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ABSTRACT

We extend our earlier work using artificial agents to model multi-period games between

competing brands in an oligopoly.  We do so by developing a multiple-population genetic

algorithm in order to allow customized agents for each brand.  We also consider more

competitors and more possible pricing actions per competitor than before, and we evaluate the

robustness of our results by Monte Carlo methods.  All these developments have been

facilitated by writing better code and by increases in computing power since our original work.

We find that:

〈 Customized agents outperform traditional genetic algorithm approaches;

〈 The addition of a niche player changes the behavior of the major brands; and

〈 An increase from 4 to 8 actions per agent results in more capable agents.

In addition, we report on two surprising effects. The Holyfield-Tyson effect: whereby

sophisticated agents do not perform that well against primitive agents; and the Frankenstein

effect: whereby agents developed in competition with other agents exhibit different behaviors

when competing with the historical actions of managers.

Overall, we believe the strength of our approach results from the use of an empirically

grounded fitness function with which to test our assumptions and approaches.
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Introduction

We are interested in the effects of asymmetric market response on the competitive actions of

managers.  In particular, how managers will compete in multi-period games where each brand

elicits a different response from consumers and each firm faces different costs.  This is the

situation faced by managers for many product categories sold in supermarkets.  Through a

substantial literature built on the analysis of scanner data, much is known about consumer

response in these situations, and methods for modeling this response are well-established

(Cooper and Nakanishi 1988).  Less is known about the competitive actions of managers and

there have been few attempts to model the repeated game evident in these product categories.

In earlier work (Midgley, Marks and Cooper 1997), we showed how the actions of

each brand manager could be modeled as an outcome of finite automata playing a repeated

game.  Using the Axelrod and Forrest representation (Axelrod 1987) of these artificially

adaptive agents as bit strings, we employed a genetic algorithm and a market-response model to

co-evolve artificial agents for brands of coffee in a regional U.S. market.

These agents were specified as partitioning the previous actions of competitors into a

small number of states and selecting an action that would be profitable for them in the next

period of the game from a similarly small number of available actions.  This process can be

thought of as defining perceptions of possible states of the market and developing mappings

from these perceptions to an action for the next period.

In our earlier work, agents were limited to a set of four actions and their perceptions

restricted to four equivalent states for a single previous period of the game.  This resulted in

agents whose mapping from perceptions to actions could be represented by 134 bits.  The

genetic algorithm (GA) was then used to evolve mappings that maximized profits over a

number of multi-period games in which various agents were pitted against their competitors.

The GA achieved this by selecting and hybridizing the better performing strategies from each

generation of these games to create more profitable strategies for the next generation, in an

iterative cycle of selection, mating and improvement.  Profits were computed from a market

response model that estimates brand sales, given the actions of the competing brands.
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These hybridized agents performed well both in these games and when a single agent

was pitted against the historical actions of human brand managers.  The latter test is “unfair”—

as there is no opportunity for the human managers to respond to the agent— but this was a

surprising result given the simple agents we used.  Moreover, in developing these agents, we

learned that store policies and demand saturation were also important to the realism of our

results.  Store policies are important because these can act to constrain the frequency of

temporary price reductions and promotional displays, and demand saturation is important

because there is a limit to the amount of any product that can be consumed or stored in a given

period.  Both these constraints set the environment within which managers and agents compete.

While these results are encouraging, we recognize that the agents and procedures we

use are capable of further development.  There are two important limitations to our earlier

work, the first methodological and the second concerning the sophistication of our agents.

First, the GA used a single population of 25 artificial agents, scoring the profitability of

each string differently, depending on which of the three brands the agent was designated as in a

particular simulation game.  This is analogous to training all brand managers in the same

business school.  It was done because the GA software available at the time only addressed the

single-population case.  But in our situation—where consumer response and firm costs differ

by brand—it would be desirable to have a multi-population GA.  There are also issues around

the robustness of our results.  In our previous work we only ran one simulation per experiment

whereas Monte Carlo simulations from different starting conditions would be a better

methodology.  Advances in hardware now make such multiple simulations possible.

Second, we modeled only the three main players in a market that has nine brands and

we only allowed our agents four possible actions, while human managers used a far greater

number.  These choices were made because the high computing demands of GA applications

made it difficult to complete more complex simulations.  In the intervening period, hardware

has improved and we have learned to make GA software more efficient.  This permits more

realistic representations of brand management to be modeled.

This paper reports the consequences of relaxing these restrictions.  In particular, how

the performance of the agents improves as we allow brand-specific responses with separate GA
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populations, as we co-evolve four artificial agents instead of three, and as we use a set of eight

possible actions instead of four.  The paper also begins the task of modeling the learning

inherent in the actions of human managers.  While these managers use more actions than do our

agents, the actions they use are only a subset of all possible actions.  Just how they came to

select this subset, and how optimal it is compared with other possibilities, are important

research questions.  By examining agents at different stages of their ‘evolution’ and by using

different sets of actions, we can begin to address these issues.

The structure of the paper is as follows.  We first describe necessary improvements to

our modeling procedures that speed up optimization, assess the robustness of our results, and

allow multiple populations.  We then present the results from a series of experiments:

Experiment 1 where we examine the impact of multiple populations; Experiment 2 where we

increase the number of players from 3 to 4; and Experiment 3 where we increase the number of

possible actions from 4 to 8.  Finally, we examine co-evolution and genetic drift in Experiment

4, and the nature of managerial learning in Experiment 5.  We conclude by identifying issues of

concern and areas for future research.

Methodology

We have made a number of improvements to the basic methodology described in Midgley,

Marks and Cooper (1997).  These improvements relate to Monte Carlo methods and multiple-

population genetic algorithms.

Monte Carlo simulations

In order to assess the robustness of our results, we now perform Monte Carlo simulations for

each of our experiments rather than the single simulations of our previous paper.  These

multiple runs are easily achieved, as the GA needs a random number seed to generate its initial

population of strings.  We simply start each Monte Carlo simulation with a different seed.  It

should be noted, however, that Monte Carlo methods have been greatly facilitated by the steps

we have taken to speed up simulations—together with increases in computing power.

