Shadow Pricing, Direct Price Effects 1. Shadow Pricing

[C&B Ch. 5; DoF Ch. 3; FP Ch. 1.6, 6; S&W Ch. 8]

The NPV formula can be written as

$$NPV = \sum_{t} \frac{b(t) - c(t)}{(1+r)^t}$$
 where $b(t) = \sum_{i} b_i p_i = b_0 p_0 + b_1 p_1 + b_2 p_2 + \cdots$ and $c(t) = \sum_{j} c_j p_j = \cdots$

Shadow Pricing, Direct Price Effects

1. Shadow Pricing

[C&B Ch. 5; DoF Ch. 3; FP Ch. 1.6, 6; S&W Ch. 8]

The NPV formula can be written as

$$NPV = \sum_{t} \frac{b(t)-c(t)}{(1+r)^t}$$
 where $b(t) = \sum_{i} b_i p_i = b_0 p_0 + b_1 p_1 + b_2 p_2 + \cdots$ and $c(t) = \sum_{j} c_j p_j = \cdots$

Now, we assume here that we have the quantities b_i benefits and c_i costs.

Shadow Pricing, Direct Price Effects

1. Shadow Pricing

[C&B Ch. 5; DoF Ch. 3; FP Ch. 1.6, 6; S&W Ch. 8]

The NPV formula can be written as

$$NPV = \sum_{t} \frac{b(t)-c(t)}{(1+r)^t}$$
 where $b(t) = \sum_{i} b_i p_i = b_0 p_0 + b_1 p_1 + b_2 p_2 + \cdots$ and $c(t) = \sum_{j} c_j p_j = \cdots$

Now, we assume here that we have the quantities b_i benefits and c_i costs.

What of the prices p_i and p_j ?

True prices reflect opportunities forgone (by suppliers, by consumers)

→ shadow prices.

A shadow price better approximates the true opportunity cost or marginal valuation of a product or resource or service.

True prices reflect opportunities forgone (by suppliers, by consumers)

→ shadow prices.

A shadow price better approximates the true opportunity cost or marginal valuation of a product or resource or service.

Five cases in which market prices are distorted, so that we must dig a little to obtain the shadow price, the true opportunity cost or valuation:

1.

True prices reflect opportunities forgone (by suppliers, by consumers)

→ shadow prices.

A shadow price better approximates the true opportunity cost or marginal valuation of a product or resource or service.

- 1. of a tax,
- 2.

True prices reflect opportunities forgone (by suppliers, by consumers)

→ shadow prices.

A shadow price better approximates the true opportunity cost or marginal valuation of a product or resource or service.

- 1. of a tax,
- 2. of a price change,
- 3.

True prices reflect opportunities forgone (by suppliers, by consumers)

→ shadow prices.

A **shadow price** better approximates the true **opportunity cost** or **marginal valuation** of a product or resource or service.

- 1. of a tax,
- 2. of a price change,
- 3. of a tax with a price change,
- 4.

True prices reflect opportunities forgone (by suppliers, by consumers)

→ shadow prices.

A **shadow price** better approximates the true **opportunity cost** or **marginal valuation** of a product or resource or service.

Five cases in which market prices are distorted, so that we must dig a little to obtain the shadow price, the true opportunity cost or valuation:

- 1. of a tax,
- 2. of a price change,
- 3. of a tax with a price change,
- 4. of unemployment with minimum wages,

5.

True prices reflect opportunities forgone (by suppliers, by consumers)

ightarrow shadow prices.

A **shadow price** better approximates the true **opportunity cost** or **marginal valuation** of a product or resource or service.

- 1. of a tax,
- 2. of a price change,
- 3. of a tax with a price change,
- 4. of unemployment with minimum wages,
- 5. of a tariff (a tax on imports).

To determine the true or shadow prices, use:

•

To determine the true or shadow prices, use:

Willingness To Pay (demand curve) for consumption

•

To determine the true or shadow prices, use:

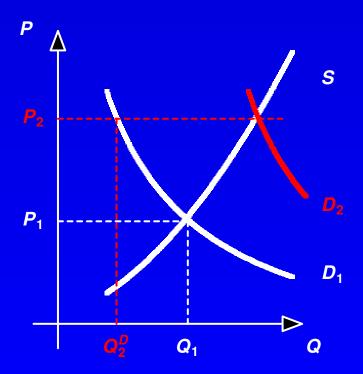
- Willingness To Pay (demand curve) for consumption
- Opportunity Costs (supply curve) for inputs

But beware whether quantities increase or decrease in inputs or outputs.

To determine the true or shadow prices, use:

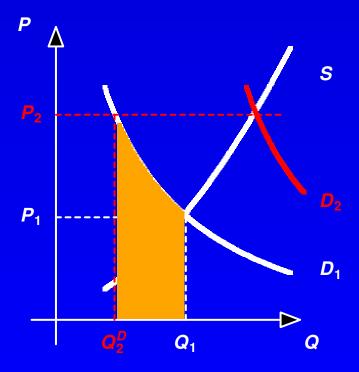
- Willingness To Pay (demand curve) for consumption
- Opportunity Costs (supply curve) for inputs

But beware whether quantities increase or decrease in inputs or outputs.


C&B's Pricing Rule. [C&B p.93]

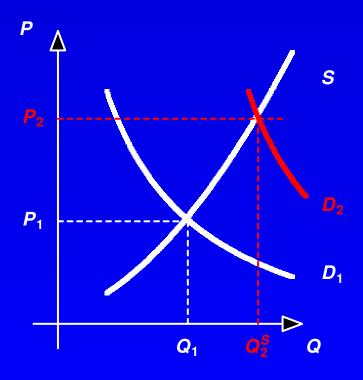
Item to be valued	Valued at equilibrium point on a:	
	Demand Curve	Supply Curve
Output	Satisfies additional demand	Satisfies existing demand from alternative source
Input	Sourced from an alternative market source	Sourced from additional supply

(See also the Table on p.30 of the DoF *Handbook*.)

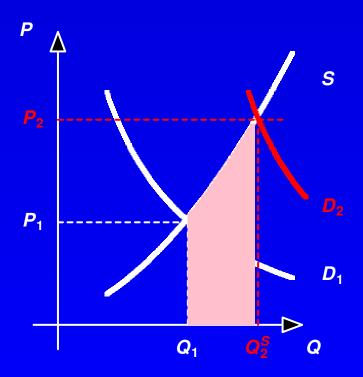

The Area under the Demand Curve is the Value of that Quantity

A demand curve shows the maximum the buyer is prepared to pay for each unit bought. As the price rises, buyers choose to buy less. They forgo the value to them of buying and using the forgone quantity: area = value forgone, as price $P_1 \rightarrow P_2$.

The Area under the Demand Curve is the Value of that Quantity


A demand curve shows the maximum the buyer is prepared to pay for each unit bought. As the price rises, buyers choose to buy less. They forgo the value to them of buying and using the forgone quantity: area = value forgone, as price $P_1 \rightarrow P_2$.

Remember: the value of the last unit bought (the marginal value to the buyer) = the price of that unit.


The Area under the Supply Curve is the Cost of that Quantity

To a firm in a competitive market, its supply curve shows the cost of supplying each unit. A higher price induces more units to be offered for sale: the area under the supply curve is the total cost of supplying those units, as price $P_1 \rightarrow P_2$.

The Area under the Supply Curve is the Cost of that Quantity

To a firm in a competitive market, its supply curve shows the cost of supplying each unit. A higher price induces more units to be offered for sale: the area under the supply curve is the total cost of supplying those units, as price $P_1 \rightarrow P_2$.

Remember: the marginal cost of supply (the cost of supplying the last unit sold) = the price of that unit.

Q:

Q: A remote electricity-generation project pays \$1/litre for its fuel oil, the costliest input to the project. The FA (financial appraisal) gives an NPV close to zero, but there is a tax on the fuel oil of 45¢/litre. What is the shadow price of fuel oil, to be used in the CBA NPV?

Q: A remote electricity-generation project pays \$1/litre for its fuel oil, the costliest input to the project. The FA (financial appraisal) gives an NPV close to zero, but there is a tax on the fuel oil of 45¢/litre. What is the shadow price of fuel oil, to be used in the CBA NPV?

A:

- Q: A remote electricity-generation project pays \$1/litre for its fuel oil, the costliest input to the project. The FA (financial appraisal) gives an NPV close to zero, but there is a tax on the fuel oil of 45¢/litre. What is the shadow price of fuel oil, to be used in the CBA NPV?
- A: Since the tax is a transfer (paying 45¢/litre for nothing), ignore it in a CBA. The shadow price is 55¢/litre, and the CBA NPV will be positive, because of the lower opportunity cost of fuel oil at the shadow price.

- Q: A remote electricity-generation project pays \$1/litre for its fuel oil, the costliest input to the project. The FA (financial appraisal) gives an NPV close to zero, but there is a tax on the fuel oil of 45¢/litre. What is the shadow price of fuel oil, to be used in the CBA NPV?
- A: Since the tax is a transfer (paying 45¢/litre for nothing), ignore it in a CBA. The shadow price is 55¢/litre, and the CBA NPV will be positive, because of the lower opportunity cost of fuel oil at the shadow price.

A (specific) tax on a good supplied in a competitive market:

< >

- Q: A remote electricity-generation project pays \$1/litre for its fuel oil, the costliest input to the project. The FA (financial appraisal) gives an NPV close to zero, but there is a tax on the fuel oil of 45¢/litre. What is the shadow price of fuel oil, to be used in the CBA NPV?
- A: Since the tax is a transfer (paying 45¢/litre for nothing), ignore it in a CBA. The shadow price is 55¢/litre, and the CBA NPV will be positive, because of the lower opportunity cost of fuel oil at the shadow price.

