered first the marginal results: holding S constant at zero, asking
what values of d emerged as conditionally best, then, holding J constant at unity,
asking what values of B emerged as conditionally best. That is, first considering a
kinked function possibly linear, and then a symmetric dual-risk-profile function
possibly linear. The results are presented in Appendix A.3 in Table 4. The data
suggest that the constrained DRP function has not (yet) converged to risk
neutrality. (We reject the null.)

We then performed 50 independent Monte Carlo runs using the GA to
search for better B, while holding 6 =1. The data in Table 5§ suggest that the
constrained DRP function has not (yet) converged to risk neutrality. (We reject the
null.)

Then we undertook a search in the (B, J) plane. We performed 54
independent Monte Carlo runs using the GA to search for better 8 and ¢ jointly.
Fig. 3 shows the result with the two variables’ means, where g = 0.007186 and ¢ =
1.2598: almost, but not yet, risk neutral (in which an expected-value decision
maker becomes an expected-outcome decision maker).® The data in Table 6 suggest
the unconstrained DRP function has not (yet) converged to risk neutrality. (We
reject the null.)

I I
-100 -50 0 50 100
X

Figure 2: The best DRP function (so far).

6. See http://wwwagsm.edu.au/bobm/teaching/SimSS/NetLogo4-models/RA-PThe\html for a
Java goplet and the NetLogo code of a dual-risk Value Function model.



5.4 Comparing Models

As remarked above, all sets of Monte Carlo simulations are searching the same
space: given the known prizes (between -$100 and $100) and known probabilities,
choose the expected “best” lottery. This means we can compare the Fitnesses
(dollar winnings) across the simulation runs. This is shown in Table 1.

Model MeanFitness ($)
CARA 37,650
CRRA 29,403
DRP withg =0 37,666
DRP withd =1 38,814
DRP jointg, & 37,721
Linear 39,192
Clairvoyant 50,251

Table 1: Mean Fitnesses of the Models

We include two further models in Table 1: Linear (or risk-neutral) and Clairvoyant.

Clairvoyant is included as benchmark of best possible performance in
chosing among the three lotteries. It answers the question: what is the upper limit
to agents’ performance? If agents could foresee the future, and hence know which
three of the six possible prizes would eventuate, then they could choose the lottery
which would result in the highest payoff. Although such clairvoyance is impossible
in the real world, in our experimental world we build a model in which the
realisations of the three lotteries have occurred before the agent chooses. The
expected value of such choices over the 1000 decisions could be calculated
analytically, but Monte Carlo simulations finesse such calculations.”

As reported in Table 8, the mean payout across the 50 MC runs, each of
1000 choices, is $50,251, or a mean of $50.25 per choice. Since random choice
across the lotteries as constructed would result in a mean of zero, Clairvoyence is
valuable. The best of our models results in 77.4% of the Clairvoyant benchmark.

It is clear from Table 1 that CRRA, the only model whose “best” parameter
results in risk-neutrality, performs worst in maximizing Fitness, while the best
model is the Dual-Risk-Profile model from Prospect Theory with symmetric (6 = 1)
loss-averting and gain-preferring (its utility is convex for losses and concave for
gains). This is strange: a constrained optimization outperforming an
unconstrained optimization, when the constraint is available to the unconstrained.
The GA search of the joint model could/should find that Fitness is higher when
0 =1 but hasn’t. This suggests that the runs be lengthened, perhaps because the
joint search in (B, J) is hard. Indeed, from Table 1, the apex of the hill of optimal
fitness is quite flat.

That the GA process in the joint search of the DRP function did not find
0 =1, with its higher fitness, suggests short-circuiting the search and simulating

7. The expected maximumaiue of the choice among the three lotteries, as constructed, canwse sho

analytically to be (3% 200)- 100= $50.
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with a risk-neutral, linear function (that is, DRP with 6 = 1 and B = 0): if the
resulting mean fitness is significantly greater than 38,879 then the linear function
dominates. As seen in Table 1, the Linear function results in a higher mean fitness
than any of the other functions (bar Clairvoyant). The difference is statistically
significant.’