Previously, running repeated simulations would have taken too long.  In particular, we now

prescreen the strings in the initial population to cull illegal genotypes—that is, strings that

would violate of store policy.  This “filtering” greatly accelerates agent learning.  We have
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observed convergence occurring from the 20th generation with filtering compared with the 70th

generation previously—a dramatic improvement in performance.

Identifying patterns of competitive interaction.  The Monte Carlo simulations give us

confidence in our results but require us to summarize large amounts of data on the behavior of

the agents.  We have developed a methodology for this.

As the bit strings evolve over the generations, they typically begin to favor some actions

at the expense of others.  In other words, they learn which actions maximize profits, given the

constraints and the behavior of their competitors.  Over Monte Carlo simulations, different

patterns of actions can potentially emerge, as the populations of agents evolve from random

starting seeds.  These different patterns manifest themselves in the relative frequency with

which the agents use their assigned actions as they compete.  To obtain frequencies based on

fully optimized agents, we use the final generation of the simulation.  We then cluster analyze

these frequencies to identify patterns.  This cluster analysis is done jointly for all the competing

brands, rather than looking at each brand in isolation, because the actions of a brand in any one

Monte Carlo run are dependent on the actions of its competitors in that same run.  If we find

similarities in these patterns of interaction across simulations, then we can be confident that our

results are robust to random changes in the starting seeds.

Thus cluster analysis is done to summarize the data rather than to identify a ‘true’

number of clusters—an approach that Everitt (1980) calls “dissection”.  We used a k-means

algorithm in a standardized procedure to generate ten patterns of competition from the 50 Monte

Carlo simulations run for each experiment.  We chose the number ten to clearly identify

differences, should they exist.  We visually inspect the patterns to see how different they are

from each other, and we label them to describe the strategy represented by each (e.g. ‘Every

Day Low Price’).  In this manner we can simplify a large volume of results.

Multiple-population simulations

Our earlier work—in common with many published uses of GAs—relied on a single

population of strings (agents).  We handled the different brands by using different payoff
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matrices for each (computed from their distinct market response and costs) and by applying

each string from the common population to each payoff matrix in turn.  Thus in a three-brand

simulation, each string would generate three different profit outcomes.  This meant that the

profitability of a string varied according to situation, and hence the GA itself was subjected to

greater variance in its search for higher-performing strings.  So long as the profit surfaces of

the three strategic brands had a similar topology, then this variance should not have created

much difficulty for the GA.  The single population would behave as though the payoffs were

noisy, but not pathological, in the way that opposite slopes of profit functions might induce.

Nonetheless, we determined to develop a simulation with multiple populations.  This

would allow us to reflect the differing responses brands invoke from consumers, and the

differing costs they face, more accurately in our simulations.1  Another compelling reason for

developing multiple populations relates to the sharing of genetic information.  With a common

population, all brands share the same genetic information and develop similar strategies.  While

it is true that managers may change companies within an industry, and thus share strategies

between firms, we doubt that this occurs to the same extent as with our single-population

agents.  Distinct populations allow the agents to develop differentiated strategies, and we

believe that this is closer to the competitive realities of these markets.

Developing a multiple-population GA was not a trivial exercise, since we have three or

four different players competing at the same time in each period, and necessitated getting under

the hood of our GA engine, the UCSD version of GENESIS.  The net effect of G. M. Shiraz’s

reprogramming is that the simulations are much faster: by using all the information generated in

each interaction of players.  Indeed, with three populations of players, the new code is almost

as fast per trial as the old code was with a single population.

Because of the stochastic nature of the simulations, we have performed some Monte

Carlo simulations to compare the convergence and outcomes of moving from a single

population with three brands to three distinct populations, one per brand.  These results are

described under Experiment 1 below.  Having made these methodological improvements we

now turn to developing more sophisticated and realistic simulations.
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Four strategic players

A natural extension of the earlier work has been to increase the number of strategic players.

With the new multi-population code, it has been relatively easy to extend the simulations to a

fourth player, at some cost in the complexity of the bit-string chromosomes.  These strings

grow in length from the 134 bits in our previous paper to 12,312 bits for the most complex

experiment reported in this paper (one-week memory and eight possible actions per player,

including bits for the phantom memory of the first week's play2).

The choice of the fourth player is not obvious.  The fourth-ranked brand by market

share—Master Blend—belongs to the same owner as one of the three main brands and was

relatively inactive in terms of price promotions for the period we have data.  Instead we chose a

smaller player—Hills Bros.—that is known to be a strong competitor for some of the major

brands.  This choice seemed to us to add a more interesting dimension to the competitive game.

These results are reported under Experiment 2 below.

Eight possible actions per player

In our earlier work we chose four as the number of possible actions per player and we chose

the values for these actions from those commonly used by managers.  These values differ

somewhat by brand—a natural consequence of the differentiating strategies used by managers.

They are also a combination of price, advertised feature and store display.  “Featuring”

involves the store promoting the brand in local newspapers—for which they charge the

manufacturer and which normally invokes a stronger response from consumers than does a

price cut alone or a store display.  A featured low price is thus the type of promotion that is

controlled by store policy and incorporated into our constraints. 3

Using four actions meant that the artificial agents were more constrained than their

historical counterparts had been, and thus we denied them the opportunity to learn what the

brand managers must have learnt through experience and corporate memory: the boundaries of

extreme behavior.  By increasing the number of possible actions to eight, we hoped to give our

agents the opportunity to demonstrate that the four actions used earlier were robust, and that

our assumption of a mature oligopoly was therefore correct.
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Eight possible actions meant an increase in the complexity of the simulations because of

the longer bit strings required.  As before, we identified the appropriate actions for each brand

by a process of cluster analysis and visual inspection of historical data.  We also used historical

data from three chains rather than simply from the one chain that is the focus for our

simulations.  This provided us with a broad sample of possible actions.  Six actions for each

brand were chosen by this process—to which we added the highest price and the deepest price

promotion observed for the brand in the period.  The final eight actions allow the agent to have

a wider-ranging and more varied set of actions than in our earlier work.  The results of

simulations based on eight actions are discussed under Experiment 3 below.

