EXERCISES 151

When players in a simultaneous-move game have a continuous range of actions
to choose, best-response analysis yields mathematical best-response rules that
can be solved simultaneously to obtain Nash equilibrium strategy choices. The
best-response rules can be shown on a diagram in which the intersection of the
two curves represents the Nash equilibrium. Firms choosing price or quantity
from a large range of possible values and political parties choosing campaign
advertising expenditure levels are examples of games with continuous strategies.

The results of laboratory tests of the Nash equilibrium concept show that a-
common cultural background is essential for coordinating in games with multiple
equilibria. Repeated play of some games shows that players can learn from expe-
rience and begin to choose strategies that approach Nash equilibrium choices.
Further, predicted equilibria are accurate only when the experimenters’ assump-
tions match the true preferences of players. Real-world applications of game the-
ory have helped economists and political scientists, in particular, to understand
important consumer, firm, voter, legislature, and government behaviors.

Theoretical criticisms of the Nash equilibrium concept have argued that the
concept does not adequately account for risk, that it is of limited use because
many games have multiple equilibria, and that it cannot be justified on the basis
of rationality alone. In many cases, a better description of the game and its pay-
off structure or a refinement of the Nash equilibrium concept can lead to better
predictions or fewer potential equilibria. The concept of rationalizability relies
on the elimination of strategies that are never a best response to obtain a set of
rationalizable outcomes. When a game has a Nash equilibrium, that outcome
will be rationalizable; but rationalizability also allows one to predict equilibrium
outcomes in games that have no Nash equilibria.

KEY TERMS

best-response curves (127) rationalizability (145)
best-response rule (124) rationalizable (145)
continuous strategy (124) refinement (143)

never a best response (145)

EXERCISES

1. In the political campaign advertising game in Section 1.B, party L chooses
an advertising budget, x (milliens of dollars), and party R similarly chooses a
budget, y (millions of dollars). We showed there that the best-response rules
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in that game are y = Vx - x, for party R, and x = V'y — y for party L. Use
these best-response rules to verify that the Nash equilibrium advertising
budgets are x = y = 1/4, or $250,000.

2. The bistro game of Figure 5.1 defines demand functions for Xavier’'s (Q,)
and Yvonne’s (Q,) as Q, = 44 — 2 P, + P, and Q, = 44 — 2 P, + P,. Profits for
each firm depend, in addition, on their costs of serving each customer. Sup-
pose, here, that Yvonne's is able to reduce its costs to $6 per customer by re-
distributing the serving tasks and laying off several servers; Xavier's
continues to incur a cost of $8 per customer. _

(a) Recalculate the best-response rules and the Nash equilibritim prices for
the two firms, given the change in the cost conditions.
(b} Graph the two best-response curves and describe the differences be-
tween your graph and Figure 5.1. In particular, which curve has moved
and by how much? Can you account for the changes in the diagram?

3. Yuppietown has two food stores, La Boulangerie, which sells bread, and La
Fromagerie, which sells cheese. It costs $1 to make a loaf of bread and $2 to
make a pound of cheese. If La Boulangerie’s price is P, dollars per loaf of
bread and La Fromagerie’s price is P, dollars per pound of cheese, their re-
spective weekly sales, Q, thousand loaves of bread and Q, thousand pounds
of cheese, are given by the following equations:

Q1:10_P1_0.5P2, Q2=].2_0.5P1_P2.

(a) Find the two stores’ best-response rules, illustrate the best-response
curves, and find the Nash equilibrium prices in this game.

(b) Suppose that the two stores collude and set prices jointly to maximize
the sum of their profits. Find the joint profit-maximizing prices for the

~ stores. '

(c) Provide a short intuitive explanation for the differences between the
Nash equilibrium prices and those that maximize joint profit. Why is
joint profit maximization not a Nash equilibrium?

(d) In this probléem, bread and cheese are mutual complements. They are
often consumed together; that is why a drop in the price of one in-
creases the sales of the other. The products in our bistro example in
Section 1.A are substitutes for each other. How does this difference ex-
plain the differences between your findings for the best-response rules,
the Nash equilibrium prices, and the joint profit-maximizing prices in
this question, and the corresponding entities in the bistro example in
the text?

