
Utility

Topics:

1. Decisions Under Uncer tainty

— Cer tain Equiv alents

2. Expected Utility

3. Constant Absolut e Risk Aversion

4. Eliciting Utility Functions

5. Choosing Among Lott eries

6. Appendix: Approximating a Certain Equiv alent

7. Appendix: Finance.

(See Dixit & Skeat h: 2nd ed. pp. 228−230, 300−303;
3rd ed. pp. 258−261, 358−361.)
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1. Decisions with Uncer tainty

Choose among the four lott eries with unknown probabilities
on the branches: uncertainty —

A

$25 $150 $600

B

$80 $90 $98

C

−$20 $0 $100 $1000

D

$105 −$100

(Write down your answer.)
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Five possible answers:

There are several possibilities:

1.
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1. The extreme pessimist: choose the lott ery wit h the
highes t minimum payoff.
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Five possible answers:

There are several possibilities:

1. The extreme pessimist: choose the lott ery wit h the
highes t minimum payoff.

known as “maxmin” decision making, from
maximising the minimum payoff.

∴ would result in choice of lott ery B.

2.
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Five possible answers:

There are several possibilities:

1. The extreme pessimist: choose the lott ery wit h the
highes t minimum payoff.

known as “maxmin” decision making, from
maximising the minimum payoff.

∴ would result in choice of lott ery B.

2. The extreme optimis t: choose the lott ery wit h the
highes t maximum payoff.
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Five possible answers:

There are several possibilities:

1. The extreme pessimist: choose the lott ery wit h the
highes t minimum payoff.

known as “maxmin” decision making, from
maximising the minimum payoff.

∴ would result in choice of lott ery B.

2. The extreme optimis t: choose the lott ery wit h the
highes t maximum payoff.

known as “maxmax” decision making, from
maximising the maximum payoff.

∴ would result in choice of lott ery C.
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2a. Hur wicz: choose the lott ery wit h the highes t value of a
weight ed av erage of the minimum and maximum,
say α × lott ery X’s minimum payoff + (1 −α) × lott ery X’s
maximum payoff.

— when α = 1, the Extreme Pessimis t Rule ∴ B

— when α = 0, the Extreme Optimis t Rule ∴ C
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2a. Hur wicz: choose the lott ery wit h the highes t value of a
weight ed av erage of the minimum and maximum,
say α × lott ery X’s minimum payoff + (1 −α) × lott ery X’s
maximum payoff.

— when α = 1, the Extreme Pessimis t Rule ∴ B

— when α = 0, the Extreme Optimis t Rule ∴ C

If 0.899 ≤ α ≤ 0.901, then choose lott ery A.
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2a. Hur wicz: choose the lott ery wit h the highes t value of a
weight ed av erage of the minimum and maximum,
say α × lott ery X’s minimum payoff + (1 −α) × lott ery X’s
maximum payoff.

— when α = 1, the Extreme Pessimis t Rule ∴ B

— when α = 0, the Extreme Optimis t Rule ∴ C

If 0.899 ≤ α ≤ 0.901, then choose lott ery A.

If more than two possible payoffs, this rule ignores the
int ermediat e payoffs, which shouldn’t happen.

3. Choose the lottery wit h the highes t average payoff.
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2a. Hur wicz: choose the lott ery wit h the highes t value of a
weight ed av erage of the minimum and maximum,
say α × lott ery X’s minimum payoff + (1 −α) × lott ery X’s
maximum payoff.

— when α = 1, the Extreme Pessimis t Rule ∴ B

— when α = 0, the Extreme Optimis t Rule ∴ C

If 0.899 ≤ α ≤ 0.901, then choose lott ery A.

If more than two possible payoffs, this rule ignores the
int ermediat e payoffs, which shouldn’t happen.

3. Choose the lottery wit h the highes t average payoff.

has the advant age that it includes all payoffs, not jus t the
extreme ones, but it imput es equal probabilities to each
payoff ’s occur rence. (The Laplace cr iter ion.)

Moreover, it also assumes a risk-neutr al decision maker.

∴ would result in choice of lott ery C.
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4. For lott eries with more common str ucture — say, a matr ix
R ij , where lottery i and state of the world j result in
payoff R ij — we can use the Savage rule of minimum reg ret
for the wrong decision:
choose the lott ery which minimises the maximum reg ret,
where reg ret is the difference between the contingent
outcome ’s pay off in the lott ery you chose and the highest
contingent outcome’s pay off.

(See Apocalypse Maybe in the Readings.)
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4. For lott eries with more common str ucture — say, a matr ix
R ij , where lottery i and state of the world j result in
payoff R ij — we can use the Savage rule of minimum reg ret
for the wrong decision:
choose the lott ery which minimises the maximum reg ret,
where reg ret is the difference between the contingent
outcome ’s pay off in the lott ery you chose and the highest
contingent outcome’s pay off.

(See Apocalypse Maybe in the Readings.)

If we hav e the probabilities of the lott eries ’ outcomes (say, from a
smoothly working roulett e wheel), a new rule is possible:

5. Choose the lottery wit h the highes t expect ed payof f: weight
each outcome with the probability of its occurrence.
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4. For lott eries with more common str ucture — say, a matr ix
R ij , where lottery i and state of the world j result in
payoff R ij — we can use the Savage rule of minimum reg ret
for the wrong decision:
choose the lott ery which minimises the maximum reg ret,
where reg ret is the difference between the contingent
outcome ’s pay off in the lott ery you chose and the highest
contingent outcome’s pay off.

(See Apocalypse Maybe in the Readings.)