Co-evolution and genetic drift

The artificial agents learn through application of the recombinant evolutionary techniques of the

GA.  This is clear when the agents are solutions to a static problem, as has been the most usual

application of GA techniques in say, engineering.  But Marks (1992) and others following have

bred agents against each other, a process that biologists term “co-evolution”.4  Against a static

environment, improving fitness scores readily reveals the progress of the artificial agents, but

against a dynamic environment comprised of like artificial agents, scores may not rise from

generation to generation.

In our earlier work we attempted to show the competence of our artificial agents by

pitting them against the historical actions of managers, but some criticism has been made that

this overstates the skills of the artificial agents and understates the skills of the managers.  That

is, in this open-loop setting, the managers have no opportunity to respond to the actions of

artificial agents, as their plays are given and unchanging.  Here we attempt to show how the

agents have learnt by taking those evolved from 100 generations and playing them not against

the frozen patterns of their historical opponents, but rather against agents evolved after only

eight generations.  We term this process pitting “sophisticated” agents against “primitive”

agents.  The results of these competitions are given under Experiment 4 below.
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Managerial learning

In our final experiment—Experiment 5—we investigate an analogous learning process, that of

the brand managers.  We did this by contrasting the profitability and behavior of agents using

the eight actions derived from historical data with agents using eight randomly determined

actions.  The actions we see in the historical data are the end result of decades of competition

and managerial learning.  By contrasting agents using these actions with those using random

actions, we attempt an assessment of the consequences of this learning.

Results
Experiment 1 — multi-population simulations

We did 50 Monte Carlo runs under a common-population scenario, and 50 runs under a

distinct—brand specific—population scenario.  We used the three-brand, four-action model

from our previous paper but with the methodological improvements noted above.  Figure 1

shows how the ‘industry profits’ evolve during the genetic optimization.

Figure 1 about here

The industry profits shown in Figure 1 are the averages observed across the 50 runs

under the common- and distinct-population scenarios.  For the common-population scenario

these are computed from 50 simulations, each with a common population of 25 agents; for the

distinct-population scenario these are computed from 50 simulations, each with three distinct

populations of 25 agents.  The distinct-population scenario generates higher profits and

converges more rapidly than does the common-population scenario.  This is because the latter

is a noisier environment for optimization and because there are benefits to developing a distinct

solution for each brand.  While in aggregate these benefits are not particularly large—increasing

industry profits by only 4%—if we examine brand profits, we see a significant reallocation.

When given their own populations of agents, Folgers increases its profits by 3%, and Maxwell

House increases its profits by 24%, but Chock Full O’Nuts loses some 16% of its profits.

Distinct populations allow the agents for Maxwell House to better capitalize on that brand’s

strengths, to produce more effective competitive behavior.

How then does the behavior of agents evolved under the distinct-population scenario

compare with those evolved under our earlier common-population scenario?  We applied our
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cluster dissection methodology to the action frequencies from the Monte Carlo simulations.

Table 1 shows the results for the one-population, four-action scenario and Table 2 the

equivalent results for three populations.

Tables 1 and 2 about here

In Table 1 we find that the 50 simulations are very homogenous.  Patterns 1 and 2 are almost

identical and represent 32 of the 50 simulations.  In fact, detailed inspection of the remaining

patterns suggests that 48 simulations are essentially the same, one simulation produces low

performance and that only Pattern 3 represents a high-performing alternative pattern of

competition.  The common pattern of interaction is thus EDLP for Folgers and Chock Full O’

Nuts and Wide Pulsing for Maxwell House.  Note that these represent a linked set of

strategies—they co-evolved over the 100 generations.  This discussion also demonstrates how

we dissect the data from the Monte Carlo runs and assign labels to the strategies.

Table 2 also shows homogeneous patterns of competition.  Patterns 1 and 2 are almost

identical and account for 41 of 50 simulations.  Inspection of the remaining patterns reveals that

all except Pattern 3 have worse performance than those tabled.  And Pattern 3 only differs from

1 and 2 in the behavior of Chock Full O’Nuts.

If we contrast the one-population, four-action experiment with the three-population,

four-action experiment, the basic strategies remain the same.  This result is not unsurprising, as

the actions available to the agents remain the same.  But, while the basic strategies remain the

same, the detailed profiles of each change somewhat, and this allows the distinct-population

agents to differentiate themselves more.  For example, the Wide Pulsing strategy of Maxwell

House involves 47% of its actions being at the lowest price in the distinct-population

experiment, versus 32% in the common-population experiment.  Indeed, the main beneficiary

of allowing these agents to respond more directly to the individual characteristics of the brands

is the market leader, Maxwell House.

Overall we conclude that moving to distinct populations has resulted in higher-

performing strings.  Distinct populations also result in greater heterogeneity in the performance

of the agents for each brand.  For example, the coefficients of variation of brand performance

for the common-population case are 3%, 5% and 2% respectively, and for the distinct-



Table 1: Patterns of competition among evolved agents—common population

and four actions

Actions
Low
price

High
price

Pattern 1, 21
runsa

1 2 3 4 Average
Profit

Strategy

Folgers 1b,c 9 8 0 1 $1,022 EDLP
Maxwell House 3 2 7 14 4 7 $631 Wide Pulsing
Chock Full O’ Nuts 0 100 0 0 $633 EDLP
Pattern 2, 11 runs 1 2 3 4 Average

Profit
Strategy

Folgers 0 9 7 2 1 $1,011 EDLP
Maxwell House 3 3 4 10 5 3 $625 Wide Pulsing
Chock Full O’ Nuts 0 9 8 0 2 $630 EDLP
Pattern 3, 1 rund 1 2 3 4 Average

Profit
Strategy

Folgers 4 6 5 2 0 2 $1,082 Promote to the Max
Maxwell House 3 0 0 3 4 3 6 $623 Wide Pulsing
Chock Full O’ Nuts 0 5 0 0 5 0 $707 Pulsing on Shelf Price

a: patterns of competition are computed during the 100th generation from all combinations of

25 agents playing 52-week games and from 50 Monte Carlo simulations.

b: row percentages, key numbers in bold.

c: shaded areas identify the actions constrained by store policy.

d: best performing of remaining patterns.