A (specific) tax on a good supplied in a competitive market:

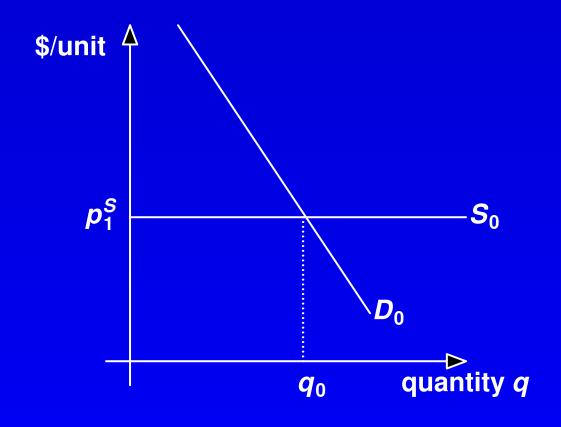
 places a wedge between the marginal cost (supply) and price (demand)

••

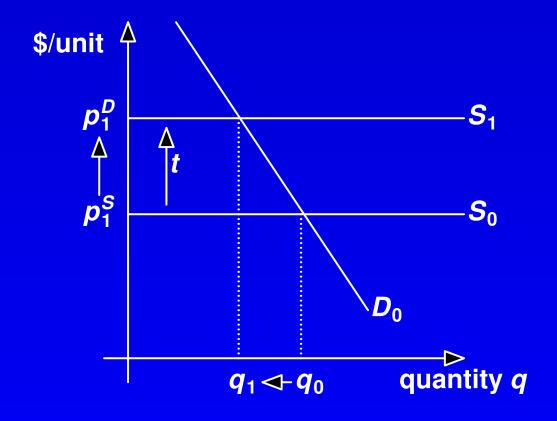
- Q: A remote electricity-generation project pays \$1/litre for its fuel oil, the costliest input to the project. The FA (financial appraisal) gives an NPV close to zero, but there is a tax on the fuel oil of 45¢/litre. What is the shadow price of fuel oil, to be used in the CBA NPV?
- A: Since the tax is a transfer (paying 45¢/litre for nothing), ignore it in a CBA. The shadow price is 55¢/litre, and the CBA NPV will be positive, because of the lower opportunity cost of fuel oil at the shadow price.

A (specific) tax on a good supplied in a competitive market:

- places a wedge between the marginal cost (supply) and price (demand)
- : the single (equilibrium) price p_0^S can no longer represent both valuation and cost

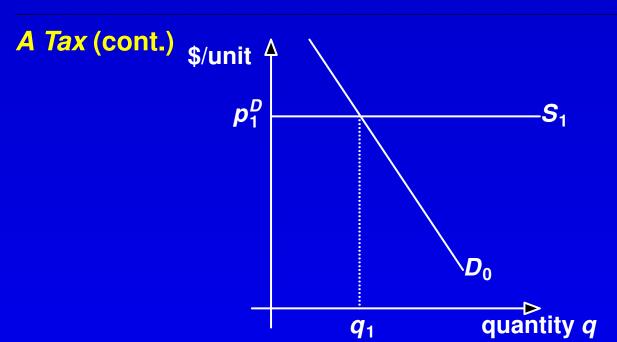

< >

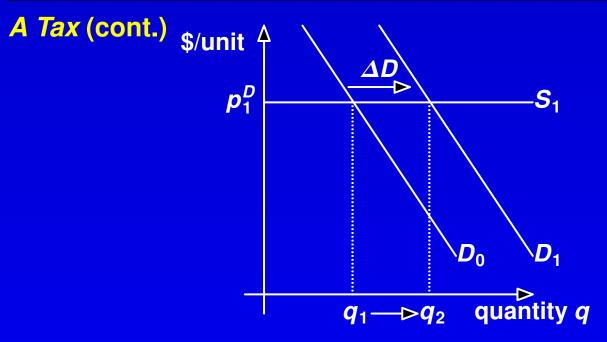
- Q: A remote electricity-generation project pays \$1/litre for its fuel oil, the costliest input to the project. The FA (financial appraisal) gives an NPV close to zero, but there is a tax on the fuel oil of 45¢/litre. What is the shadow price of fuel oil, to be used in the CBA NPV?
- A: Since the tax is a transfer (paying 45¢/litre for nothing), ignore it in a CBA. The shadow price is 55¢/litre, and the CBA NPV will be positive, because of the lower opportunity cost of fuel oil at the shadow price.

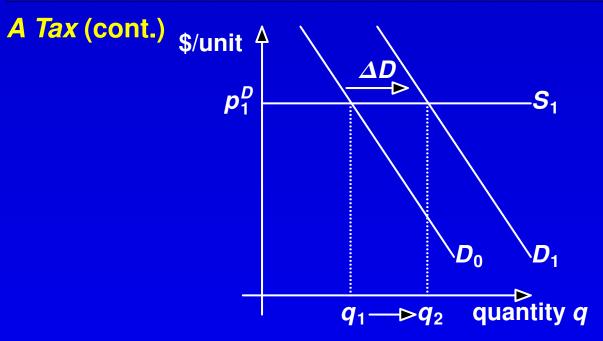

A (specific) tax on a good supplied in a competitive market:

- places a wedge between the marginal cost (supply) and price (demand)
- : the single (equilibrium) price p_0^S can no longer represent both valuation and cost
 - Suppose the good is an input into a project:

A Tax (cont.) — Infinitely elastic supply

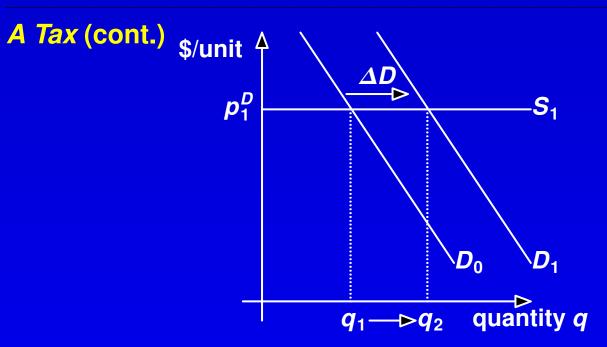


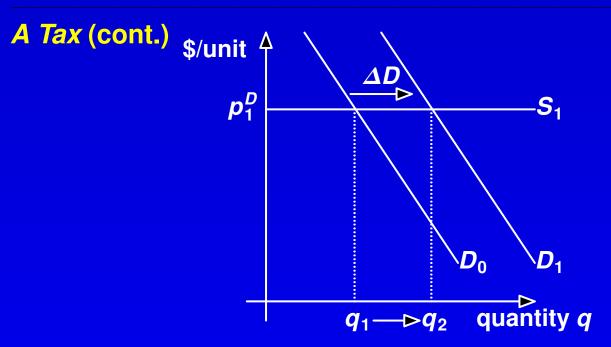

A Tax (cont.) — Infinitely elastic supply



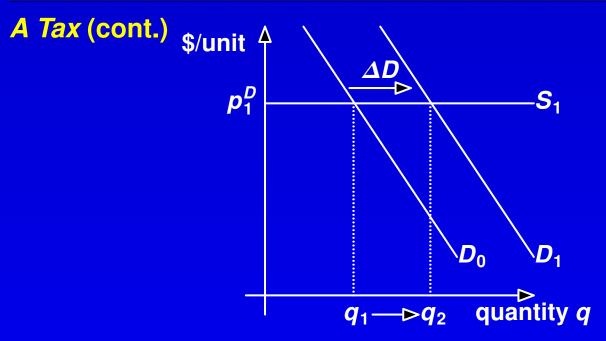
Because of the tax, the (tax-inclusive) demand price p_1^D is greater than the (tax-exclusive) supply price p_0^S .

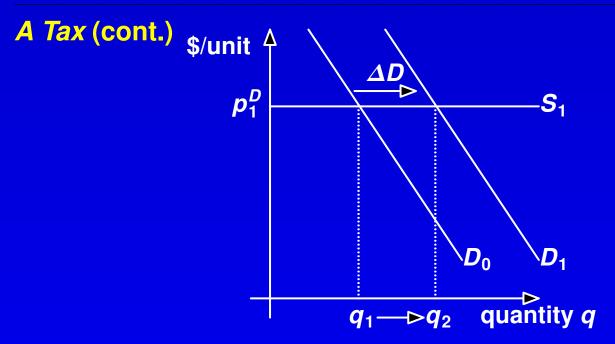
The diagram shows the Tax Revenue and the Dead-Weight Loss as the tax is imposed, pushing up the effective supply, and reducing the quantity demanded, from q_0 to q_1 .



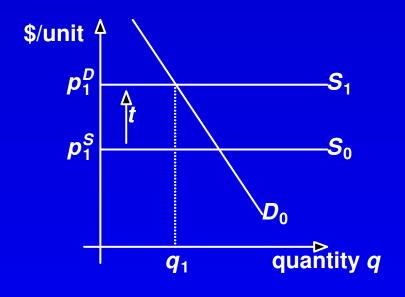


• But there is no change in p_1^D with the increase in demand.

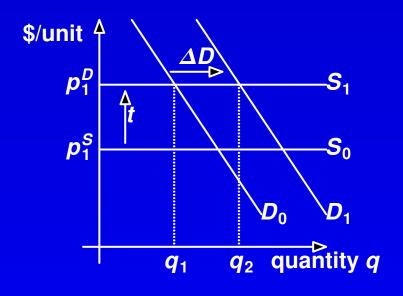

•


- But there is no change in p_1^D with the increase in demand.
- Because of the tax, the project pays the higher, tax-inclusive price p_1^D .