If we hav e the probabilities of the lott eries ’ outcomes (say, from a
smoothly working roulett e wheel), a new rule is possible:

5. Choose the lottery wit h the highes t expect ed payof f: weight
each outcome with the probability of its occurrence.

Includes all payoffs and the probabilities of their occurrence,
but still assumes a risk-neutral decision maker.
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Risk aversion

Risk aversion: the clear evidence that many people will forgo
expect ed profit to ensure cer tainty by selling a gamble at a
pr ice less than the expect ed profit.
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Risk aversion

Risk aversion: the clear evidence that many people will forgo
expect ed profit to ensure cer tainty by selling a gamble at a
pr ice less than the expect ed profit.

Risk aversion is not indicat ed by the slope of the utility
cur ve: it’s the cur vature: if the utility curve is locall y —

1. linear (say, at a point of inflection), then the decision
maker is locall y risk neutral.

2.
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Risk aversion

Risk aversion: the clear evidence that many people will forgo
expect ed profit to ensure cer tainty by selling a gamble at a
pr ice less than the expect ed profit.

Risk aversion is not indicat ed by the slope of the utility
cur ve: it’s the cur vature: if the utility curve is locall y —

1. linear (say, at a point of inflection), then the decision
maker is locall y risk neutral.

2. concave (its slope is decreasing — Diminishing
Marginal Utility), then the decision maker is locall y
risk averse;

3.
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Risk aversion

Risk aversion: the clear evidence that many people will forgo
expect ed profit to ensure cer tainty by selling a gamble at a
pr ice less than the expect ed profit.

Risk aversion is not indicat ed by the slope of the utility
cur ve: it’s the cur vature: if the utility curve is locall y —

1. linear (say, at a point of inflection), then the decision
maker is locall y risk neutral.

2. concave (its slope is decreasing — Diminishing
Marginal Utility), then the decision maker is locall y
risk averse;

3. conve x (its slope is increasing), then the decision
maker is locall y risk preferring.

See
http://www.gametheory.net/Mike/applets/Risk/risk.html
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Risk-averse, risk-neutr al, and risk-prefer ring utility functions.
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The Certain Equivalent (C.E.) of a lott ery.
The utility of a lott ery = the utility of its C.E.

L

$0$100

Cor rect
p

Incor rect
1 − p

∼ $_____?

a deal or its
oppor tunity Cer tainty
or lott ery Equiv alent
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2. Expected Utilities

An order ing which avoids inconsistencies over preferences and
likelihoods:

➣
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2. Expected Utilities

An order ing which avoids inconsistencies over preferences and
likelihoods:

➣ Assign utilities to all payoffs,
and probabilities to all states of the world,

➣ then rank lott eries by their expect ed utilities.

➣ The utility of a lott ery is its expect ed utility.
(by definition)

U (x̃ ) =
n

i=1
Σ p i U (x i ), where x̃ is the C.E.
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2. Expected Utilities

An order ing which avoids inconsistencies over preferences and
likelihoods:

➣ Assign utilities to all payoffs,
and probabilities to all states of the world,

➣ then rank lott eries by their expect ed utilities.

➣ The utility of a lott ery is its expect ed utility.
(by definition)

U (x̃ ) =
n

i=1
Σ p i U (x i ), where x̃ is the C.E.

According to Sav age, this is the only order ing which satisfies five
gener al conditions (or axioms) we’d like a good decision rule to
satisfy :

Complet eness and Transitivity,
Continuity,
Subs titutability,
Monotonicity, and
Decomposability.
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Wealt h Independence

Q: What if I gav e each of you a $100 bill toget her wit h a tic ket to
play your prefer red lott ery of the four at the top of this section.
Would your preferences among the lott eries now change?
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Wealt h Independence

Q: What if I gav e each of you a $100 bill toget her wit h a tic ket to
play your prefer red lott ery of the four at the top of this section.
Would your preferences among the lott eries now change?

If not, then your preferences exhibit wealt h independence.

The Delta proper ty (or Wealt h Independence proper ty): an
increase of all prizes in a lott ery by an amount ∆ increases the
Cer tain Equiv alent (C.E.) by ∆.

➣
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Wealt h Independence

Q: What if I gav e each of you a $100 bill toget her wit h a tic ket to
play your prefer red lott ery of the four at the top of this section.
Would your preferences among the lott eries now change?

If not, then your preferences exhibit wealt h independence.

The Delta proper ty (or Wealt h Independence proper ty): an
increase of all prizes in a lott ery by an amount ∆ increases the
Cer tain Equiv alent (C.E.) by ∆.

➣ Suppose your C.E. for an equiprobable lott ery on $0 and $100 is
$25.

➣
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Wealt h Independence

Q: What if I gav e each of you a $100 bill toget her wit h a tic ket to
play your prefer red lott ery of the four at the top of this section.
Would your preferences among the lott eries now change?

If not, then your preferences exhibit wealt h independence.

The Delta proper ty (or Wealt h Independence proper ty): an
increase of all prizes in a lott ery by an amount ∆ increases the
Cer tain Equiv alent (C.E.) by ∆.

➣ Suppose your C.E. for an equiprobable lott ery on $0 and $100 is
$25.

➣ The lott ery owner agrees to pay you an additional $100
regardless of outcome: your final payoffs will be $100 and $200
wit h equal probability.

➣
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Wealt h Independence

Q: What if I gav e each of you a $100 bill toget her wit h a tic ket to
play your prefer red lott ery of the four at the top of this section.
Would your preferences among the lott eries now change?

If not, then your preferences exhibit wealt h independence.

The Delta proper ty (or Wealt h Independence proper ty): an
increase of all prizes in a lott ery by an amount ∆ increases the
Cer tain Equiv alent (C.E.) by ∆.

➣ Suppose your C.E. for an equiprobable lott ery on $0 and $100 is
$25.

➣ The lott ery owner agrees to pay you an additional $100
regardless of outcome: your final payoffs will be $100 and $200
wit h equal probability.