Table 2: Patterns of competition among evolved agents—three distinct

populations and four actions

Actions
Low
price

High
price

Pattern 1, 25
runsa

1 2 3 4 Average
Profit

Strategy

Folgers 1b,c 9 2 3 4 $1,093 EDLP
Maxwell House 4 7 0 3 5 0 $804 Wide Pulsing
Chock Full O’ Nuts 2 9 1 3 4 $527 EDLP
Pattern 2, 16 runs 1 2 3 4 Average

Profit
Strategy

Folgers 1 9 4 2 4 $1,092 EDLP
Maxwell House 4 7 1 3 4 8 $804 Wide Pulsing
Chock Full O’ Nuts 1 9 1 3 4 $527 EDLP
Pattern 3, 1 rund 1 2 3 4 Average

Profit
Strategy

Folgers 2 9 2 0 6 $1,045 EDLP
Maxwell House 4 6 0 4 5 0 $830 Wide Pulsing
Chock Full O’ Nuts 4 8 4 4 4 4 $580 Promote to the Max

a: patterns of competition are computed during the 100th generation from all combinations of

25 agents playing 52-week games and from 50 Monte Carlo simulations.

b: row percentages, key numbers in bold.

c: shaded areas identify the actions constrained by store policy.

d: best performing of remaining patterns.
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population case, 11%, 6% and 6%.  We believe that this increased heterogeneity is a result of

the absence of the inbreeding we observe in a common population, where brands exchange

information at the genetic level through the recombinant processes of the GA—“incest,” as

Tony Curzon Price has put it (personal communication).

Experiment 2 — four strategic players

The results of expanding from three to four players—by adding Hills Bros.—are summarized

in Figure 2, along with those from Experiment 1 for comparison.  We again use four actions

but now with four distinct populations.  Whilst Hill Bros. is a niche player, and has smaller

profits than other brands, its inclusion produces complex changes in the behavior and

performance of the major brands.  Folgers switches from EDLP to an aggressive strategy

alternating between its EDLP price and a featured price promotion.  Maxwell House pulses

between two high shelf prices instead of using a featured-price promotion as before. Chock

Full O’Nuts switches from EDLP to pulsing between a high shelf price and a featured-price

promotion.  Hills Bros. pursues a similar strategy to Maxwell House.

Figure 2 about here

Not only are the changes in agent behavior significant, so too are the shifts in profitability.  As

Figure 2 shows, in comparison to the three-population case, the introduction of Hills Bros.

reduces the profits of Folgers and Maxwell House (by 13% and 8% respectively) but increases

the profits of Chock Full O’Nuts (by 56%).

One reason for the falls in profitability experienced by Folgers and Maxwell House are

that the agents for Hills Bros. are frequent price promoters and take up promotional

opportunities that would otherwise have gone to one of these major brands.  With the store

policies set the way they are, there is only one opportunity for a featured price promotion each

week.  The greater the number of brands competing for these opportunities, the fewer the

opportunities any one brand is going to have.  Moreover, as these promotions usually generate

significant profits, ceteris paribus, the overall profitability of the brand is reduced.  Another

reason is that Hills Bros. promotions themselves take sales from the other brands.
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But how do we explain the increase in profitability experienced by Chock Full O’Nuts?

Examination of the parameters of the market response model reveals that the actions of Hills

Bros. have less impact on the sales of Chock Full O’Nuts than the other brands (Cooper and

Nakanishi 1988, Chapter 5).  The introduction of Hills Bros. as the fourth player thus benefits

Chock Full O’Nuts—because each Hills Bros. promotion damages the other brands but has

less effect on Chock Full O’Nuts.

Overall, the introduction of a fourth player had a greater impact than we anticipated.

One of the strengths of our approach is the use of a detailed, realistic and empirically grounded

model of consumer response.  The realities are that this response, and the brand competition

that occurs as a consequence of it, are complex phenomena.  Like managers, the agents

vigorously compete with the tools they are given.  In the four-action, four-competitor setting

this provided an advantage for the agents representing Chock Full O’Nuts.  But, as we shall

see in Experiment 3, when the agents are given eight actions, the competitors of Chock Full

O’Nuts change their behavior to better overcome the inclusion of Hills Bros.

Experiment 3 — eight possible actions per player

Increasing the number of possible actions provides the agents with more choices of how to

compete—both in terms of the number of available actions and because we have extended the

range of possible prices in comparison to the four-action simulations.

Early in the co-evolution, the strings tend to use each of the eight actions with a roughly

equal frequency.  However, by the 100th generation the agents are using fewer than eight

actions.  In fact the one, two, three or at most four actions for each brand account for between

66% and 85% of all actions.  The agents have learned the actions that are most profitable for

them, given the behavior of their rivals.

These learned actions, however, vary significantly between brands and somewhat

across the two patterns that our Monte Carlo runs fall into.  Thus in the three population case

the agents for Chock Full O’ Nuts use a similar strategy across both competitive patterns—in

essence ‘pulsing’ between a high price and a featured low price.  Folgers also pulses, but in

Pattern 1 (27 of 50 simulations) the agents focus on four actions and in Pattern 2 (14 of 50
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simulations) only three.  Maxwell House also uses a similar strategy across both patterns,

namely two variants of an everyday-low-price strategy.  Overall, these results indicate the

importance of store policy.  This can be seen in the various ways the agents adapt their

behavior to these constraints.  For example, Maxwell House chooses the lowest unconstrained

action for its everyday low price, whilst the other two brands only select certain of the

constrained actions for their promotional pulses.  Figure 3 summarizes the eight-action results

for both three and four players.  Two aspects of these results are worth commenting on.

Figure 3 about here

First, whereas with four possible actions we typically only observe one pattern of

competitive interaction across the 50 Monte Carlo runs, with eight actions we observe two

patterns.  Whilst the differences between the two are more a matter of degree than of kind, there

is no doubt these results show more heterogeneity than do the four-action experiments.  In the

case of three players, as discussed above, the differences primarily concern whether the agents

for Folgers focus on three or four actions.  For the case of four players, in 9 of 50 runs we

observe the High Entropy strategy across all brands.  This strategy has its actions fairly evenly

distributed between four to six of the eight possible actions.  In 30 of 50 runs we observe all

brands placing a greater focus on three middle to high-priced actions—which we term High

Pulsing.  The fact that we observe two patterns in both the three- and four-player, eight-action

experiments indicates that different patterns of competitive interaction can appear over long

periods of co-evolution.  Since we did not observe this in the equivalent four-action

experiments, we conclude that different paths of co-evolution are more likely as we increase the

number of actions available to our agents.