I am convinced that this shows that the best risk profile for making risky
decisions, such as choosing lotteries of known outcomes and probabilities, is the
risk-neutral, linear function. In this case its performance is 78.05% of the
benchmark Clairvoyant result.” The results with the Linear model show clearly
that the experiments with the GA and the three families of functions have not (yet)
converged, although they are progressing. A comparison of the Fitnesses in Table
1 (with the anomaly that the constrained model of Table 5 below had a higher
Fitness then the unconstrained model of Table 6) reveal this lack of convergence
and suggest the short cut of jumping to the Linear model. That this mdoel
outperforms all the others (bar Clairvoyant) vindicates the short cut and results in
the author’s conviction that Linear (risk-neutral) is best.

6. Discussion

In the three centuries since the Bernoulli cousins posed and solved the St.
Petersberg Paradox (Bernoulli 1738), the idea that a non-linear function of money
(or winnings), not simply the amount of money itself, can be used to model
decision making under risk, where prospects and probabilities are known, has been
been developed. If the Bernoullis saw a concave function, or utility function, as a
way of resolving the issue of an infinitely valued lottery, more recently behavioural
economists have argued that using non-linear utility functions when faced with
risky decisions is a realistic model of human behaviour.

A linear utility function implies zero marginal utility of money or income:
an extra dollar is worth an extra dollar no matter what one’s wealth. Not a
realistic view of human decision making perhaps, but this paper is seeking the
optimal utility function in risky decision making, not the most realistic for human
decision making.

Should we be surprised that risk neutrality does better than risk aversion?
Rabin (2000) suggests a reason why risk-neutral functions will not do better than
risk-averse functions, at least for small-stakes lotteries. He argues that von
Neumann-Morgenstern expected-utility theory is inappropriate for reconciling
actual human behaviour as revealed in risk attitudes over large stakes and small
stakes. If there is risk aversion for small stakes, then expected-utility theory
predicts wildly unrealistic risk aversion when the decision maker is faced with large
stakes. Or risk aversion for large stakes must be accompanied by virtual risk
neutrality for small stakes.

8. Null hypothesis: the means of the Linear model and DRP avithl are identical: ot p-value= 0
(Wilcoxen two-tailed), so reject the null.

9. As the numbem of lotteries gravs, the expected value of the Claiyant model approaches the
maximum possible outcome/(n+1) - 1).
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But we do not appeal to empirical evidence or even to prior beliefs of what
sort of risk profile is best. Whereas there has been much research into reconciling
actual human decision making with theory (see Arthur 1991), we are interested in
seeing what is the best (i.e. most profitable) risk profile for agents faced with risky
choices.

Rabin (2000) argues that loss aversion (Kahneman and Tversky 1979),
rather than risk aversion, is a better (i.e. more realistic) explanation of how people
actually behave when faced with risky decisions. This is captured in our DRP
function, which nonetheless converges on risk neutrality. An analytical study of
Prospect Theory DRP Value Functions (DellaVigna and LiCalzi 2001) posits an
adaptive process for decision-making under risk such that, despite people being
seen to be risk averse over gains and risk seekers over losses with respect to the
current reference point (Kahneman and Tversky 1979), the agent eventually learns
to make risk-neutral choices. Their result is consistent with our results, although
the learning in their model is not that of the GA, but rather agents observing how
their choices result in systemic undershooting (or overshooting) of their targets,
which then results in more realistic targets and choices. Their lotteries are
symmetrical (for tractability), unlike ours. Our results suggest that their results
might generalise to asymmetric lotteries, such as ours.

A simulation study (Chen and Huang 2008) examines the survival dynamics
of investors with different risk preferences in an agent-based, multi-asset, artificial
stock market and finds that investors’ survival is closely related to their risk
preferences. Examining eight possible risk profiles, the paper finds that only
CRRA investors with relative risk aversion coefficients close to unity (log-utility
agents) survive in the long run (up to 500 simulations).

7. Conclusion

Using a demonstrative agent-based model — which demonstrates principles, rather
than tracking historical phenomena — we have used the Genetic Algorithm to
search the complex, stochastic space of decision making under uncertainty, in
which agents successively choose among three (asymmetric) lotteries with
randomly allocated probabilities and outcomes (two per lottery), in order to
maximize their expected utilities. The GA searches for the best-performing utility
function, among CARA (or wealth-independent), CRRA (when wealth, and hence
bankruptcy, matters), or for the best-performing Value Function, which exhibits
the Dual Risk Profile of Prospect Theory, although we use the same parameter S to
describe the curvature of both risk averse (gains) and risk preferring (losses), which
is a restriction that could be relaxed with further study.