➣ If you feel that your C.E. would now be $125 and reason
consis t ently in all such situations, then you satisfy the Delta
proper ty.
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Accepting Wealt h Independence

Acceptance of the Wealt h Independence (or Delta) proper ty has
strong consequences:

➣
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Accepting Wealt h Independence

Acceptance of the Wealt h Independence (or Delta) proper ty has
strong consequences:

➣ The utility curve is res trict ed to be eit her linear or an
exponential:

u(x ) mus t have one of the for ms:

u(x ) = a + b x ,
or u(x ) = a + b e−γx ,

where a, b, and γ are cons tants.

➣
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u(x ) mus t have one of the for ms:

u(x ) = a + b x ,
or u(x ) = a + b e−γx ,

where a, b, and γ are cons tants.

➣ The buying and selling prices of a lott ery will be the same for
any individual.

< >



Lecture 10 UNSW © 2009 Page 11

Accepting Wealt h Independence

Acceptance of the Wealt h Independence (or Delta) proper ty has
strong consequences:

➣ The utility curve is res trict ed to be eit her linear or an
exponential:

u(x ) mus t have one of the for ms:

u(x ) = a + b x ,
or u(x ) = a + b e−γx ,

where a, b, and γ are cons tants.

➣ The buying and selling prices of a lott ery will be the same for
any individual.

Satisfying the Delta proper ty means that the C.E. of any proposed
lott ery is independent of the wealt h already owned.

This wealt h is just a “∆” that does not affect the preference:
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Accepting Wealt h Independence

Acceptance of the Wealt h Independence (or Delta) proper ty has
strong consequences:

➣ The utility curve is res trict ed to be eit her linear or an
exponential:

u(x ) mus t have one of the for ms:

u(x ) = a + b x ,
or u(x ) = a + b e−γx ,

where a, b, and γ are cons tants.

➣ The buying and selling prices of a lott ery will be the same for
any individual.

Satisfying the Delta proper ty means that the C.E. of any proposed
lott ery is independent of the wealt h already owned.

This wealt h is just a “∆” that does not affect the preference:

The linear and exponential utility curves are called wealt h-
independent, or constant-absolut e-risk-aversion (CARA) functions.
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3. Constant Absolut e Risk Aversion

Paramet erise the exponential utility function as:

(A) u(x ) =
1 − e−γx

1 − e−γ ,

where u(0) = 0 and u(1) = 1, or as:
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1 − e−γx

1 − e−γ ,

where u(0) = 0 and u(1) = 1, or as:

(B) U (x ) = 1 − e−γx ,

where U (0) = 0 and U (∞) = 1.

γ is the risk aversion coefficient ≡ −
u ′′ (x )
u ′(x )
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3. Constant Absolut e Risk Aversion

Paramet erise the exponential utility function as:

(A) u(x ) =
1 − e−γx

1 − e−γ ,

where u(0) = 0 and u(1) = 1, or as:

(B) U (x ) = 1 − e−γx ,

where U (0) = 0 and U (∞) = 1.

γ is the risk aversion coefficient ≡ −
u ′′ (x )
u ′(x )

Sign of γ Risk profile Curvature

γ = 0  risk neutral u ′′ (x ) = 0
γ > 0  risk averse u ′′ (x ) < 0
γ < 0  risk prefer ring u ′′ (x ) > 0
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3. Constant Absolut e Risk Aversion

Paramet erise the exponential utility function as:

(A) u(x ) =
1 − e−γx

1 − e−γ ,

where u(0) = 0 and u(1) = 1, or as:

(B) U (x ) = 1 − e−γx ,

where U (0) = 0 and U (∞) = 1.

γ is the risk aversion coefficient ≡ −
u ′′ (x )
u ′(x )

Sign of γ Risk profile Curvature

γ = 0  risk neutral u ′′ (x ) = 0
γ > 0  risk averse u ′′ (x ) < 0
γ < 0  risk prefer ring u ′′ (x ) > 0

Acceptance of the Delta proper ty leads to the charact erisation of risk
preference by a sing le number, the risk aversion coefficient.

The reciprocal of the risk aversion coefficient is known as the risk

tolerance, R = 1
γ
.

< >



Lecture 10 UNSW © 2009 Page 13

Assessing your Risk Toler ance R when your Utility is Wealt h-
Independent.

The exponential utility function is given by:

U (x ) = a + b e− x
R ,

where R is a paramet er that deter mines how risk-averse the utility
function is, the risk tolerance, and a and b are cons tants used to
nor malise the function.

R = 1
γ
, where γ is the risk-aversion coefficient.
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where R is a paramet er that deter mines how risk-averse the utility
function is, the risk tolerance, and a and b are cons tants used to
nor malise the function.

R = 1
γ
, where γ is the risk-aversion coefficient.

Larger values of R make the exponential utility function less
cur ved and so closer to risk neutral,
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Assessing your Risk Toler ance R when your Utility is Wealt h-
Independent.

The exponential utility function is given by:

U (x ) = a + b e− x
R ,

where R is a paramet er that deter mines how risk-averse the utility
function is, the risk tolerance, and a and b are cons tants used to
nor malise the function.

R = 1
γ
, where γ is the risk-aversion coefficient.

Larger values of R make the exponential utility function less
cur ved and so closer to risk neutral, while smaller values of R
model great er risk aversion.
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Assessing your Risk Toler ance R when your Utility is Wealt h-
Independent.

The exponential utility function is given by:

U (x ) = a + b e− x
R ,

where R is a paramet er that deter mines how risk-averse the utility
function is, the risk tolerance, and a and b are cons tants used to
nor malise the function.

R = 1
γ
, where γ is the risk-aversion coefficient.

Larger values of R make the exponential utility function less
cur ved and so closer to risk neutral, while smaller values of R
model great er risk aversion.