Second, again it can be seen that the introduction of Hills Bros. produces significant

changes in the behavior of the major brands.  Compared with the three-player, eight-action

experiments, the profits of all the major brands fall, although it is noticeable that Chock Full

O’Nuts and Hills Bros. perform better in the High Entropy strategy.  In the High Pulsing

condition the other brands are able to offset these advantages by clearer focus on certain

actions.  In the four-action experiments they were not able to overcome these advantages.  Thus

a broader palette of actions may enable more effective competition.
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Experiment 4 — co-evolution: sophisticates against primitives

We want to demonstrate that the natural selection of the GA is improving the performance of

the artificial agents, which start off as filtered (and hence legal) but otherwise random strings.

The improvement of the mean score of the population as shown in Figure 1 is one measure, the

good performance of the best agents against the historical actions of managers is another.  In

this section, we consider yet another measure: pitting the best-performing string after 100

generations (the ‘sophisticate’ agent) against all combinations of the other two brands after 8

generations (the ‘primitive’ agents).  What should we expect?  Since the sophisticates have had

many more generations to learn and adapt than have the primitives, we should expect them to

score better against the primitives than against the sophisticates.  The results are given in Table

3.

Table 3 about here

The Holyfield-Tyson effect.  We should expect positive diagonal elements in the table:

that is, the sophisticate's performance would be significantly better than that of the replaced

primitive string.  But despite our expectation, only with one brand (Chock Full O’Nuts) does

this occur; the other two brands show falls in the average weekly profits of between 3% and

5% from the level of the replaced primitive.

From this table we are left to conclude that, at least for two of our three brands, the

sophisticated agents do not compete effectively with primitive agents.  By analogy to a famous

ear-biting incident, Bernhard Borges has called this the Holyfield-Tyson effect (personal

communication).  Without a referee to call fouls, the primitive agents turn the competition into a

street brawl.  One explanation for this effect might be genetic drift.

Genetic Drift.  Genetic drift is the change in the gene pool of a small population that takes

place strictly by chance.  Genetic drift can result in genetic traits (genes, or patterns on our bit

strings) being lost from a population or becoming widespread without respect to the survival

value of the genes involved.  As a random effect, genetic drift can occur only in small, isolated

populations in which the gene pool is small enough that chance events can change its makeup.



Table 3. Mean changes in average weekly profits with best sophisticate

competing against the best primitivesa

Best

Sophisticate

Change in

Folgers

Change in

Maxwell

House

Change in

 Chock Full

O’Nuts

Folgers -15.01 41.42 42.03

Maxwell House 2.03 -20.04 37.77

Chock Full O’Nuts 13.93 -28.99 82.34

a: this table is based on the following 8 step procedure.

1. After eight generations, identify the best individual strings from each of the three

populations.

2. Play these three against each other for a 50-week repeated game, and note their average

weekly profits.

3. Allow the three populations to continue co-evolving via the GA.

4. After 100 generations, identify the best strings from the three populations, play them

against each other as before, and note their average weekly profits.

5. Replace the best Folgers string after 8 generations by the best Folgers string after 100

generations (e.g. replace the best primitive string by the best sophisticate).

6. Play all combinations of three strategic brands, and consider string-by-string the change in

average weekly profits with the sophisticated player and without the sophisticated player in

one brand.

7. Repeat steps 5 and 6 for the remaining two brands.

8. Because of the stochastic nature of the simulation, repeat steps 1 through 7 fifty times and

compute the averages shown in the table.
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In larger populations, any specific gene is carried by so many individual strings that it is likely

to be transmitted to the next generation, unless it scores badly.

The magnitude of gene frequency changes due to genetic drift is inversely related to the

effective size of the population (the number of individuals selected to produce offspring), since

only parent strings transmit their genes to the following generation.  In our case we have a

small population to begin with, only 25 individuals, and the number of parents in each

generation is smaller still, so that genetic drift over 100 generations may become significant.  It

is possible that we have lost genes that led to higher weekly profits when the primitives were

competing from the population, or, in the vernacular, that the sophisticates have become

“flabby” in competition against similar sophisticates.5   This could explain the poor showing

that the Folgers and Maxwell House sophisticates make against the primitives; the Chock Full

O Nuts sophisticates consistently do better against primitives than against sophisticates.

In order to test the conjecture that the sophisticates were not doing as well against the

primitives because of genetic drift, we decided to increase the size of each population from 25

to 250.  The tenfold increase in the population sizes means that simulations take much longer,

since each individual now has to compete against 250^2 combinations (instead of 25^2) and

there are ten times more individuals to test per generation.  This thousand-fold increase in the

number of three-way interactions per generation also means that convergence is much slower.

It is not just that each of the three populations takes longer to converge (as it would by itself)

but that the slowness of the opponents to converge means that any convergence that does first

occur is likely to be premature.  With the three populations converging roughly at the same rate,

Folgers, for instance, may find a small set of strings whose patterns mean good profits, against

the current populations of Maxwell House and Chock Full O’Nuts.  But when further

convergence in, say, Maxwell House occurs, the Folgers strings may be further from optimal,

which means that convergence may reverse, until the Folgers population adapts to the new

topology in strategy space, and evolutionary convergence continues.  We can think of this as a

spiraling towards a node: closer but then further away, and then closer, and so on. We have

observed this spiraling in the lengthy simulations we have run on populations of 250 (which
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take months rather than hours to complete). We performed a single run only and we obtained

the same results as before—namely sophisticates perform poorly against primitives.

These large-population simulations would appear to rule out genetic drift as an

explanation for the Holyfield-Tyson effect, but we must qualify this null result in two respects.

First, the cycles of convergence are much longer in large populations than in the smaller

populations typical in GA applications.  It is possible that, were we to continue the simulations

for more generations, we might obtain sophisticates capable of holding their own with

primitives.  Second, the immense number of computations involved has meant that we have

only been able to investigate genetic drift for a model with three populations and four possible

actions.  As discussed above, a larger palette of actions appears to result in more capable

agents.  It is possible that a sophisticate with eight possible actions might be capable of

competing with a primitive with eight actions.  Our intuition is that neither of these potential

explanations will prove valid—but we need to note that we have not tested them.