Against our prior belief that a risk-averse agent does best in these
circumstances, we find that only linear, risk-neutral functions perform best. Our
findings are therefore consistent with analytical work that proves that with
symmetric lotteries, and agents with DRP, risk-neutral decisions are the eventual
outcome of agents adjusting their aspirations and targets in response to the
realisations of their choices.

Simulations, of course, can not prove necessity, only sufficiency (Marks
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2012), so our results for each of the three functions — CARA, CRRA, and DRP
Value Functions — are existence proofs only: the best (highest performing)
functions, in choosing among lotteries of known prizes and known probabilities,
converge to risk neutral (linear). Nonetheless, the results in Table 1, I believe, are
convincing proof that linear, risk-neutral functions dominate risky decision
making. These results therefore disprove the common belief that a small amount
of risk aversion is best in a risky world.

Acknowledgments

I should like to thank Simon Grant, Luis Izquierdo, the participants of the
Complex Systems Research Summer School 2007 at Charles Sturt University, the
participants at the 26th Australasian Economic Theory Workshop 2008 at Bond
University, the participants at the 2014 IEEE CIFEr meetings in London, Jasmina
Arifovic, James Andreoni, Seth Tisue, Marco LiCalzi, Shu-Heng Chen, Arthur
Ramer, David Midgley, Robert Kohn, Ron Howard, and Nigel Gilbert for his
implementation of the Genetic Algorithm in NetLogo. Two anonymous reviewers
have also been helpful.

Note: Java applets of the simulation models and the NetLogo code are available
online, together with graphical output of the simulation results, as referenced in
the footnotes above. These models will also generate real-time results, including
graphs of their performance, when one’s computer’s Java security allows.
Moreover, one can explore the impact of the GA mutation rate on the simulation
evolution.

Bibliography

[1] W.B. Arthur, (1991) “Designing economic agents that act like human
agents: A behavioral approach to bounded rationality,” American Economic
Review Papers & Proceedings, vol. 81, pp. 353-360.

[2] Daniel Bernoulli, (1738); trans. by Louise Sommer, “Exposition of a New
Theory on the Measurement of Risk”. Econometrica 22 (1): 22-36.
(January 1954).

[3] S.-H. Chen and Y.-C. Huang, (2008) “Risk preference, forecasting accuracy
and survival dynamics: simulation based on a multi-asset agent-based
artificial stock market,” Journal of Economic Behavior and Organizations,
67(3-4): 702-717.

[4] S. DellaVigna and M. LiCalzi, (2001) “Learning to make risk neutral
choices in a symmetric world,” Mathematical Social Sciences, vol. 41, pp.
19-37.

[5] N. Gilbert, (2005) “Axelrod’s Iterated prisoners’ dilemma tournament,” in
Simulation for the Social Scientist, N. Gilbert and K.G. Troitzsch, 2nd ed.
Maidenhead, England: Open University Press. [Online]. Available:



-13-

http://cress.soc.surrey.ac.uk/s4ss/code/NetLogo/axelrod-ipd-ga.html

[6] J.H. Holland, (1992) Adaptation in Natural and Artificial Systems, 2nd ed.
Cambridge, MA: M.LT. Press.

[7]1 R.A. Howard, (1968) “The foundations of decision analysis,” IEEE Trans.
on Systems Science and Cybernetics, vol. ssc-4, pp. 211-219.

[8] D. Kahneman and A. Tversky, (1979) “Prospect theory: an analysis of
decision under risk,” Econometrica vol. 47, pp. 263-291.

[9] R. E. Marks, (2012) “Analysis and synthesis: multi-agent systems in the
social sciences”, The Knowledge Engineering Review 27(2): 123-136.

[10] R.E. Marks, (2014a) “Learning to be risk averse?” In Proceedings of the
2014 IEEE Computational Intelligence for Finance Engineering &
Economics (CIFEr), London, March 28-29, ed. by A. Serguieva, D.
Maringer, V. Palade, and R.]J. Almeida, IEEE Computational Intelligence
Society, pp. 1075-1079.

[11] R.E. Marks, (2014b) “Searching for Agents’ Best Risk Profiles,” In
Proceedings of the 18th Asia Pacific Symposium on Intelligent and
Evolutionary Systems (IES’2014), Singapore, November.