As we hav e seen, the exponential utility function is appropr iate if
(and only if) the individual’s preferences satisfy the Delta Proper ty
of wealt h independence.
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A simple choice to obtain one’s CARA Risk Tolerance





Win $Y with probability ½

Lose $ 1
2

Y with probability ½

has a C.E. of $0

You

$0N

$Y

NoYes

½ ½

−$ 1
2

Y
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A simple choice to obtain one’s CARA Risk Tolerance





Win $Y with probability ½

Lose $ 1
2

Y with probability ½

has a C.E. of $0

You

$0N

$Y

NoYes

½ ½

−$ 1
2

Y

Q: What is the maximum size of Y at which you ’d prefer doing
nothing to having this lott ery: the point at which you ’d give the
lott ery tic ket away (i.e. at which it has a C.E. of zero)?
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A simple choice to obtain one’s CARA Risk Tolerance





Win $Y with probability ½

Lose $ 1
2

Y with probability ½

has a C.E. of $0

You

$0N

$Y

NoYes

½ ½

−$ 1
2

Y

Q: What is the maximum size of Y at which you ’d prefer doing
nothing to having this lott ery: the point at which you ’d give the
lott ery tic ket away (i.e. at which it has a C.E. of zero)?

This Y is approximat ely equal to your risk toler ance R in the
exponential (wealt h-independent) utility function.

(See Clemen, Making Hard Decisions, pp. 379−382.)
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risk toler ance R in ter ms of sales, net income, or equity.

According to How ard, a company’s risk toler ance R is
approximat ely:

➣ 6.4% of annual sales,
➣ 1.24 × annual net income, or
➣ 15.7% of equity.

Exponential utility functions exhibit CARA .

Log arit hmic utility functions exhibit falling risk aversion (str ictly:
cons tant relative risk aversion) — more realis tic?
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Ron Howard’ s insights ...

Howard (1988) gives reasonable values of deter mining a company’s
risk toler ance R in ter ms of sales, net income, or equity.

According to How ard, a company’s risk toler ance R is
approximat ely:

➣ 6.4% of annual sales,
➣ 1.24 × annual net income, or
➣ 15.7% of equity.

Exponential utility functions exhibit CARA .

Log arit hmic utility functions exhibit falling risk aversion (str ictly:
cons tant relative risk aversion) — more realis tic?

See: Howard R A (1988), Decision analysis: practice and promise,
Management Science, 34, 679-695.
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Two Types of Decision-Maker s: Fr ed and Mary.

Fr ed’ s preferences across lott eries don’t change when he comes into
an inherit ance: his utility function exhibits Wealt h Independence
(or satisfies the Delta Proper ty).
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Two Types of Decision-Maker s: Fr ed and Mary.

Fr ed’ s preferences across lott eries don’t change when he comes into
an inherit ance: his utility function exhibits Wealt h Independence
(or satisfies the Delta Proper ty).

Mar y, however, finds that her preferences do change wit h her
wealt h, even for small amounts. She doesn’t exhibit Wealt h
Independence in her preferences over lotteries.

Fr ed’ s utility function is easily det ermined by eliciting his risk
toler ance R through the C.E. of the Y lott ery on the previous
page, and plugging it into an exponential utility function. Let ’s
say for Fred Y = R = 900 = 1/γ.

Mar y’s utility curve can be derived by asking her the C.E. of a
ser ies of lott eries, as described below. Each of her answer s
det ermines the next lott ery she confronts. In gener al, the lotteries
(and so the utility curve elicitt ed) will be specific to a par ticular
decision of Mary’s.
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4. Eliciting Utility Functions

Choose among the four lott eries depicted below:

A

$25 $150 $600

.7 .2 .1

B

$80 $90 $98

.2 .58 .22

C

−$20 $0 $100 $1000

.6 .1 .2 .1

D

$105 −$100

.95 .05

The probabilities are objectivel y det ermined:

the lotteries are all based on things like the spin of a smooth
roulett e wheel, etc.
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Choosing among lott eries ...

It is difficult to choose: difficult to think —

➣ about probabilities such as 0.22, and

➣ about gambles with four possible prizes.
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(Transitivity, Subs titution, Continuity),
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maximising the expect ation of a utility function.
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< >



Lecture 10 UNSW © 2009 Page 18

Choosing among lott eries ...

It is difficult to choose: difficult to think —

➣ about probabilities such as 0.22, and

➣ about gambles with four possible prizes.

But if Mar y, say, subscr ibes to the three axioms of utility theor y
(Transitivity, Subs titution, Continuity),

then we know that Mary’s choice should be based on:

maximising the expect ation of a utility function.

So we want Mary’s choice behaviour among the four gambles to
confor m to her expect ed utility maximisation.

We need to discover Mar y’s utility function: ho w?

< >



Lecture 10 UNSW © 2009 Page 18

Choosing among lott eries ...

It is difficult to choose: difficult to think —

➣ about probabilities such as 0.22, and

➣ about gambles with four possible prizes.

But if Mar y, say, subscr ibes to the three axioms of utility theor y
(Transitivity, Subs titution, Continuity),

then we know that Mary’s choice should be based on:

maximising the expect ation of a utility function.

So we want Mary’s choice behaviour among the four gambles to
confor m to her expect ed utility maximisation.

We need to discover Mar y’s utility function: ho w?

We can assess Mary’s utility function:
by making some judgements that are easier than those called for in
a direct choice among the four gambles above.
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Ques tion 1: What is Mary’s C.E. for the lott ery L1:




probability ½ of getting $1000

probability ½ of owing $100
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Ques tion 1: What is Mary’s C.E. for the lott ery L1:




probability ½ of getting $1000

probability ½ of owing $100

This gamble is selected so that its two prizes span all the prizes in the
four gambles from which Mary mus t choose (set u($1000) = 1 and
u(−$100) = 0), and it gives probability ½ to each:

L1

−$100 $1000

½ ½

No t a trivial judgement to make, but not so hard, because:

compar ing a sure thing with a gamble having only two prizes and a
simple 50−50 probability str ucture.
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



probability ½ of getting $1000

probability ½ of owing $100

This gamble is selected so that its two prizes span all the prizes in the
four gambles from which Mary mus t choose (set u($1000) = 1 and
u(−$100) = 0), and it gives probability ½ to each:

L1

−$100 $1000

½ ½

No t a trivial judgement to make, but not so hard, because:

compar ing a sure thing with a gamble having only two prizes and a
simple 50−50 probability str ucture.