Experiment 5 — managerial learning

Thus far we have looked at how agents learn in competitive simulations, but our methodology

also allows us to look at how managers may have learned over decades of actions in the coffee

market.  In Experiment 3 we used eight actions that were developed from analysis of the

historical data, that is from managers’ actions.   These eight actions are thus highly learned

ones and exogenous to the agents that we evolve in our simulations.  All the agents detailed

above are similarly restricted to a repertoire of actions we specify for them.  The question arises

of how these agents might perform with a different repertoire of actions—one developed

without reference to the historical actions of managers.  These we developed from a random

experimental design where price is stepped in ten-cent increments between $1.60 and $2.80

and feature and display can take on the value of either 0 or 100.

In Table 4 we show the patterns of competitive interaction that are observed across the

50 Monte Carlo simulations we ran with these eight randomly chosen actions.  In this case

there are two patterns that account for 31 out of 50 runs.  We can note two striking facts about

Table 4.  First, the profit levels are much higher than with the earlier, learned actions.  Second,
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these profit levels are achieved because the agents are very sparing in their use of featured, low-

price promotions and maintain high prices throughout most interactions.  This is certainly true

for Chock Full O’Nuts, whose agents stay at high prices most of the time.  The agents for

Folgers ‘pulse’ in both patterns but also maintain the highest price more frequently than in

earlier results.  Similarly, Maxwell House has a definite high-to-low pulsing strategy but also

stays at the highest price more frequently.  In essence, the level of competition is much lower

with these random actions.  And on first glance it would appear as though managers have

‘learned’ to become overly competitive in comparison to these agents.

Table 4 about here

We speculate, however, that what these results show is that store competition is

missing from our response model and, we would add, from much of the market-response

modeling literature.  In the market, competition from other chains may prevent such high

prices.  This competition is likely to affect store policies, and the impact of these policies may

be incorporated into the historical actions of the managers.  Thus, when we extrapolate beyond

the bounds of our earlier simulations, as we have done in Experiment 5, we see behavior that

may not be sustainable in the market.  Or indeed, may not be observed in the market—since the

mere threat of competition may also alter the beliefs of store managers.

Agents and managers

Our final section of results compares the agents we have bred with the historical actions of

brand managers.  We did this in two ways.  First, we took the best agent from each of the

distinct populations and played these against the actions of the managers of their competitors.6

The profits achieved by these agents could then be compared with the historical profits achieved

by managers of the same brand.  This procedure is similar to the one we used in our earlier

paper, but, whereas previously we used 25 agents from one common population, here we use

the best agent from each of 50 brand-specific populations of 25 agents each.  Whilst we

recognize that this test is unfair—in that the actions of the competing managers are frozen—it

does give us another benchmark for agent development.  If our agents cannot compete with

these managers we might well question their value.  Second, we know that whilst agents



Table 4: Patterns of competition among evolved agents—three distinct

populations and eight random actions

Actions
Low price
High Price

Pattern 1, 18
runsa

1 2 3 4 5 6 7 8 Profit

Folgers 24b,
c

14 1 1 0 8 2 4 7 $2,009

Maxwell House 14 2 4 2 1 1 8 3 4 5 $2,801
Chock Full O’Nuts 4 1 1 0 2 6 2 9 5 2 $1,151
Pattern 2, 13
runs

1 2 3 4 5 6 7 8 Profit

Folgers 5 3 4 0 4 0 4 3 4 7 $1,916
Maxwell House 4 1 2 0 2 0 3 2 4 8 $3,244
Chock Full O’Nuts 4 1 1 1 1 2 3 8 5 $1,192

a: patterns of competition are computed during the 100th generation from all combinations of

25 agents playing 52-week games and from 50 Monte Carlo simulations.

b: row percentages, key numbers in bold.

c: shaded areas identify the actions constrained by store policy.
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competing against themselves produce higher profits than managers they do so with different

patterns of promotion.  It is therefore interesting to contrast the behavior of the agents with that

of managers.

Agents against history.  On average, for the four-action simulations, these 50 best agents

outperform Maxwell House managers by 12% compared with –15% in our previous paper.

Moving to a distinct population for Maxwell House produces improved agent profitability.

Similar tests for the other two brands produce average figures of 121% for Folgers (compared

with 49% in the previous paper) and 55% for Chock Full O’ Nuts (compared with 53%).

Whereas Maxwell House was the main beneficiary of distinct populations when competing

against other agents, it appears that Folgers is the main beneficiary when competing against

managers.   For the eight-action simulations, the agents for Folgers outperformed the historical

actions of its managers by 156%, Maxwell House by 32% and Chock Full O’Nuts by 42%.

For Folgers and Maxwell House these results are better than those from the four-action

experiments, for Chock Full O’Nuts they are slightly worse.

The Frankenstein effect.  A more interesting finding from these tests against the historical

actions of managers is that the agents here exhibit more heterogeneous behavior than when they

compete against other agents.  For example, in the four-population, eight-action experiment,

we observe two patterns of competitive interaction when agents compete against agents.  When

agents compete against managers, however, we observe two patterns for Folgers, but four for

Maxwell House, Chock Full O’Nuts and Hills Bros.  Similar results hold for several of our

other experiments.  The historical actions likely trigger more diverse behavior from the agents

because the historical actions themselves contain more variability of actions than we see from

the agents after 100 generations of co-evolution.  We find it interesting and important that the

artificial agents can handle these changed inputs, perform well, and do so with strategies

different from those they used when competing with each other.  We call this the Frankenstein

effect—agents that only showed a few behaviors in the ‘laboratory’ show more in real

environments.
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Comparing the behavior of agents with that of managers.  In Table 5 we show three

sets of action frequencies for each of our four brands.  The first set is the historically observed

frequencies for these brands, the second is from our four player, eight action simulations and

the third is from pitting the best agents from these simulations against the historical actions of

competing managers.