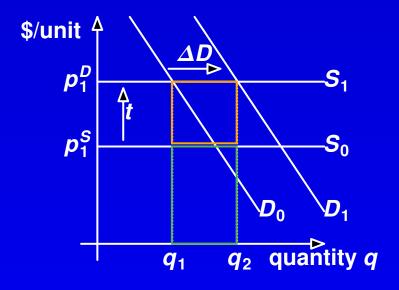
- But there is no change in p_1^D with the increase in demand.
- Because of the tax, the project pays the higher, tax-inclusive price p_1^D .
- Is this the shadow price?


- But there is no change in p_1^D with the increase in demand.
- Because of the tax, the project pays the higher, tax-inclusive price p_1^D .
- Is this the shadow price?
- Does p₁^D reflect the opportunity cost associated with the extra quantity?

- But there is no change in p_1^D with the increase in demand.
- Because of the tax, the project pays the higher, tax-inclusive price p_1^D .
- Is this the shadow price?
- Does p₁^D reflect the opportunity cost associated with the extra quantity?
- No, in general, but it depends on the purpose of the tax (i.e., revenue or "green" tax?).


A Tax (cont.) —

e.g. oil at world price plus a local excise of t:

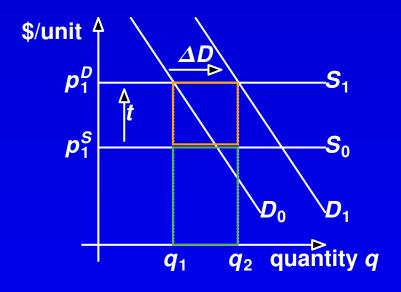

A Tax (cont.) —

e.g. oil at world price plus a local excise of t:

A Tax (cont.) —

e.g. oil at world price plus a local excise of t:

Consumers value the increase in demand (ΔD) at the tax-inclusive price p_1^D .


Suppliers' price is unchanged at p_1^S .

Shadow price = $p_1^D - t = p_1^S$ = unchanging tax-exclusive price, p_1^S .

The tax revenue (\square) is a transfer, and so changes in the tax revenue (changes in a transfer) are not changes in cost (\square).

A Tax (cont.) —

e.g. oil at world price plus a local excise of t:

Consumers value the increase in demand (ΔD) at the tax-inclusive price p_1^D .

Suppliers' price is unchanged at p_1^S .

Shadow price = $p_1^D - t = p_1^S$ = unchanging tax-exclusive price, p_1^S .

The tax revenue (\square) is a transfer, and so changes in the tax revenue (changes in a transfer) are not changes in cost (\square).

This is only the case if there is *no effect on existing purchasers of output*, since there is no increase in price with perfectly elastic supply.

 \therefore the ex-tax price p_1^S is the shadow price.

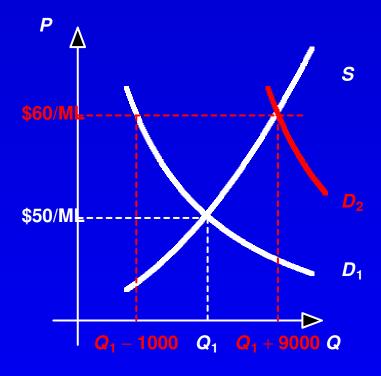
[C&B pp. 92–96; FP Ch. 2.2.2, 2.3.2; DoF 3.4]

Q:

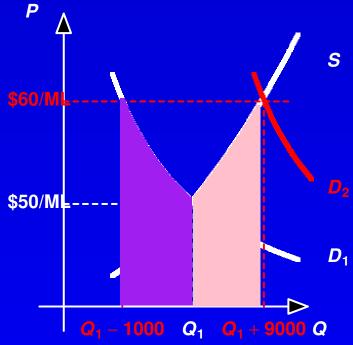
[C&B pp. 92–96; FP Ch. 2.2.2, 2.3.2; DoF 3.4]

Q: There is a local market for irrigation water. The going price is \$50/megalitre. A new cotton farm is planned, but its size and thirst for water are such that the going price of water will rise to \$60/megalitre, given its demand of 10,000 megalitres/year. At the lower price the NPV of the project is positive, but at the higher price negative. At the higher price the incumbent users cut their consumption by 1000 megalitres/year.

A:

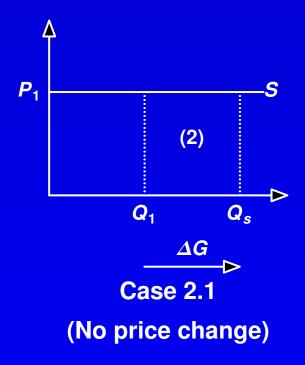

[C&B pp. 92–96; FP Ch. 2.2.2, 2.3.2; DoF 3.4]

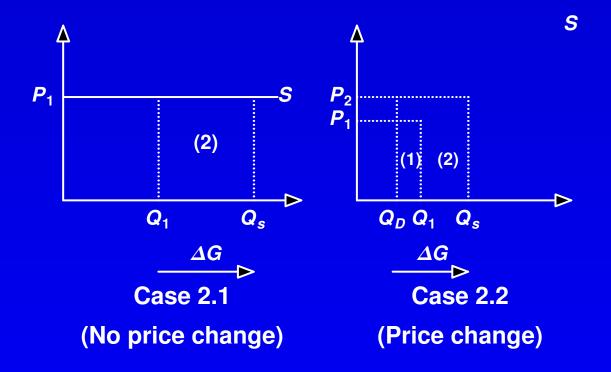
- Q: There is a local market for irrigation water. The going price is \$50/megalitre. A new cotton farm is planned, but its size and thirst for water are such that the going price of water will rise to \$60/megalitre, given its demand of 10,000 megalitres/year. At the lower price the NPV of the project is positive, but at the higher price negative. At the higher price the incumbent users cut their consumption by 1000 megalitres/year.
- A: The shadow price is between \$50 and \$60/megalitre, say \$55 (assuming linear supply and demand curves). The existing users bear a cost of $$55 \times 1000 = $55,000/year$ for the water they can no longer afford (the *displaced* water).


[C&B pp. 92–96; FP Ch. 2.2.2, 2.3.2; DoF 3.4]

- Q: There is a local market for irrigation water. The going price is \$50/megalitre. A new cotton farm is planned, but its size and thirst for water are such that the going price of water will rise to \$60/megalitre, given its demand of 10,000 megalitres/year. At the lower price the NPV of the project is positive, but at the higher price negative. At the higher price the incumbent users cut their consumption by 1000 megalitres/year.
- A: The shadow price is between \$50 and \$60/megalitre, say \$55 (assuming linear supply and demand curves). The existing users bear a cost of \$55 × 1000 = \$55,000/year for the water they can no longer afford (the *displaced* water). The shadow cost to the new farm is \$550,000/year, which includes \$55,000 to outbid the exiting users for 1000 megalitres/year, and the opportunity cost of \$495,000 to induce the increased supply of 9000 megalitres of water (the *incremental* water).

(Not to scale.)




(Not to scale.)

value of displaced water = \$55,000 cost of supplying incremental water = \$495,000 \therefore total cost = \$550,000 $\rightarrow P_S$ = \$55

For a FA, cost = $$60 \times 10,000 = $600,000$ For a CBA, cost = $$55 \times 10,000 = $550,000$

Case 2.1: (No price change)
resource opportunity cost = total social costs for
increased factor supply (2) $= P_1 \cdot \Delta G$

Case 2.2: (Price change)

resource opportunity cost = total social costs $P_1 \cdot \Delta G \qquad \text{for increased factor supply (2)}$

 + value of reduced use of inputs in the rest of society as a response to higher prices, or opportunity costs. (1)

$$P_1 \cdot \Delta G < \text{Area } [(1) + (2)] < P_2 \cdot \Delta G$$

$$\therefore P_1 < P_s < P_2$$

 \rightarrow P_s is the "effective or shadow price": $P_s \cdot \Delta G$ is the resource cost = area (1) + area (2)

Note: be conservative

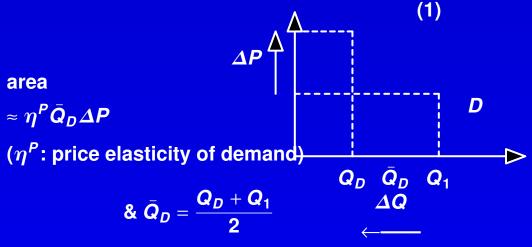
if NPV > 0 with $P_2 \sim \text{cost}$

then GO

Note: be conservative

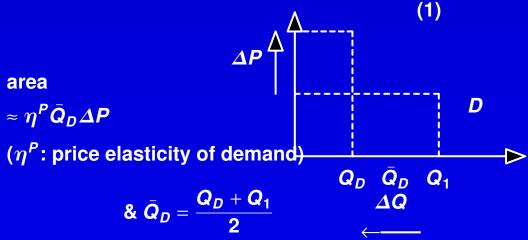
if NPV > 0 with $P_2 \sim \text{cost}$ then GO

if NPV < 0 with $P_1 \sim \text{cost}$ then STOP

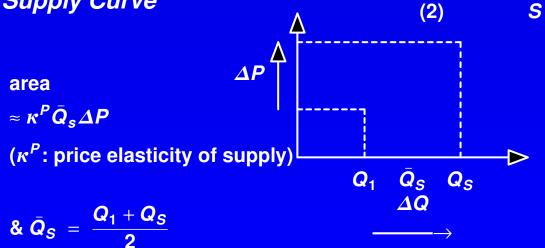

Note: be conservative

$$\label{eq:problem} \begin{array}{l} \text{if NPV} > 0 \text{ with } P_2 \sim \text{cost} & \text{then GO} \\ \text{if NPV} < 0 \text{ with } P_1 \sim \text{cost} & \text{then STOP} \\ \\ NPV\left(P_2\right) < 0 & \\ NPV\left(P_1\right) > 0 & \text{then must find } P_s \\ NPV\left(P_s\right) ? & \end{array}$$

The point is so avoid the cost and effort of deriving a better estimate of the shadow price P_s if it won't make any difference to the decision.