Mar y’s Answer 1: she ’s indif ferent between the gamble above and $400 for
sure. So Mar y’s C.E. for lott ery L1 is $400.
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Ques tion 1: What is Mary’s C.E. for the lott ery L1:




probability ½ of getting $1000

probability ½ of owing $100

This gamble is selected so that its two prizes span all the prizes in the
four gambles from which Mary mus t choose (set u($1000) = 1 and
u(−$100) = 0), and it gives probability ½ to each:

L1

−$100 $1000

½ ½

No t a trivial judgement to make, but not so hard, because:

compar ing a sure thing with a gamble having only two prizes and a
simple 50−50 probability str ucture.

Mar y’s Answer 1: she ’s indif ferent between the gamble above and $400 for
sure. So Mar y’s C.E. for lott ery L1 is $400.

If u(−$100) = 0, and u($1000) = 1, then u(L1) = 0.5 = u($400), since the
utility of a lott ery equals its expect ed utility, by definition.
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Ques tion 2: What is Mary’s C.E. for the gamble L2:

L2

$400 $1000

½ ½

This gamble has:

➣ top prize equal to the upper prize from the ques tion, and

➣ bott om pr ize equal to Mar y’s previousl y assessed C.E.
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Ques tion 2: What is Mary’s C.E. for the gamble L2:

L2

$400 $1000

½ ½

This gamble has:

➣ top prize equal to the upper prize from the ques tion, and

➣ bott om pr ize equal to Mar y’s previousl y assessed C.E.

Mar y’s Answer 2: Approximat ely $675.

So Mary’s Cer tain Equiv alent for lottery L2 is $675.
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Ques tion 3: What is Mary’s C.E. for the gamble L3:

L3

−$100 $400

½ ½
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Ques tion 3: What is Mary’s C.E. for the gamble L3:

L3

−$100 $400

½ ½

Mar y’s Answer 3: Approximat ely $100.

So Mary’s Cer tain Equiv alent for lottery L3 is $100.
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Wh y these ques tions?

If Mary can answer these ques tions, then we’ll have five points on
Mar y’s utility function in the range −$100 to $1000:

arbitr aril y assigning −$100 utility = 0 and $1000 utility = 1,
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Wh y these ques tions?

If Mary can answer these ques tions, then we’ll have five points on
Mar y’s utility function in the range −$100 to $1000:

arbitr aril y assigning −$100 utility = 0 and $1000 utility = 1,

then the answer s reveal that

➣ Mar y’s utility of $400 [ u($400) ] = 0.5,

➣ Mar y’s utility of $675 [ u($675) ] = 0.75, and

➣ Mar y’s utility of $100 [ u($100) ] = 0.25.
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Plotting Mary’s Cur ve:

With these five values, we can rough in a pretty good
approximation of Mary’s utility function and comput e her expect ed
utilities for the four original gambles, making her choice
according ly.
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With these five values, we can rough in a pretty good
approximation of Mary’s utility function and comput e her expect ed
utilities for the four original gambles, making her choice
according ly.

Even if our approximation is off, it is close to Mar y’s “tr ue utility”
and her choice according to the approximation will be nearly as
good as the best gamble using Mary’s “tr ue utility”.
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Plotting Mary’s Cur ve:

With these five values, we can rough in a pretty good
approximation of Mary’s utility function and comput e her expect ed
utilities for the four original gambles, making her choice
according ly.

Even if our approximation is off, it is close to Mar y’s “tr ue utility”
and her choice according to the approximation will be nearly as
good as the best gamble using Mary’s “tr ue utility”.

Mar y’s making some judgement calls above, and she may not be
doing so well.

< >



Lecture 10 UNSW © 2009 Page 24

Chec king for consis tency ...

The data above allow us to run consistency checks, such as:
“What is Mary’s C.E. for L4:”

L4

$100 $675

½ ½
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Chec king for consis tency ...

The data above allow us to run consistency checks, such as:
“What is Mary’s C.E. for L4:”

L4

$100 $675

½ ½

It should be $400. Why?

Because this is a gamble whose prizes have utilities of 0.25 and
0.75 for Mary, so that it has expect ed utility of 0.5,

and the certain amount of money that has utility 0.5 is $400, for
her.
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Chec king for consis tency ...

The data above allow us to run consistency checks, such as:
“What is Mary’s C.E. for L4:”

L4

$100 $675

½ ½

It should be $400. Why?

Because this is a gamble whose prizes have utilities of 0.25 and
0.75 for Mary, so that it has expect ed utility of 0.5,

and the certain amount of money that has utility 0.5 is $400, for
her.

Mar y’s assessed C.E. for this gamble is approximat ely $375, but
now we can retur n to Mar y’s original assessments and iter ate so
that we hav e five consis t ent values.
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Wh y this procedure?

Why is this procedure bett er than just choosing one of the original
gambles?
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Wh y this procedure?

Why is this procedure bett er than just choosing one of the original
gambles?

Because the numerical judgements that we’re asking Mary to make
are for the easiest conceiv able cases that aren’t trivial — two-pr ize
lott eries with equall y likel y outcomes.
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sor t of gamble than she is at the four more complicat ed gambles
wit h which we started.
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are for the easiest conceiv able cases that aren’t trivial — two-pr ize
lott eries with equall y likel y outcomes.