5. Two carts selling coconut milk (from the coconut) are located at 0 and 1, 1
~ mile apart on the beach in Rio de Janeiro. (They are the only two coconut
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milk carts on the beach.) The carts—Cart 0 and Cart 1—charge prices p, and
Py, respectively, for each coconut. Their customers are the beach goers uni-
formly distributed along the beach between 0 and 1. Each beach goer will
purchase one coconut milk in the course of her day at the beach and, in ad-
dition to the price, each will incur a transport cost of 0.5 times d?, where d is
the distance (in miles) from her beach blanket to the coconut cart. In this
system, Cart 0 sells to all of the beach goers located between 0 and x, and
Cart 1 sells to all of the beach goers located between x and 1, where x is the
location of the beach goer who pays the same total price if she goes to 0 or 1.
Location x is then defined by the expression

po+ 0.5x% = p, + 0501 ~ )2

The two carts will set their prices to maximize their bottom-line profit fig-
ures, B; profits are determined by revenue (the cart’s price times its number
of customers) and cost (the carts each incur a cost of $0.25 per coconut
times the number of coconuts sold).

(@) Determine the expression for the number of customers served at each
cart. (Recall that Cart 0 gets the customers between 0 and x, or just x,
while Cart 1 gets the customers between xand 1, or 1 — x.)

(b) Write out profit functions for the two carts and find the two best-
response rules for their prices.

(c) Graph the best-response rules, and then calculate (and show on your
graph) the Nash equilibrium price level for coconuts on the beach.

. The game illustrated in Figure 5.3 has a unique Nash equilibrium in pure

strategies. However, all nine outcomes in that game are rationalizable. Con-
firm this assertion, explaining your reasoning for each outcome.

. The game illustrated in Figure 5.4 has a unique Nash equilibrium in pure

strategies. Find that Nash equilibrium, and then show that it is also the
unique rationalizable outcome in that game.

. Section 4.B describes a fishing game played in a small coastal town. When

the response rules for the two boats have been derived, rationalizability can
be used to justify the Nash equilibrium in the game. In the description in the
text, we take the process of narrowing down strategies that can never be best
responses through three rounds. By the third round, we know that X (the
number of barrels of fish brought home by boat 1) must be at least 9, and
that ¥ (the number of barrels of fish brought home by boat 2) must be at
least 4.5. The narrowing process in that round restricted X to the range be-
tween 9 and 13.75 while restricting Yto the range between 4.5 and 7.5. Take
this process of narrowing through one additional (fourth) round and show
the reduced ranges of Xand Ythat are obtained at the end of the round.
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9.

10.

Nash equilibrium through rationalizability can be achieved in games with up-
ward-sloping best-response curves if the rounds of eliminating never-best-
response strategies begin with the smallest possible values. Consider the
pricing game between Xavier's Tapas Bar and Yvonne's Bistro that is illus-
trated in Figure 5.1. Use Figure 5.1 and the best-response rules from which it

- 1s derived to begin rationalizing the Nash equilibrium in that game. Start with

the lowest possible prices for the two firms and describe (at least) two rounds
of narrowing the set of rationalizable prices toward the Nash equilibrium.

Optional, requires calculus Recall the political campaign advertising exam-
ple from Section 1.B concerning parties L and R. In that example, when
L spends $x million on advertising and R spends $y million, L gets a share
x/(x + y) of the votes and R gets y/(x + y). We also mentioned that two types
of asymmetries can arise between the parties in that model. One party—say,
R—may be able to advertise at a lower cost or R's advertising dollars may be
more effective in generating votes than L’s. To allow for both possibilities,
we can write the payoff functions of the two parties as

ky
x+ ky

1’4 —x and VW=

X

X+ ky

These payoff functions show that R has an advantage in the relative effec-

tiveness of its ads when k is high and that R has an advantage in the cost of

its ads when cis low. _

(a) Use the payoff functions to derive the best-response functions for R
(which chooses y) and L (which chooses x).

(b) Use your calculator or your computer to graph these best-response
functions when k = 1 and ¢ = 1. Compare the graph with the one for the
case in which k = 1 and ¢ = 0.8. What Is the effect of having an advan-
tage in the cost of advertising?

(c) Compare the graph from part b, when k = 1 and ¢ = 1 with the one for
the case in which k = 2 and ¢ = 1. What is the effect of having an advan-
tage in the effectiveness of advertising dollars?

(d) Solve the best-response functions that you found in part a, jointly for x
and y, to show that the campaign advertising expenditures in Nash
equilibrium are

__ck __k
(c+ k)? Y

e+ R

(e) Let k = 1 in the equilibrium spending level equations and show how the
two equilibrium spending levels vary with changes in c. The let ¢ = 1
and show how the two equilibrium spending levels vary with changes in

k. Do your answers support the effects that you observed in parts b and
c of this exercise? ‘