[12] M. Rabin, (2000) “Risk aversion and expected-utility theory: a calibration
theorem,” Econometrica, vol. 68, pp. 1281-1292.

[13] G.G. Szpiro, (1997) “The emergence of risk aversion,” Complexity vol. 2,
pp- 31-39.

[14] U. Wilensky, (1999) NetLogo. Center for Connected Learning and
Computer-Based Modeling. Northwestern University, Evanston, IL. (Version
4). [Online]. Available: http://ccl.northwestern.edu/netlogo.

Appendix A
A.1 CARA simulation results for y, (Hy: p, = 0):

Gamma Fitnesé$)

Min.: -0.0338341 Min.: 35122
1st Qu.: -0.0001213 1su.: 37099
Median: 0.0082934 Median: 37848
Mean: 0.0063766 Mean: 37650
3rd Qu.: 0.0140342  3rdu.: 38340
Max.: 0.0328237 Max.: 39260
Std. Dev.: 0.01383 StdDev.: 899
Z-score: 3.4173

2-tp-val.: 0.00063

n =55; and reject the null

Table 2: Searching for optimalin CARA models.
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A.2 CRRA simulation results for p, (Hp: p, = 0):

Rho Fitnesg$)

Min.: -412.82 Min.: 26060
1st Qu.: -101.46 1sQu.: 28447
Median: 21.60 Median: 29472
Mean: 19.21 Mean: 29403
3rd Qu.: 167.90 3rdQu.: 30342
Max.: 552.21 Max.: 34073
Std. Dev.: 193.36 StdDev.: 1513

Z-score: 1.0373

2-tp-val.: 0.2996

n = 109; and do not reject the null

Table 3: Searching for optimal in CRRA models.

A.3 Dual-risk-profile function for J and B:

Marginal, with 8 =0, (Hy: ps = 1):

Delta Fitnesg$)

Min.: 0.8077 Min.: 35156

1st Qu.: 1.1808 1sQu.: 37224
Median: 1.4444 Median: 37666
Mean: 1.4658 Mean: 37666
3rd Qu.: 1.7110 3rdQu.: 38516
Max.: 2.3576 Max.: 39154
Std. De.: 0.36986  StdDev.: 1076

Z-score: 9.7547

2-tp-val.: <0.00001
n =55; and reject the null

Table 4: Searching for optimal in constrained DRP models.
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Marginal with 6 = 1, (Hy: pg =0):

Beta Fitnes$$)
Min.: -0.022032 Min.: 38076
1st Qu.: -0.003355 1sQu.: 38712
Median: 0.007424 Median: 38852
Mean: 0.004678 Mean: 38814
3rd Qu.: 0.011231 3rdQu.: 38958
Max.: 0.038922 Max.: 39293
Std. Dev.: 0.0099341  StdDev.: 232
Z-score: 3.241949
2-tp-val.: 0.0012

n = 102; and reject the null

Table 5: Searching for optima in constrained DRP models.

Searching for both & and B, separate null hypotheses: Hy: ps =1 and Hy: pg = 0. :

Delta Beta Fitness ($)

Min.: 0.8882 Min.: -0.020642 Min.: 35979
1st Qu.: 1.0665 1sQu.: -0.002544 1st Qu.: 37143
Median: 1.1913 Median: 0.007776 Median: 37754
Mean: 1.2598 Mean: 0.007186 Mean: 37721
3rd Qu.: 1.4031 3rdQu.: 0.017648 3rd Qu.: 38394
Max.: 2.0548 Max.: 0.026858 Max.. 38896
Std. Dev.: 0.26844  StdDev.: 0.012353  StdDev.: 751
Z-Score: 7.11062 z-score: 4.27443

2-tp-val.: <0.00001 2-p-val.. <0.00001
n = 54; and reject both nulls

Table 6: Jointly searching for optimalandy in DRP models.

Linear Model
Min.: 38839
1st Qu.: 39110
Median 39195
Mean 39192
3rd Qu.: 39291
Max.: 39585
Std. Dev.: 150

n=102

Table 7: The LinearRisk-Neutral Model
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Clairvoyant Model

Min.: 50008
1st Qu.: 50158
Median: 50247
Mean: 50251
3rd Qu.: 50334
Max.: 50555
Std. Dev.: 119
n =50

Table 8: The Claireyant Model