Mar y is quit e ready to believe that she’s bett er at processing that
sor t of gamble than she is at the four more complicat ed gambles
wit h which we started.

Is this benefit coming for free?

No — we also had to make a qualit ative judgement that in this
choice situation, the three axioms are good guides for choice
behaviour.
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Wh y this procedure?

Why is this procedure bett er than just choosing one of the original
gambles?

Because the numerical judgements that we’re asking Mary to make
are for the easiest conceiv able cases that aren’t trivial — two-pr ize
lott eries with equall y likel y outcomes.

Mar y is quit e ready to believe that she’s bett er at processing that
sor t of gamble than she is at the four more complicat ed gambles
wit h which we started.

Is this benefit coming for free?

No — we also had to make a qualit ative judgement that in this
choice situation, the three axioms are good guides for choice
behaviour.

But because we know where the pitfalls in those axioms are, we
are confident that, in this case, the axioms are a sound guide to
behaviour.
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The Utility Curve

How does eliciting the C.Es. of simple lott eries allow us to cons truct
Mar y’s utility curve?

➣ Using the rule that the utility of a lott ery is its expect ed utility,

➣ and setting u(−$100) = 0 and u($1000) = 1, so that the utility function
spans the possible payoffs,

➣
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The Utility Curve

How does eliciting the C.Es. of simple lott eries allow us to cons truct
Mar y’s utility curve?

➣ Using the rule that the utility of a lott ery is its expect ed utility,

➣ and setting u(−$100) = 0 and u($1000) = 1, so that the utility function
spans the possible payoffs,

➣ we see that Mary’s utility of the first of the simple lott eries above (the
lott ery over −$100 and $1000, C.E $400) is

½ × 0 + ½ × 1 = 0.5;

➣
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The Utility Curve

How does eliciting the C.Es. of simple lott eries allow us to cons truct
Mar y’s utility curve?

➣ Using the rule that the utility of a lott ery is its expect ed utility,

➣ and setting u(−$100) = 0 and u($1000) = 1, so that the utility function
spans the possible payoffs,

➣ we see that Mary’s utility of the first of the simple lott eries above (the
lott ery over −$100 and $1000, C.E $400) is

½ × 0 + ½ × 1 = 0.5;

➣ her utility of the second (over $400 and $1000, C.E. $675) is
½ × 0.5 + ½ × 1 = 0.75;

➣
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The Utility Curve

How does eliciting the C.Es. of simple lott eries allow us to cons truct
Mar y’s utility curve?

➣ Using the rule that the utility of a lott ery is its expect ed utility,

➣ and setting u(−$100) = 0 and u($1000) = 1, so that the utility function
spans the possible payoffs,

➣ we see that Mary’s utility of the first of the simple lott eries above (the
lott ery over −$100 and $1000, C.E $400) is

½ × 0 + ½ × 1 = 0.5;

➣ her utility of the second (over $400 and $1000, C.E. $675) is
½ × 0.5 + ½ × 1 = 0.75;

➣ her utility of the third (ov er −$100 and $400, C.E. $100) is
½ × 0 + ½ × 0.5 = 0.25;

➣
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How does eliciting the C.Es. of simple lott eries allow us to cons truct
Mar y’s utility curve?

➣ Using the rule that the utility of a lott ery is its expect ed utility,

➣ and setting u(−$100) = 0 and u($1000) = 1, so that the utility function
spans the possible payoffs,

➣ we see that Mary’s utility of the first of the simple lott eries above (the
lott ery over −$100 and $1000, C.E $400) is

½ × 0 + ½ × 1 = 0.5;

➣ her utility of the second (over $400 and $1000, C.E. $675) is
½ × 0.5 + ½ × 1 = 0.75;

➣ her utility of the third (ov er −$100 and $400, C.E. $100) is
½ × 0 + ½ × 0.5 = 0.25;

➣ and her utility of the four th (ov er $100 and $675, C.E. $375) is
½ × 0.25 + ½ × 0.75 = 0.5.
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The Utility Curve

How does eliciting the C.Es. of simple lott eries allow us to cons truct
Mar y’s utility curve?

➣ Using the rule that the utility of a lott ery is its expect ed utility,

➣ and setting u(−$100) = 0 and u($1000) = 1, so that the utility function
spans the possible payoffs,

➣ we see that Mary’s utility of the first of the simple lott eries above (the
lott ery over −$100 and $1000, C.E $400) is

½ × 0 + ½ × 1 = 0.5;

➣ her utility of the second (over $400 and $1000, C.E. $675) is
½ × 0.5 + ½ × 1 = 0.75;

➣ her utility of the third (ov er −$100 and $400, C.E. $100) is
½ × 0 + ½ × 0.5 = 0.25;

➣ and her utility of the four th (ov er $100 and $675, C.E. $375) is
½ × 0.25 + ½ × 0.75 = 0.5.

The last three C.E.s ($675, $100, and $375) have been plott ed ag ainst the
lott eries ’ utilities (0.75, 0.25, and 0.5, resp.) on the following graph, and
we ’ve joined the five points with str aight lines, to get an approximation
for Mar y’s utility function. It erat e.
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Utility Curves u = u(x): Mar y’s, Fr ed’s nor malised, and risk-neutr al
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5. The Choice: Using the answers ...

We can use Mary’s utility function as plott ed, and Fred’s utility

function u(x ) = 1 − e− x
900 , to calculat e their utilities of the four

lott eries, A, B, C, and D, of section 4.

Simpl y a matt er of reading off Mar y’s utilities of the dollar payoffs of
the lotteries, and calculating her expect ed utilities of the four
lott eries.

Dollar s Mar y’s Utility Fred’s Utility

−$100 0.000 −0.11 8
−$20 .100 −0.022

$0 .125 0.0
$25 .156 .027
$80 .225 .085
$90 .238 .095
$98 .248 .103

$100 .250 .1 05
$105 .255 .11
$150 .295 .154
$600 .69 .487

$1000 1.0 .671
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Mar y’s expect ed utilities ...