Some Equations and Harberger's Method

Area under Demand Curve



Some Equations and Harberger's Method

Area under Demand Curve

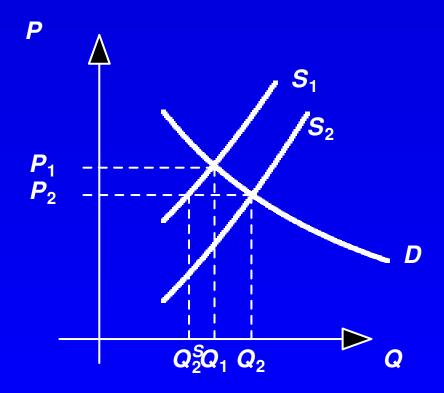
Area under Supply Curve

Case 2.2: Prices change. (NFX: Not For Exam)

From above, social cost (1) + (2) = $P_s \cdot \Delta G$

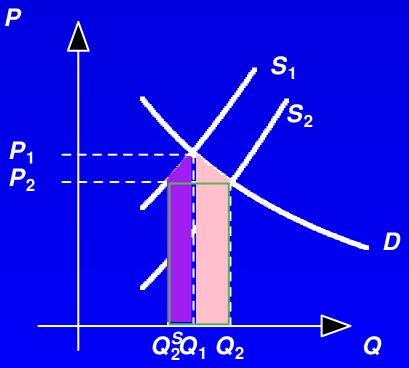
$$= \Delta P \left(\eta \bar{Q}_D + \kappa \bar{Q}_s \right)$$

$$\therefore P_{s} = \frac{\Delta P \left(\eta \bar{Q}_{D} + \kappa \bar{Q}_{S} \right)}{\Delta G} \text{ shadow price}$$


$$= \frac{\Delta P \left(\eta \frac{Q_{1} + Q_{D}}{2} + \kappa \frac{Q_{1} + Q_{S}}{2} \right)}{\Delta G}$$

$$= \frac{\Delta P \eta \left(Q_{1} + \frac{Q_{D}}{2} + \frac{Q_{S}}{2} \right)}{\Delta G} \text{ (if } \eta = \kappa \text{)}$$

— a means of obtaining the shadow price P_s from Q_1 , ΔP , η , κ , Q_D , Q_S , and ΔG .


The Project's Output Drives Prices Down

The project produces an output which is sold: FA benefit = revenue = selling price × quantity. With no change in price, same with CBA. If the output price falls, some marginal producers cut back or cease: a benefit. FA revenue is too low.

The Project's Output Drives Prices Down

The project produces an output which is sold: FA benefit = revenue = selling price × quantity. With no change in price, same with CBA. If the output price falls, some marginal producers cut back or cease: a benefit. FA revenue is too low.

value of the displaced production value of the incremental production P_1 < shadow price < P_2

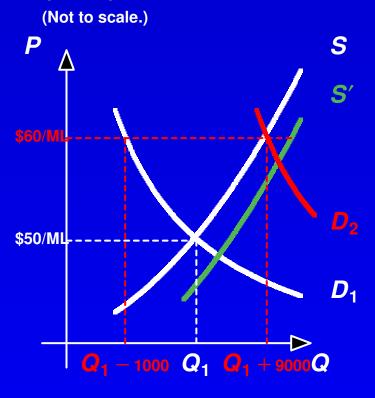
Q:

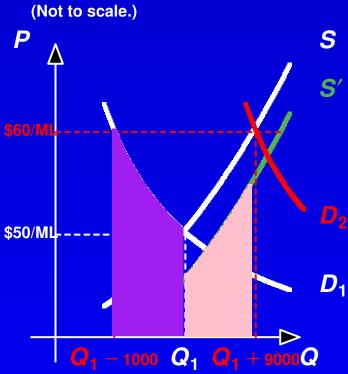
Q: In the cotton-farm example, assume that the prices of \$50 (before) and \$60/megalitre (after) include a tax of \$4/megalitre, to raise revenue. What now is the shadow cost of water to the new farm?

A:

- Q: In the cotton-farm example, assume that the prices of \$50 (before) and \$60/megalitre (after) include a tax of \$4/megalitre, to raise revenue. What now is the shadow cost of water to the new farm?
- A: We have to adjust for both the induced price increase and the tax wedge between suppliers of water and users of water.

- Q: In the cotton-farm example, assume that the prices of \$50 (before) and \$60/megalitre (after) include a tax of \$4/megalitre, to raise revenue. What now is the shadow cost of water to the new farm?
- A: We have to adjust for both the induced price increase and the tax wedge between suppliers of water and users of water.

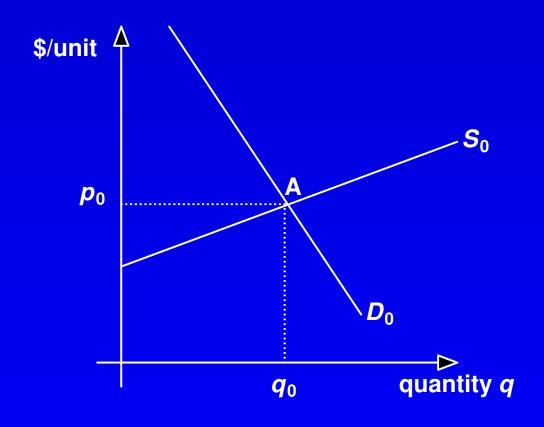

The value of the *displaced* 1000 megalitres of water for the existing farmers who cannot afford to pay \$60/megalitre is still \$55,000 year: we use the tax-inclusive price of \$55/megalitre because they evidently value this water at \$50/megalitre at least, but not at \$60/megalitre.

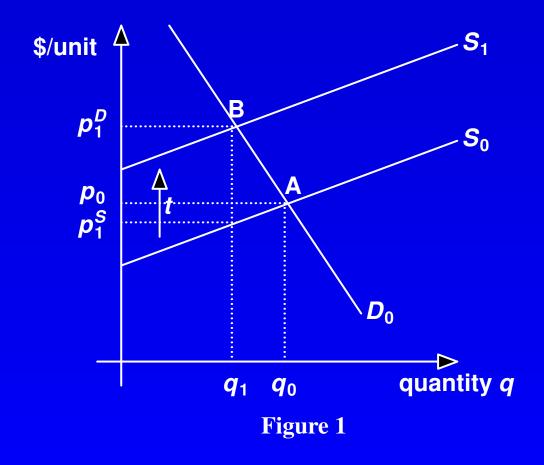

- Q: In the cotton-farm example, assume that the prices of \$50 (before) and \$60/megalitre (after) include a tax of \$4/megalitre, to raise revenue. What now is the shadow cost of water to the new farm?
- A: We have to adjust for both the induced price increase and the tax wedge between suppliers of water and users of water.

The value of the *displaced* 1000 megalitres of water for the existing farmers who cannot afford to pay \$60/megalitre is still \$55,000 year: we use the tax-inclusive price of \$55/megalitre because they evidently value this water at \$50/megalitre at least, but not at \$60/megalitre.

The shadow cost of the *incremental* water is between \$46 and \$56/megalitre (the tax-exclusive prices), since that's what the suppliers of water receive to induce them to increase supply; say $$51 \times 9000 \text{ megalitres/year} = $459,000/year.$

- ∴ Total shadow cost = \$55,000 + \$459,000 = 514,000/year.
- ∴ Shadow price = \$51.40/megalitre




value of displaced water = \$55,000 (still) cost of supplying incremental water = \$459,000 \therefore total cost = \$514,000 \rightarrow P_S = \$51.40

For a FA, cost = $$60 \times 10,000 = $600,000$ For a CBA, cost = $$51.40 \times 10,000 = $514,000$

Elastic supply

Elastic supply

In Figure 1 above:

In Figure 1 above:

• p_0, q_0 is the initial price at A

In Figure 1 above:

- p_0, q_0 is the initial price at A
- A specific tax of $p_1^D p_1^S = t$ is imposed

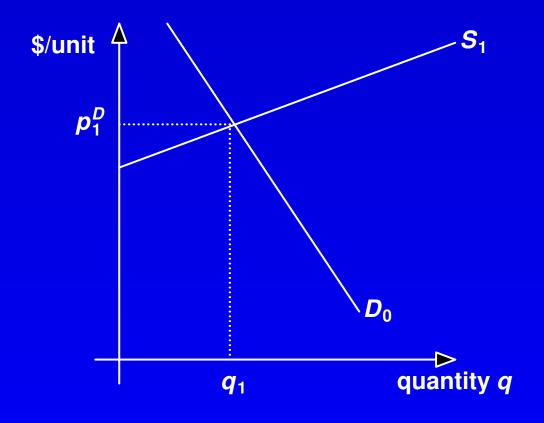
In Figure 1 above:

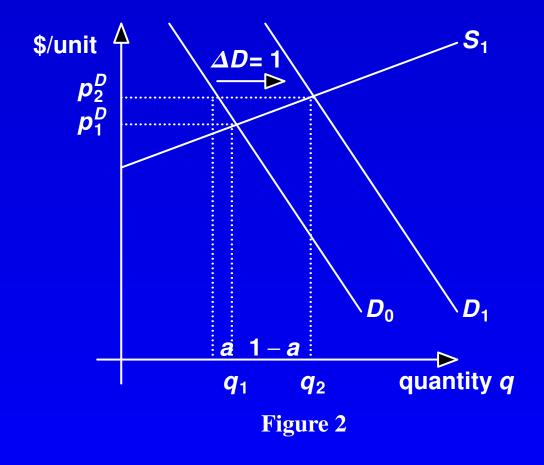
- p_0, q_0 is the initial price at A
- A specific tax of $p_1^D p_1^S = t$ is imposed
- This is perceived by consumers as a shift in supply from S₀ to S₁