Table 5 about here

Examining these frequencies, particularly the emboldened figures, it is evident that the agents

use featured price promotions more than managers and they use the highest price more

(especially when competing against the historical actions of managers).  The net effect of their

behavior is to reduce the average price of coffee (by 5% when competing against each other and

4% when competing against managers) and to increase the average amount of coffee sold by

the chain each week (by 40% and 9% respectively).  Whilst these numbers represent significant

changes to the market they are not unreasonable.  Historically, prices and amounts sold have

varied by more this.  For example, the maximum weekly amount sold by the chain was 171%

of the annual average.  Moreover, even for agents competing against themselves—the most

vigorous price competition we observe—the implied amount sold only represents 46% of the

average amount of coffee sold in the regional market in one week.

The key question is thus not whether customers can consume this amount of coffee—

they clearly can—but whether agent behavior can be sustained in the long run against inter-

chain competition.  That is, might the other chains in the area adjust their policies to address the

potential loss of business that this behavior represents?  While this is not a straightforward

decision for them, our intuition is that they would—which another reason why we think that

inter-chain competition is an important area for future research.

Discussion

In summarizing our findings and conclusions, we have chosen to touch on four main areas: co-

evolution, the specification of agents, modeling more brands, and managerial behavior.  After

discussing these, we will briefly outline our future research plans.



Table 5. Comparisons of the behaviors of agents and managers
Actions

Low price
High price

1 2 3 4 5 6 7 8
Folgers
Historicala 1 1 1 5 2 3 8 7 1
Agents competingb 6 5 8 1 4 3 3 9 9 1 6
Agents against historyc 1 1 7 1 2 7 9 7 7 4 0

Maxwell House
Historical 1 7 3 1 1 6 6 1 1 1 1
Agents competing 5 6 6 1 6 6 3 9 9 1 3
Agents against history 8 1 3 1 0 9 1 0 6 5 4 0

CFON
Historical 1 1 3 3 2 1 7 6 6 7
Agents competing 8 6 6 1 5 4 3 9 1 0 1 2
Agents against history 8 7 8 1 3 1 0 1 2 7 3 5

Hills Bros.
Historical 1 2 8 3 9 6 9 8 1
Agents competing 6 8 5 1 2 5 3 9 9 1 6
Agents against history 9 8 7 1 2 9 6 5 4 4

a: from historical data, row percentages, key numbers in bold.

b: from the most common pattern observed in the four population, eight action simulations

c: from playing 50 best agents against the historical actions of their competitors.
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Co-evolution

The methodological contribution we make in this paper is the rewriting of the GA to co-evolve

multiple populations of agents.  This is clearly a more valid approach for our application.  Each

brand evokes a different response from consumers, and faces different cost structures, and

these facts should be reflected in the agent’s mapping from perceptions to actions.  While a

single-population GA can produce a solution, it is a ‘one size fits all’ solution, whereas a

multiple-population GA allows a distinct population of solutions for each brand.  Moreover, the

single-population GA pools genetic information from the competing brands to an undesirable

extent.  The empirical confirmation of these arguments is that the agents evolved from our

three- and four-population simulations outperform the common-population agents of our earlier

paper.

But co-evolution incurs some additional costs, because it requires more computations to

reach convergence.  This is partially because of the computations involved in keeping track of

the multiple populations, but extra computing also occurs because the multiple populations do

not evolve in step.  Bit strings for one population can converge only to find that their

competitive environment (the other populations) has changed.  They must then evolve again to

catch the moving target.  Overall convergence is thus approached in a ‘spiraling’ manner and

can take longer than with a single population.  Indeed, it is only because we were able to

improve the GA code, and because computer hardware has improved since our earlier work,

that we are able to conduct these multiple-population simulations.

We also have an unresolved problem with the results of co-evolution—our finding that

‘sophisticated’ agents do not compete well with ‘primitive’ agents.  In one sense this is not a

problem.  Agents perform well against other agents at the same level of sophistication.

Eventually, however, we would like to breed agents that are robust to changes in competition

For example, the introduction of a new ‘primitive’ player into a market.  We need bit strings

that retain the capacity to compete with agents other than those they currently face.

Our initial supposition that the loss of this capacity was due to genetic drift in a small

population is not borne out by our results.  We have increased the population size tenfold but
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still obtain similar results to before.  Of course, even this increased population is not a large by

the standards of the natural world, but our intuition is that increasing this population yet further

will not solve the problem.  We may need to look at other methods for retaining information in

the bit strings, such as a diploid mechanism.  The diploid genotype (Goldberg & Smith 1987)

(which allows the emergence of “recessive genes”, such as that for blue-eyed human beings)

might allow once and future genes of value to persist, even in an ever sophisticated population.

Mitchell (1996, pp.21-27) discusses work by Hillis, in which he used a diploid representation:

chromosomes in pairs, rather then the single chromosomes or haploid representation that we

use here.7

Specification of agents

While we still have an unresolved issue with our basic genetic mechanism, the results presented

here do allow more definite conclusions to be made about the form and structure of our agents.

We have learned that our agents do not need as many actions as perhaps we had thought or as

perhaps managers use.

Our earlier work used four possible actions.  At the time we thought that this was a

reasonable number with which to start our work.  It is also true that the state of development of

our methods and the available computing hardware had some impact on this choice—it would

have been very time consuming to investigate a larger number.  Here advances in our methods

(for example, ‘filtering’), and in the computing power available to us, have allowed us to

investigate eight possible actions.  But we find that the agents end up using far fewer than eight

actions.  In fact they most often end up using two or three with high frequency and the rest

with low frequencies.  And we only see incremental rather than dramatic increases in the

profitability of these agents.  This raises the interesting question of whether we need to equip

our agents with as many actions as we do in this paper.

Of course, we need to be careful in this assessment—a low-frequency action may still

be important to the overall performance of the agent.  But it does suggest that eight is a

reasonable upper bound and we need not equip our agents with more possibilities.
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We have conceptualized the structure of our agents in three components: 1) a

mechanism for perceiving the previous state of the market, 2) a mechanism for mapping from

this state to future actions, and 3) a mechanism for determining an appropriate set of actions.