∴ Mar y’s utility of lott ery A is:

0.7×0.156 + 0.2×0.295 + 0.1×0.69 = 0.237

➣
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Mar y’s expect ed utilities ...

∴ Mar y’s utility of lott ery A is:

0.7×0.156 + 0.2×0.295 + 0.1×0.69 = 0.237

➣ of lott ery B:

0.2×0.225 + 0.58×0.238 + 0.22×0.2 48 = 0.238

➣
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Mar y’s expect ed utilities ...

∴ Mar y’s utility of lott ery A is:

0.7×0.156 + 0.2×0.295 + 0.1×0.69 = 0.237

➣ of lott ery B:

0.2×0.225 + 0.58×0.238 + 0.22×0.2 48 = 0.238

➣ of lott ery C:

0.6×0.100 + 0.1×0.125 + 0.2×0.250 + 0.1×1 = 0.223

➣
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Mar y’s expect ed utilities ...

∴ Mar y’s utility of lott ery A is:

0.7×0.156 + 0.2×0.295 + 0.1×0.69 = 0.237

➣ of lott ery B:

0.2×0.225 + 0.58×0.238 + 0.22×0.2 48 = 0.238

➣ of lott ery C:

0.6×0.100 + 0.1×0.125 + 0.2×0.250 + 0.1×1 = 0.223

➣ and of lott ery D:

0.95×0.255 + 0.05×0 = 0.2 48

So Mary would choose lott ery D.
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Mar y’s expect ed utilities ...

∴ Mar y’s utility of lott ery A is:

0.7×0.156 + 0.2×0.295 + 0.1×0.69 = 0.237

➣ of lott ery B:

0.2×0.225 + 0.58×0.238 + 0.22×0.2 48 = 0.238

➣ of lott ery C:

0.6×0.100 + 0.1×0.125 + 0.2×0.250 + 0.1×1 = 0.223

➣ and of lott ery D:

0.95×0.255 + 0.05×0 = 0.2 48

So Mary would choose lott ery D.

We can see from the plot of her utility function that she’s slightl y
risk averse.
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Fr ed’ s expect ed utilities ...

Using Fred’s utility function: u(x ) = 1 − e− x
900

∴ Fr ed’s utility of lott ery A is:

0.7×0.027 + 0.2×0.154 + 0.1×0.487 = 0.098

➣
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Fr ed’ s expect ed utilities ...

Using Fred’s utility function: u(x ) = 1 − e− x
900

∴ Fr ed’s utility of lott ery A is:

0.7×0.027 + 0.2×0.154 + 0.1×0.487 = 0.098

➣ of lott ery B:

0.2×0.085 + 0.58×0.095 + 0.22×0.103 = 0.095

➣
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Fr ed’ s expect ed utilities ...

Using Fred’s utility function: u(x ) = 1 − e− x
900

∴ Fr ed’s utility of lott ery A is:

0.7×0.027 + 0.2×0.154 + 0.1×0.487 = 0.098

➣ of lott ery B:

0.2×0.085 + 0.58×0.095 + 0.22×0.103 = 0.095

➣ of lott ery C:

0.6×(−0.022) + 0.1×0 + 0.2×0.105 + 0.1×0.671 = 0.086

➣
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Fr ed’ s expect ed utilities ...

Using Fred’s utility function: u(x ) = 1 − e− x
900

∴ Fr ed’s utility of lott ery A is:

0.7×0.027 + 0.2×0.154 + 0.1×0.487 = 0.098

➣ of lott ery B:

0.2×0.085 + 0.58×0.095 + 0.22×0.103 = 0.095

➣ of lott ery C:

0.6×(−0.022) + 0.1×0 + 0.2×0.105 + 0.1×0.671 = 0.086

➣ and of lott ery D:

0.95×0.11 + 0.05×(−0.11 8) = 0.074

So Fred would choose lott ery A.

(R emember : we ’re onl y int eres t ed in the relative utilities, not the
absolut e values, and we can’t compare Mar y’s wit h Fr ed’s utilities
directl y.)
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The risk-neutral decision maker ...

The risk-neutr al decision maker would choose the lott ery wit h the
highes t expect ed dollar payoff.

➣ The expect ed dollar payoff of lottery A is:

0.7×$25 + 0.2×$150 + 0.1×$600 = $107.50

➣
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The risk-neutral decision maker ...

The risk-neutr al decision maker would choose the lott ery wit h the
highes t expect ed dollar payoff.

➣ The expect ed dollar payoff of lottery A is:

0.7×$25 + 0.2×$150 + 0.1×$600 = $107.50

➣ of lott ery B:

0.2×$80 + 0.58×$90 + 0.22×$98 = $89.76

➣
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The risk-neutral decision maker ...

The risk-neutr al decision maker would choose the lott ery wit h the
highes t expect ed dollar payoff.

➣ The expect ed dollar payoff of lottery A is:

0.7×$25 + 0.2×$150 + 0.1×$600 = $107.50

➣ of lott ery B:

0.2×$80 + 0.58×$90 + 0.22×$98 = $89.76

➣ of lott ery C:

0.6×−$20 + 0.1×$0 + 0.2×$100 + 0.1×$1000 = $108.00

➣
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The risk-neutral decision maker ...

The risk-neutr al decision maker would choose the lott ery wit h the
highes t expect ed dollar payoff.

➣ The expect ed dollar payoff of lottery A is:

0.7×$25 + 0.2×$150 + 0.1×$600 = $107.50

➣ of lott ery B:

0.2×$80 + 0.58×$90 + 0.22×$98 = $89.76

➣ of lott ery C:

0.6×−$20 + 0.1×$0 + 0.2×$100 + 0.1×$1000 = $108.00

➣ and of lott ery D:

0.95×$105 + 0.05×−$100 = $94.75
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The risk-neutral decision maker ...