In Figure 1 above:

- p_0, q_0 is the initial price at A
- A specific tax of $p_1^D p_1^S = t$ is imposed
- This is perceived by consumers as a shift in supply from S₀ to S₁
- :. buyers pay (tax-inclusive) p_1^D and producers receive (tax-exclusive) p_1^S

In Figure 1 above:


- p_0, q_0 is the initial price at A
- A specific tax of $p_1^D p_1^S = t$ is imposed
- This is perceived by consumers as a shift in supply from S₀ to S₁
- .. buyers pay (tax-inclusive) p_1^D and producers receive (tax-exclusive) p_1^S
 - The tax revenue is $(p_1^D p_1^S)q_1 = tq_1$


In Figure 1 above:

- p_0, q_0 is the initial price at A
- A specific tax of $p_1^D p_1^S = t$ is imposed
- This is perceived by consumers as a shift in supply from S₀ to S₁
- : buyers pay (tax-inclusive) p_1^D and producers receive (tax-exclusive) p_1^S
 - The tax revenue is $(p_1^D p_1^S)q_1 = tq_1$
 - Consumption falls from q_0 to q_1 (by b)

In Figure 1 above:

- p_0, q_0 is the initial price at A
- A specific tax of $p_1^D p_1^S = t$ is imposed
- This is perceived by consumers as a shift in supply from S₀ to S₁
- .. buyers pay (tax-inclusive) p_1^D and producers receive (tax-exclusive) p_1^S
 - The tax revenue is $(p_1^D p_1^S)q_1 = tq_1$
 - Consumption falls from q_0 to q_1 (by b)
 - The tax revenue is a transfer from consumers of the product to consumers in general (via tax receipts and government expenditure)

In Figure 2:

In Figure 2:

• p_1 is the initial tax-inclusive price = p_1^D

In Figure 2:

- p_1 is the initial tax-inclusive price = p_1^D
- because supply S_1 includes the tax t

In Figure 2:

- p_1 is the initial tax-inclusive price = p_1^D
- because supply S_1 includes the tax t
- The project to be evaluated shifts the demand for the input to the right from D_1 to D_2 (assume $\Delta D = 1$)

In Figure 2:

- p_1 is the initial tax-inclusive price = p_1^D
- because supply S_1 includes the tax t
- The project to be evaluated shifts the demand for the input to the right from D_1 to D_2 (assume $\Delta D = 1$)
- \therefore the tax-inclusive price is forced up from p_1 to $p_2 = p_2^D$

In Figure 2:

- p_1 is the initial tax-inclusive price = p_1^D
- because supply S_1 includes the tax t
- The project to be evaluated shifts the demand for the input to the right from D_1 to D_2 (assume $\Delta D = 1$)
- ∴ the tax-inclusive price is forced up from p_1 to $p_2 = p_2^D$
- and production goes up in total by 1 a

In Figure 2:

- p_1 is the initial tax-inclusive price = p_1^D
- because supply S_1 includes the tax t
- The project to be evaluated shifts the demand for the input to the right from D_1 to D_2 (assume $\Delta D = 1$)
- \therefore the tax-inclusive price is forced up from p_1 to $p_2 = p_2^D$
- and production goes up in total by 1 a
- The price increase induces other uses of the good to release an amount a
 which is absorbed by the project

..

In Figure 2:

- p_1 is the initial tax-inclusive price = p_1^D
- because supply S_1 includes the tax t
- The project to be evaluated shifts the demand for the input to the right from D_1 to D_2 (assume $\Delta D = 1$)
- ∴ the tax-inclusive price is forced up from p_1 to $p_2 = p_2^D$
 - and production goes up in total by 1 a
- The price increase induces other uses of the good to release an amount a which is absorbed by the project
- ∴ total usage of the input is a + 1 a = 1 in the project.

In Figure 2:

- p_1 is the initial tax-inclusive price = p_1^D
- because supply S_1 includes the tax t
- The project to be evaluated shifts the demand for the input to the right from D_1 to D_2 (assume $\Delta D = 1$)
- ∴ the tax-inclusive price is forced up from p_1 to $p_2 = p_2^D$
- and production goes up in total by 1 a
- The price increase induces other uses of the good to release an amount a which is absorbed by the project
- ∴ total usage of the input is a + 1 a = 1 in the project.
- The expansion in output takes place at the tax-exclusive cost $S_1 t$ or $p_2 t$.
- The gain to the taxpayer is simply a transfer ∴ ignore it.

< >

In Figure 2:

- p_1 is the initial tax-inclusive price = p_1^D
- because supply S₁ includes the tax t
- The project to be evaluated shifts the demand for the input to the right from D_1 to D_2 (assume $\Delta D = 1$)
- ∴ the tax-inclusive price is forced up from p_1 to $p_2 = p_2^D$
- and production goes up in total by 1 a
- The price increase induces other uses of the good to release an amount a which is absorbed by the project
- ∴ total usage of the input is a + 1 a = 1 in the project.
- The expansion in output takes place at the tax-exclusive cost $S_1 t$ or $p_2 t$.
- The gain to the taxpayer is simply a transfer ∴ ignore it.
- Existing consumers value the reduction in $m{a}$ at the tax-inclusive price $m{p}_2^D$ that they pay

...

In Figure 2:

- p_1 is the initial tax-inclusive price = p_1^D
- because supply S₁ includes the tax t
- The project to be evaluated shifts the demand for the input to the right from D_1 to D_2 (assume $\Delta D = 1$)
- ∴ the tax-inclusive price is forced up from p_1 to $p_2 = p_2^D$
- and production goes up in total by 1 a
- The price increase induces other uses of the good to release an amount a which is absorbed by the project
- ∴ total usage of the input is a + 1 a = 1 in the project.
- The expansion in output takes place at the tax-exclusive cost $S_1 t$ or $p_2 t$.
- The gain to the taxpayer is simply a transfer ∴ ignore it.
- Existing consumers value the reduction in $m{a}$ at the tax-inclusive price $m{p}_2^D$ that they pay
- ... unit social cost = a(gross-of-tax price) + (1-a)(net-of-tax price)= $a p_2^D + (1-a)(p_2^D - t) = shadow price$

Hence shadow price = a weighted average of the tax-inclusive and tax-exclusive prices, p_2 and $p_2 - t$, respectively.

How do we calculate the weights a and 1-a?:

$$\eta_D =$$

How do we calculate the weights a and 1-a?:

 η_D = initial price elasticity of demand at p_1

 $\eta_D =$

How do we calculate the weights a and 1-a?:

$$\eta_D$$
 = initial price elasticity of demand at p_1

$$\eta_D = -\frac{a/q_1}{(p_2 - p_1)/p_1}$$
 (using initial-point convention)

How do we calculate the weights a and 1-a?:

 η_D = initial price elasticity of demand at p_1

$$\eta_D = -\frac{a/q_1}{(p_2 - p_1)/p_1}$$
 (using initial-point convention)

= % change in quantity ÷ % change in price

How do we calculate the weights a and 1-a?:

 η_D = initial price elasticity of demand at p_1

$$\eta_D = -\frac{a/q_1}{(p_2 - p_1)/p_1}$$
 (using initial-point convention)

= % change in quantity ÷ % change in price

Similarly:

$$\kappa_{s} =$$

How do we calculate the weights a and 1-a?:

 η_D = initial price elasticity of demand at p_1

$$\eta_D = -\frac{a/q_1}{(p_2 - p_1)/p_1}$$
 (using initial-point convention)

= % change in quantity ÷ % change in price

Similarly:

$$\kappa_S$$
 = supply elasticity = $\frac{(1-a)/q_1}{(p_2-p_1)/p_1}$

How do we calculate the weights a and 1-a?:

 η_D = initial price elasticity of demand at p_1

$$\eta_D = -\frac{a/q_1}{(p_2 - p_1)/p_1}$$
 (using initial-point convention)

= % change in quantity ÷ % change in price

Similarly:

$$\kappa_S$$
 = supply elasticity = $\frac{(1-a)/q_1}{(p_2-p_1)/p_1}$

Hence
$$\frac{\eta_D}{\kappa_S} = -\frac{a}{1-a}$$

and
$$\therefore a = -\frac{\eta_D}{\kappa_S - \eta_D}$$

and Shadow Price = $ap_2 + (1-a)(p_2-t)$:

How do we calculate the weights a and 1-a?:

 η_D = initial price elasticity of demand at p_1

$$\eta_D = -\frac{a/q_1}{(p_2 - p_1)/p_1}$$
 (using initial-point convention)

= % change in quantity ÷ % change in price

Similarly:

$$\kappa_S$$
 = supply elasticity = $\frac{(1-a)/q_1}{(p_2-p_1)/p_1}$

Hence
$$\frac{\eta_D}{\kappa_S} = -\frac{a}{1-a}$$

and
$$\therefore a = -\frac{\eta_D}{\kappa_S - \eta_D}$$

and Shadow Price = $ap_2 + (1-a)(p_2-t)$:

for an increased demand for the input

< >

How do we calculate the weights a and 1-a?:

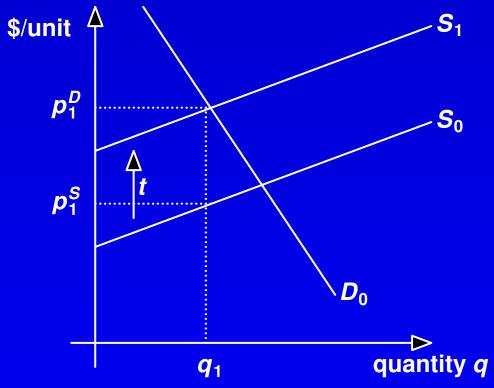
 η_D = initial price elasticity of demand at p_1