Our earlier paper addressed simply the mapping mechanism using exogenously determined

perceptions and actions (which were in fact equivalent).  This paper goes some way to

addressing the third component by suggesting an upper bound of eight possible actions.  Our

intuition is that the most productive areas for future research are perceptions, and methods for

endogenizing the development of perceptions and actions.

Modeling more brands

In our previous paper we modeled competition between the three major brands in this market,

brands whose combined market shares account for some 68% of the market in question.   Here

we introduced agents representing a fourth, niche brand whose market share is only 4% and

whose profitability is much lower than the major brands.  Yet the introduction of this niche

brand changes the market in significant, complex and asymmetric ways.  Not only does it

impact on profits but it also changes the behavior of the major brands.  To some extent this

occurs simply because the fourth brand takes up some of the fixed number of opportunities for

major promotions—thereby forcing the agents for other brands to reallocate their actions.  But

it also occurs because the fourth player has different competitive impacts on each of the three

major brands.  This disturbs the competitive balance between these brands, and to compensate

for this the behavior of their agents also changes.  Which raises the question of how many

brands we need to include in our analysis.  Before this finding, we would have answered “just

the major brands”, but now we are not as certain.  Conceivably, researchers need to model all

the brands in a market to fully understand the nature of competition in that market.  Fortunately,

the continued increases in computing power make it possible to contemplate such simulations in

the not too distant future.

Managerial behavior

In most of our work we have exogenously determined the actions of the agents by analysis of

the historical actions of managers.  Since we also equivalence perceptions to actions, these too
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are based on the historical data.  In that sense our agents have ‘learned’ from, or at least been

informed by, what managers think are appropriate competitive actions.  The agents are thus

performing well because the GA evolves effective mappings between perceptions and actions.

And we have some evidence that these mappings are at least as effective as those implicit in the

managers’ behavior.

In our last experiment we broke from this path—by randomly drawing a set of possible

actions for the agents.  Our prior hypothesis was that agents with these random actions would

not perform as well as those with exogenously determined actions; in other words, that the

managerial learning incorporated in the exogenous actions had value.  We were therefore

disconcerted to find that the agents with random actions extract much higher profits from this

market.  Is this because we have been lucky with our random draw?  Or is there some miss-

specification in our model?

Our agents, faced with a menu of random actions, make most of their profits at prices

above their shelf prices—the highest prices used by managers.  Such outcomes are what one

might have expected before the data used in our earlier paper had been examined: that the

highest profits earned would occur at collusive, high prices.  But those data show that the

greatest profits earned by the historical brand managers occur, not at high, above-shelf-price

levels, but at low, promotional prices.  This suggests that one reason for the high profits of

agents with a menu of random actions is that the demand in our models for coffee at high prices

is not constrained by competition from other supermarket chains.  We have not yet modeled the

effects of this competition on the demands faced by our agents.  Once we have done so—an

admittedly difficult exercise—we may be better able to assess the behavior of managers in

comparison with agents.  All in all, Experiment 5, together with our subsequent comparison of

agent and manager behavior, reinforces our belief that there is much to be gained by jointly

examining the competition between retailers and manufacturers.

Future research

A conclusion we draw from all the above is that it would be better if our agents endogenously

determined their own perceptions and actions.  Then we could compare the performance and
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behavior of these agents with that of managers without the confounding of the two which

comes from our current selection of actions and perceptions.  But this is a non-trivial task.  One

of us has done some thinking on partitioning perceptions (Marks 1998) but we lack a specific

algorithm to implement.  We have not, as yet, done much thinking on what would be a basis

for selecting a set of actions.  Perhaps parts of the bit string could represent a price or

promotional level.  Similarly, perceptions might be represented as partitions—the coordinates

of which are encoded in the bit string.  The GA would then exert selective pressure on these

bits, resulting in the selection of partitions and actions that maximize profits.

The other area we wish to work on is that of the interaction between store policy and

brand management.  It is clear from our results that store policy has a major impact on brand

competition.  We need to consider joint models whereby store managers seek to impose

policies that maximize their profits whilst brand mangers seek to maximize profits within these

policies.  Presumably store managers also consider competition from other store chains and

their beliefs about this competition are reflected in their policies.  Since brand managers also

seek to influence store policy by various incentives, these will be complex models.

To conclude, we note that we believe the strength of our overall approach derives from

the use of an empirically grounded fitness function to optimize our agents.  A market-response

model based on a real market; such as we use here, provides a strong test of the validity of the

artificial agents.  It also focuses our research endeavors on realistic specifications for these

agents.  While empirical grounding is not yet common in applications of genetic techniques, we

suggest that such grounding has much to commend it.
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1 The response model comprises a market-share sub-model, a category-volume sub-model, and

a profitability sub-model.  It uses over 180 parameters and explains the historical volume and

share levels very well.  Brand price elasticities vary from –0.5 to –4.7 and costs between $1.18

and $1.39 per pound.  Demand saturation is modeled by pro-rating a moving average of the

amounts sold against a saturation limit (the average amount of coffee sold in the region).

2 Eight actions requires 3 bits per action; 8 actions, 4 players, and 1-week memory implies 84

= 4,096 possible states; phantom memory is 8 x 3 = 24 bits.  So 3 x 4,096+24  = 12,312 bits.

3 The particular store chain that we model does not allow brands to feature two weeks in a row,

and it only allows one brand per week to feature.  In the GA we impose these constraints by

penalizing the profits of actions that would violate them.

4 “Nothing is absolutely predictable about the direction of co-evolution.  How an interaction

co-evolves depends not only on the current genetic makeup of the species involved but also on

new mutations that arise, the population characteristics of each species, and the community

context in which the interaction takes place.”  Encyclopaedia Britannica, CD97.

5 An analogy in game theory is the issue of how a strategy will perform against an irrational

strategy that moves off-equilibrium.

6 E.g. an agent determines the actions for Folgers whilst all other actions are historical.

7 Since there are pairs of chromosomes, at each position on the first chromosome the string

segment is compared with the corresponding string segment on the second chromosome.  If

they encode the same action, then that action is the contingent action for the corresponding

state; if they encode different actions, then one of the actions will be dominant, and the other

recessive.  The coding for the recessive action may survive the recombination of the

chromosomes during the GA's evolution, and eventually may prove valuable.
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