The risk-neutr al decision maker would choose the lott ery wit h the
highes t expect ed dollar payoff.

➣ The expect ed dollar payoff of lottery A is:

0.7×$25 + 0.2×$150 + 0.1×$600 = $107.50

➣ of lott ery B:

0.2×$80 + 0.58×$90 + 0.22×$98 = $89.76

➣ of lott ery C:

0.6×−$20 + 0.1×$0 + 0.2×$100 + 0.1×$1000 = $108.00

➣ and of lott ery D:

0.95×$105 + 0.05×−$100 = $94.75

So the risk-neutr al player would choose lott ery C (or perhaps
lott ery A).
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6. App: Approximating a Certain Equiv alent

Fr ed (whose Risk Toler ance R = 900 from the R.T. lottery on p.15)
is considering the lott ery L:







Win $2,000 with probability 0.4

Win $1,000 with probability 0.4

Win $500 with probability 0.2
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6. App: Approximating a Certain Equiv alent

Fr ed (whose Risk Toler ance R = 900 from the R.T. lottery on p.15)
is considering the lott ery L:







Win $2,000 with probability 0.4

Win $1,000 with probability 0.4

Win $500 with probability 0.2

Its mean m = $1,300, and standard deviation σ = $600.

Variance =
n

i=1
Σ[x i − m]2 Prob.(X = x i ) = $6002 = $360,000,

where the mean m =
n

i=1
Σ x i Prob.(X = x i ).

(Standard deviation σ = square root of the var iance.)
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Approximating a C.E. (cont.)

Since Fred’s R = 900, then use the utility function:

U (x ) = 1 − e− x
900 .
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Approximating a C.E. (cont.)

Since Fred’s R = 900, then use the utility function:

U (x ) = 1 − e− x
900 .

Chec k nor mality OK: U (∞) = 1 and U ($0) = 0.
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Approximating a C.E. (cont.)

Since Fred’s R = 900, then use the utility function:

U (x ) = 1 − e− x
900 .

Chec k nor mality OK: U (∞) = 1 and U ($0) = 0. ✓
∴ U ($2,000) = 0.8916, U ($1,000) = 0.6708, and

U ($500) = 0.4262.

∴ U (L) = 0. 8916×0. 4 + 0. 6708×0. 4 + 0. 4262×0. 2 = 0. 7102

∴
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Approximating a C.E. (cont.)

Since Fred’s R = 900, then use the utility function:

U (x ) = 1 − e− x
900 .

Chec k nor mality OK: U (∞) = 1 and U ($0) = 0. ✓
∴ U ($2,000) = 0.8916, U ($1,000) = 0.6708, and

U ($500) = 0.4262.

∴ U (L) = 0. 8916×0. 4 + 0. 6708×0. 4 + 0. 4262×0. 2 = 0. 7102

∴ Fr ed’s expect ed utility of this lott ery is 0.7102, and

∴ his C.E. is $1,114.71, since U ($1,114.71) = 0.7102:

☞ remember : the utility of a lott ery is its expect ed utility, by
definition.
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Approximating a C.E. (cont.)

Since Fred’s R = 900, then use the utility function:

U (x ) = 1 − e− x
900 .

Chec k nor mality OK: U (∞) = 1 and U ($0) = 0. ✓
∴ U ($2,000) = 0.8916, U ($1,000) = 0.6708, and

U ($500) = 0.4262.

∴ U (L) = 0. 8916×0. 4 + 0. 6708×0. 4 + 0. 4262×0. 2 = 0. 7102

∴ Fr ed’s expect ed utility of this lott ery is 0.7102, and

∴ his C.E. is $1,114.71, since U ($1,114.71) = 0.7102:

☞ remember : the utility of a lott ery is its expect ed utility, by
definition.

The C.E. can be approximat ed:

C.E. ≈ mean − 1
2

× Variance
Risk Tolerance

C.E. ≈ $1,300 − 1
2

× 360,000
900

≈ $1,1 00.

(Exact with a nor mal dis tribution.)
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7. Appendix: Application to Finance

Consider a lott ery on x descr ibed by the probability density
function fx (. ).

➣ Its C.E. , x̃ , mus t satisfy the equation:

u(x̃ ) = ∫ fx (x0)u(x0)dx0.

Why? By the definition of utility, the utility of a lott ery
[ u(x̃ ) ] equals its expect ed utility.

➣ Subs tituting the exponential for m u(x ) = 1 − e− γx , we can
der ive:

x̃ = − 1
γ

ln e−γx = − 1
γ

ln f e
x (γ),

where f e
x (. ) represents the exponential transfor m of the density

function fx (. ), and where e−γx is the mean of the function e−γx

for the lott ery.

➣ The C.E. of any lottery is therefore the negative reciprocal of
the risk aversion coefficient times the natural logar ithm of the
exponential transfor m of the var iable ev aluat ed at the risk
av ersion coefficient.
(So there!)
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Finance (cont.)

➣ As γ approaches zero, this expression approaches x : the C.E. of
any lottery to a risk-indif ferent individual is the expect ed value,
x .

as γ→ 0, x̃ → x .

A cons tant-r isk-averse decision maker (with a risk-aversion
coef ficient γ) is facing a nor mal (or Gaussian) lott ery. (For a
nor mal dis tribution, the exponential transfor m of the density

function, f e
x (γ), is given by e−γm + 1

2
γ2σ2

.)

Then his C.E. to this lott ery =

the mean minus a half γ times the var iance, or

x̃ = m − 1
2
γσ2

Hence a risk-averse individual will prefer the lott ery wit h the low er

variance σ2, when both hav e the same expect ed value, or mean
m. (See Finance.)
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