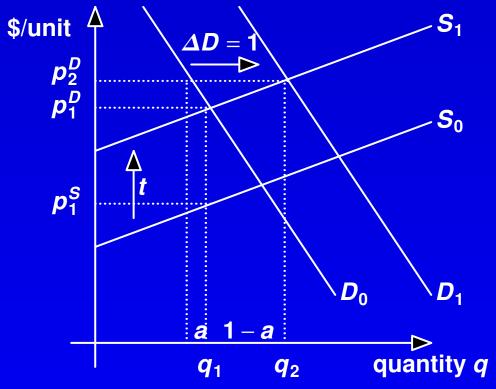
$$\eta_D = -\frac{a/q_1}{(p_2 - p_1)/p_1}$$
 (using initial-point convention)

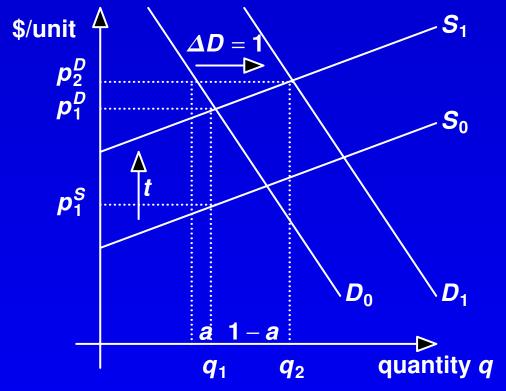
= % change in quantity ÷ % change in price

Similarly:

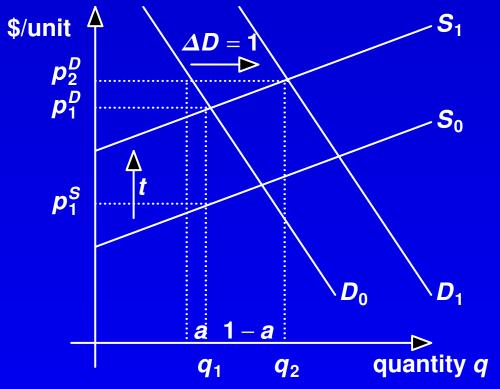
$$\kappa_S$$
 = supply elasticity = $\frac{(1-a)/q_1}{(p_2-p_1)/p_1}$

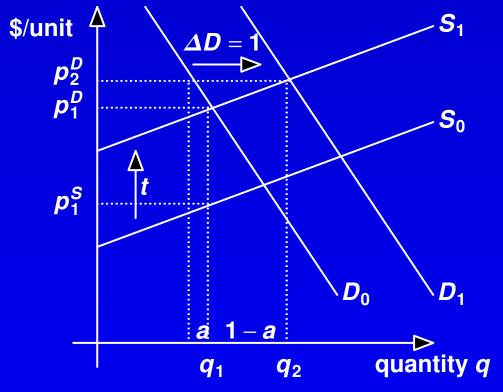

Hence
$$\frac{\eta_D}{\kappa_S} = -\frac{a}{1-a}$$


and
$$\therefore a = -\frac{\eta_D}{\kappa_S - \eta_D}$$

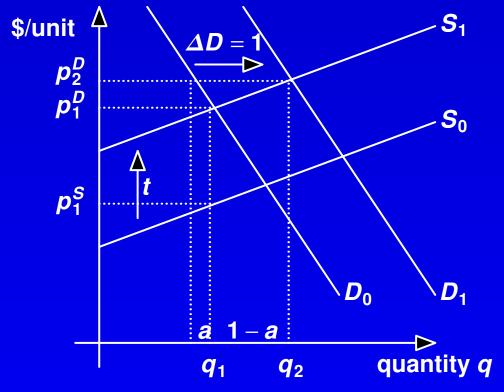

and Shadow Price = $ap_2 + (1-a)(p_2-t)$:

- for an increased demand for the input
- also for an increase in supply of the good if the project results in more of the good

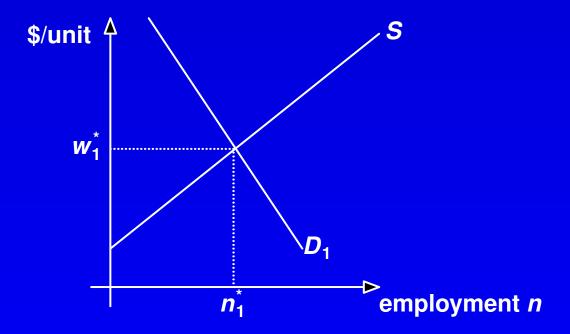




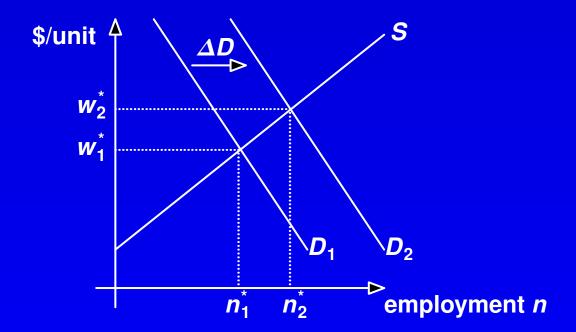
• Valuation of the increased supply 1-a depends on S_0 (taxexclusive)



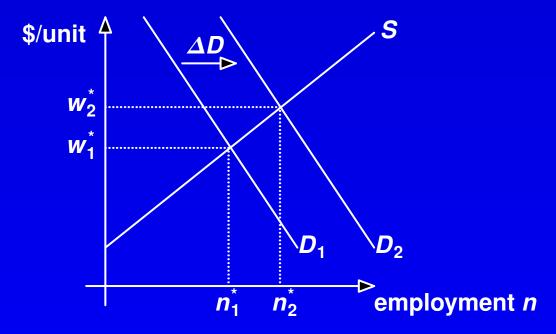
- Valuation of the increased supply 1-a depends on S_0 (taxexclusive)
- Valuation of the demand shifted to the project a depends on the shaded area under D_1


- Valuation of the increased supply 1-a depends on S_0 (taxexclusive)
- Valuation of the demand shifted to the project a depends on the shaded area under D_1
- Figure 3 adds the tax-exclusive supply curve S₀ to Figure 2

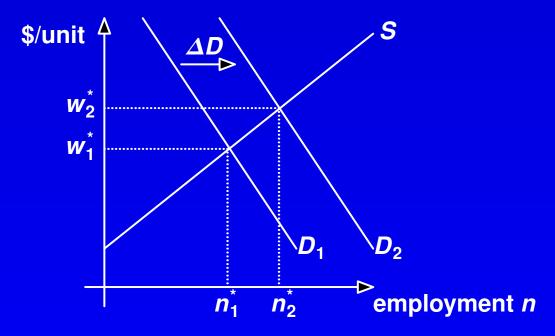
< >



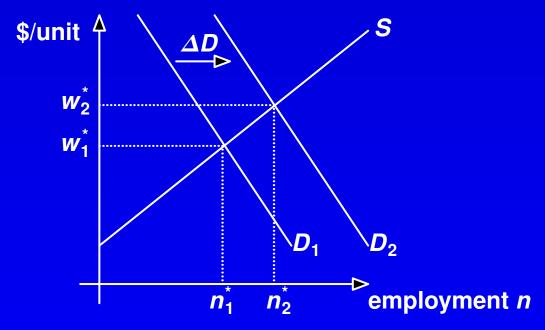
- Valuation of the increased supply 1-a depends on S_0 (taxexclusive)
- Valuation of the demand shifted to the project a depends on the shaded area under D_1
- Figure 3 adds the tax-exclusive supply curve S₀ to Figure 2
- So $\Delta D \times p_S$ = the sum of the two areas


 In a competitive labour market the shadow price of labour is simply the market wage:

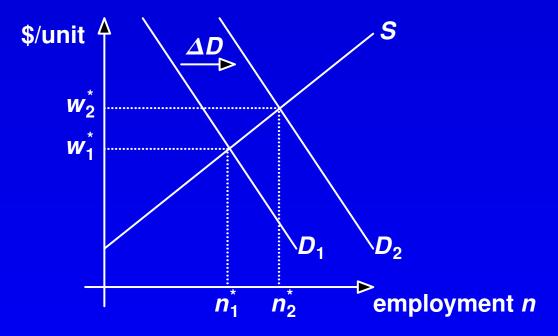
 In a competitive labour market the shadow price of labour is simply the market wage:


 In a competitive labour market the shadow price of labour is simply the market wage:

• But the project shifts the demand for labour from D_1 to D_2


< >

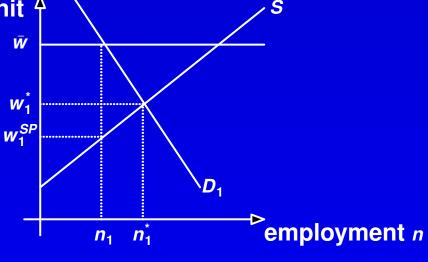
 In a competitive labour market the shadow price of labour is simply the market wage:

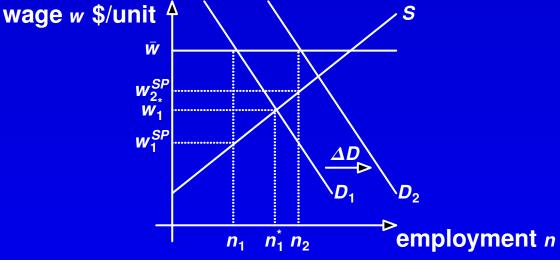

- But the project shifts the demand for labour from D_1 to D_2
- more jobs are "created" $(n_2^* n_1^*)$

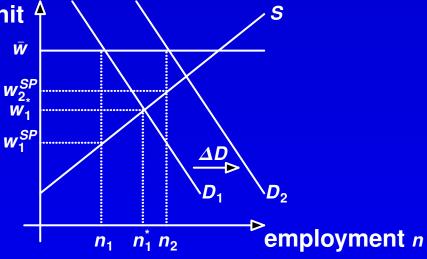
 In a competitive labour market the shadow price of labour is simply the market wage:

- But the project shifts the demand for labour from D₁ to D₂
- more jobs are "created" $(n_2^* n_1^*)$
- workers move from lower-paid to higher-paid jobs

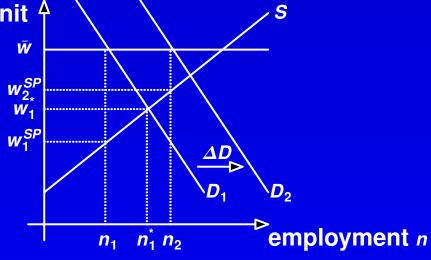
 In a competitive labour market the shadow price of labour is simply the market wage:

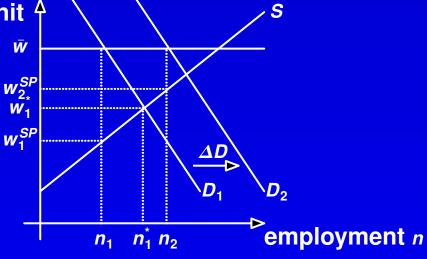

- But the project shifts the demand for labour from D₁ to D₂
- more jobs are "created" $(n_2^* n_1^*)$
- workers move from lower-paid to higher-paid jobs
- and there is no "involuntary" unemployment


 D_1

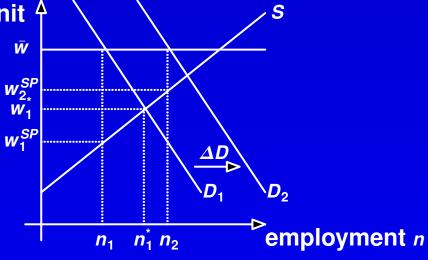

 n_1^*

employment n

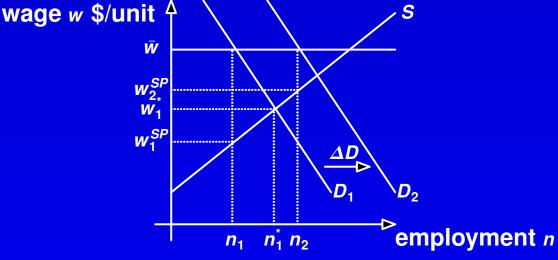

 w_1^*



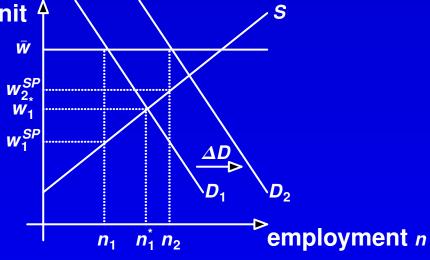
• The projects shifts out demand for labour from D_1 to D_2

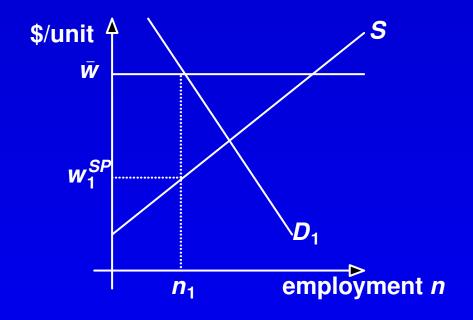


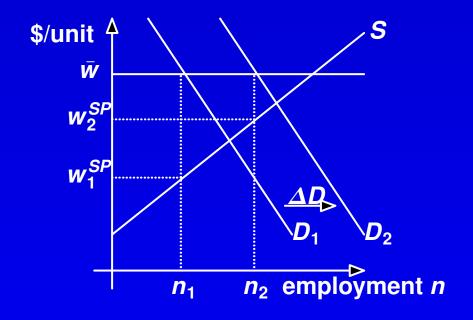
- The projects shifts out demand for labour from D_1 to D_2
- If the additional workers who receive jobs value leisure at w_1^{SP} , then w_1^{SP} is their shadow wage

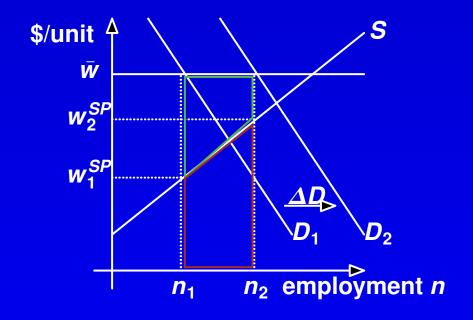


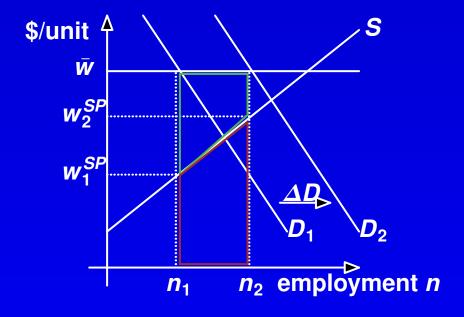
- The projects shifts out demand for labour from D_1 to D_2
- If the additional workers who receive jobs value leisure at w_1^{SP} , then w_1^{SP} is their shadow wage
- New employed workers may have a higher value of leisure w_2^{SP} than w_1^{SP}


••

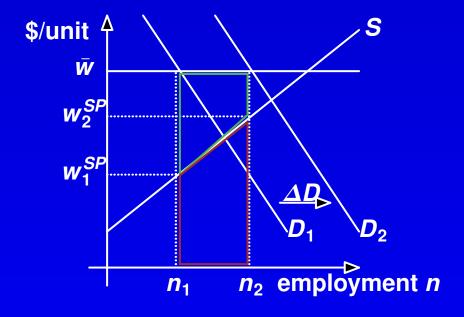

- The projects shifts out demand for labour from D_1 to D_2
- If the additional workers who receive jobs value leisure at w_1^{SP} , then w_1^{SP} is their shadow wage
- New employed workers may have a higher value of leisure w_2^{SP} than w_1^{SP}
- : this higher average value w_2^{SP} should be used for them

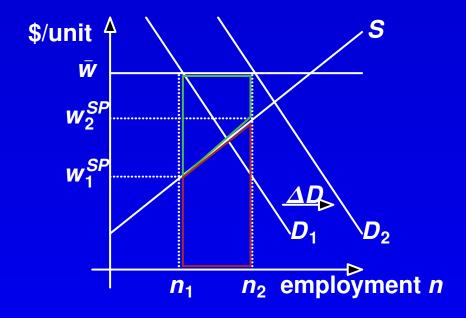



- The projects shifts out demand for labour from D_1 to D_2
- If the additional workers who receive jobs value leisure at w_1^{SP} , then w_1^{SP} is their shadow wage
- New employed workers may have a higher value of leisure w_2^{SP} than w_1^{SP}
- : this higher average value w_2^{SP} should be used for them
 - The average social cost (shadow price) is lower than the market price \bar{w}

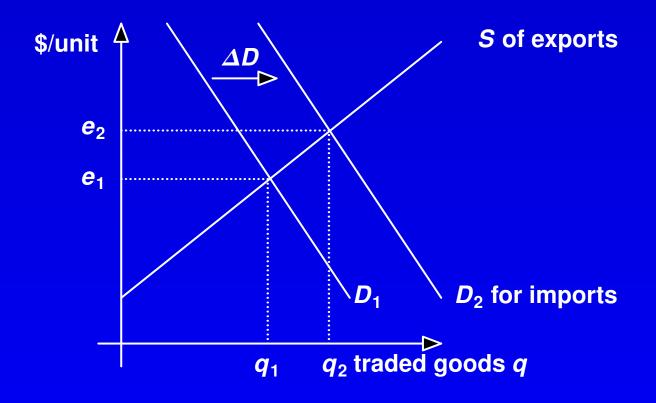


- The projects shifts out demand for labour from D_1 to D_2
- If the additional workers who receive jobs value leisure at w_1^{SP} , then w_1^{SP} is their shadow wage
- New employed workers may have a higher value of leisure w_2^{SP} than w_1^{SP}
- : this higher average value w_2^{SP} should be used for them
 - The average social cost (shadow price) is lower than the market price \bar{w}
 - Why? Because there is unemployment at minimum wage \bar{w} .




• The change in the wage bill = $\bar{w} \times (n_2 - n_1)$; in F.A. it was the "rectangle" (brown + green).

• The change in the wage bill = $\bar{w} \times (n_2 - n_1)$; in F.A. it was the "rectangle" (brown + green).


• The change in the social cost = $\frac{w_1^{SP} + w_2^{SP}}{2} (n_2 - n_1)$: brown area

< >

- The change in the wage bill = $\bar{w} \times (n_2 n_1)$; in F.A. it was the "rectangle" (brown + green).
- The change in the social cost = $\frac{w_1^{SP} + w_2^{SP}}{2} (n_2 n_1)$: brown area
- The opportunity cost of getting a job is less than \bar{w} , which is reflected in the supply curve. $w^{SP} = \frac{1}{2} (w_1^{SP} + w_2^{SP})$

1.5 Example 5: Foreign exchange [C&B Ch. 8; FP Ch. 9.2; DoF 3.8]

In the figure:

.

In the figure:

 the vertical axis shows the real price of traded goods = the inverse of the exchange rate.

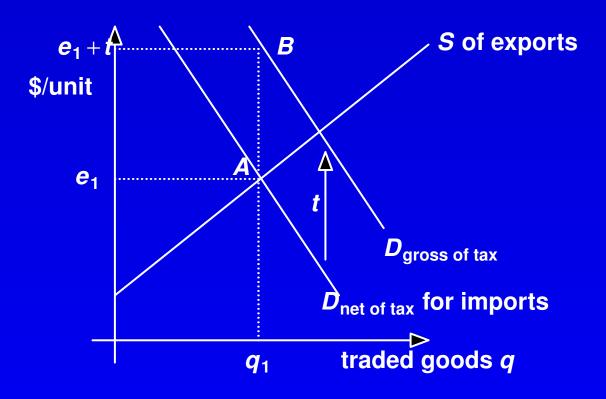
In the figure:

- the vertical axis shows the real price of traded goods = the inverse of the exchange rate.
- the supply and demand for foreign currency is initially in balance at q_1 , e_1 .

In the figure:

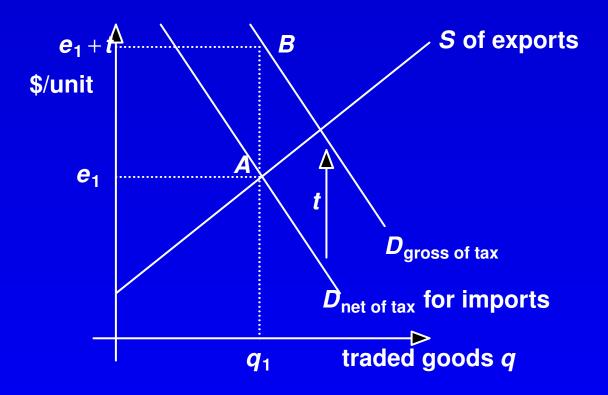
- the vertical axis shows the real price of traded goods = the inverse of the exchange rate.
- the supply and demand for foreign currency is initially in balance at q_1 , e_1 .
- if the demand for imports by Australians goes up by ΔD , the real price of traded goods will cost more

In the figure:

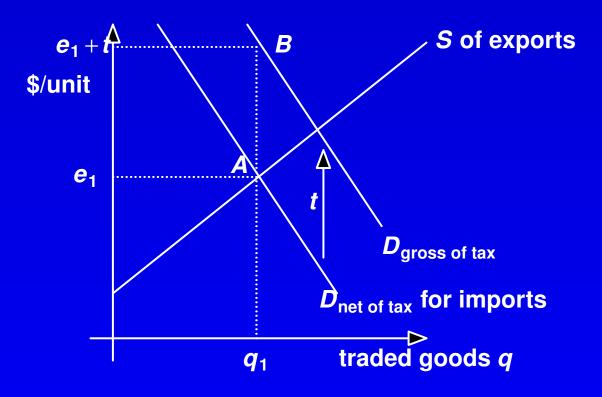

- the vertical axis shows the real price of traded goods = the inverse of the exchange rate.
- the supply and demand for foreign currency is initially in balance at q_1 , e_1 .
- if the demand for imports by Australians goes up by ΔD , the real price of traded goods will cost more
- the \$A will devalue in terms of foreign currency as the real price of imports rises (and e rises)

In the figure:

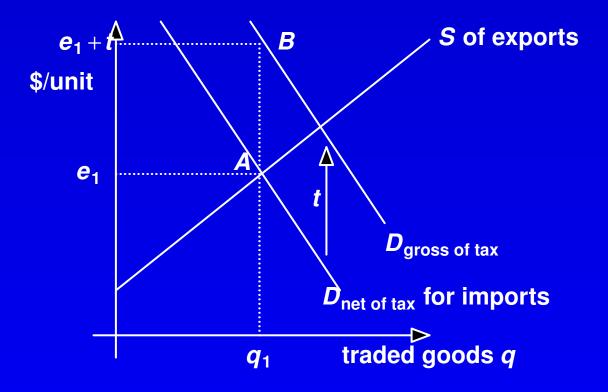
- the vertical axis shows the real price of traded goods = the inverse of the exchange rate.
- the supply and demand for foreign currency is initially in balance at q_1 , e_1 .
- if the demand for imports by Australians goes up by ΔD , the real price of traded goods will cost more
- the \$A will devalue in terms of foreign currency as the real price of imports rises (and e rises)
- Australian exporters will gain more revenue in \$A terms, to encourage additional exports


In the figure:

- the vertical axis shows the real price of traded goods = the inverse of the exchange rate.
- the supply and demand for foreign currency is initially in balance at q_1 , e_1 .
- if the demand for imports by Australians goes up by ΔD , the real price of traded goods will cost more
- the \$A will devalue in terms of foreign currency as the real price of imports rises (and e rises)
- Australian exporters will gain more revenue in \$A terms, to encourage additional exports
- ∴ an upwards sloping supply curve S.

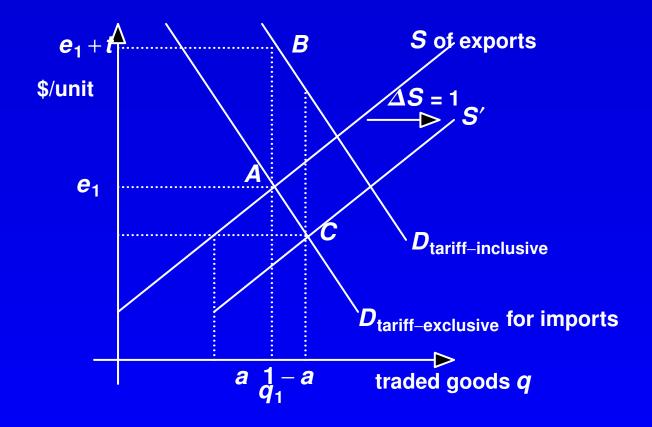

A tariff (tax) of t is now imposed on imports

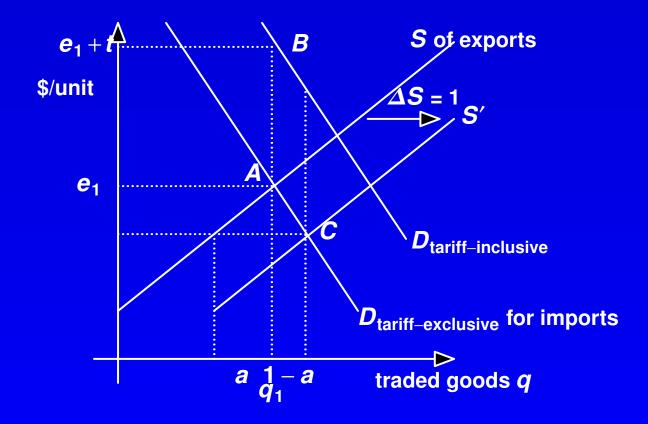
< >


A tariff (tax) of t is now imposed on imports

A represents the equilibrium value of exports

A tariff (tax) of t is now imposed on imports


- A represents the equilibrium value of exports
- B is the tariff-inclusive value of imports


A tariff (tax) of t is now imposed on imports

- A represents the equilibrium value of exports
- B is the tariff-inclusive value of imports
- measured in terms of foreign currency, the value of imports and exports is equal.

Project now increases our supply of foreign exchange ΔS via additional exports. Let $\Delta S = 1$.

Project now increases our supply of foreign exchange ΔS via additional exports. Let $\Delta S = 1$.

this situation is similar to the tax example (p.5-12)

< >

• increased exports facilitates increased imports valued at $e_1 + t$ (area base 1 - a)

- increased exports facilitates increased imports valued at $e_1 + t$ (area base 1 a)
- increased new exports displaces traditional exports a valued at net-tax price of e₁

- increased exports facilitates increased imports valued at $e_1 + t$ (area base 1 a)
- increased new exports displaces traditional exports a valued at net-tax price of e₁
- . shadow price =

- increased exports facilitates increased imports valued at $e_1 + t$ (area base 1 a)
- increased new exports displaces traditional exports a valued at net-tax price of e₁
- . shadow price = a (post-tax price of traded goods) + (1-a)(pre-tax price of traded goods)

- increased exports facilitates increased imports valued at $e_1 + t$ (area base 1 a)
- increased new exports displaces traditional exports a valued at net-tax price of e₁
- . shadow price = a (post-tax price of traded goods) + (1-a)(pre-tax price of traded goods)
- shadow exchange rate will exceed market exchange rate, since exports are under-valued by the market exchange rate. — The Gregory Thesis or Dutch Disease.

This lecture introduced the use of market prices — suitably adjusted to become *shadow prices* which accurately reflect the opportunity cost of the goods and services used by the project, whether produced in response to the project's demand (*incremental*) or bid away from existing uses (*displaced*) — in CBA studies.

Remember: No price change .. no displacement

<

This lecture introduced the use of market prices — suitably adjusted to become *shadow prices* which accurately reflect the opportunity cost of the goods and services used by the project, whether produced in response to the project's demand (*incremental*) or bid away from existing uses (*displaced*) — in CBA studies.

Remember: No price change .. no displacement

 How to adjust market prices for taxes (which are transfers, by and large).

This lecture introduced the use of market prices — suitably adjusted to become *shadow prices* which accurately reflect the opportunity cost of the goods and services used by the project, whether produced in response to the project's demand (*incremental*) or bid away from existing uses (*displaced*) — in CBA studies.

Remember: No price change .. no displacement

- How to adjust market prices for taxes (which are transfers, by and large).
- How to adjust market prices for price changes caused by the project.
 When input prices rise, FA overstates the cost.
 When output prices fall, FA understates the benefit.

This lecture introduced the use of market prices — suitably adjusted to become *shadow prices* which accurately reflect the opportunity cost of the goods and services used by the project, whether produced in response to the project's demand (*incremental*) or bid away from existing uses (*displaced*) — in CBA studies.

Remember: No price change .. no displacement

- How to adjust market prices for taxes (which are transfers, by and large).
- How to adjust market prices for price changes caused by the project.
 When input prices rise, FA overstates the cost.
 When output prices fall, FA understates the benefit.
- How to adjust market prices for regulated prices, such as minimum wages with unemployment among the workers the project will hire. Shadow wages.