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Utility

Topics:
I. Decisions Under Uncertainty
— Certain Equivalents
Expected Utility
Constant Absolute Risk Aversion
Eliciting Utility Functions
Choosing Among Lotteries
Appendix: Approximating a Certain Equivalent

o nH WN

7. Appendix: Finance.

(See Dixit & Skeath: 2nd ed. pp. 228-230, 300-303;
3rd ed. pp. 258—-261, 358—361.)
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I. Decisions with Uncertainty

Choose among the four lotteries with unknown probabilities
on the branches: uncertainty —

LA

$25 S$I150 $600 $80 $90 $98 -520 SO $100 S$1000 SI105 -—S100

(Write down your answer.)
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Five possible answers:

There are several possibilities:

The extreme pessimist: choose the lottery with the
highest minimum payoff.

known as “maxmin” decision making, from
maximising the minimum payoff.

[1 would result in choice of lottery B.

The extreme optimist: choose the lottery with the
highest maximum payoff.

known as “maxmax” decision making, from
maximising the maximum payoff.

[1 would result in choice of lottery C.
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2a.

Hurwicz: choose the lottery with the highest value of a
weighted average of the minimum and maximum,

say a X lottery X’s minimum payoff + (1 — ) X lottery X’s
maximum payoff.

— when a = 1, the Extreme Pessimist Rule [ 1 B
— when a = 0, the Extreme Optimist Rule [] C

If 0.899 < @ < 0.901, then choose lottery A.

If more than two possible payoffs, this rule ignores the
intermediate payoffs, which shouldn’t happen.

Choose the lottery with the highest average payoff.

has the advantage that it includes all payoffs, not just the
extreme ones, but it imputes equal probabilities to each
payoff’s occurrence. (The Laplace criterion.)

Moreover, it also assumes a risk-neutral decision maker.

[1 would result in choice of lottery C.
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4. For lotteries with more common structure — say, a matrix
Rji, where lottery / and state of the world j result in
payoff R;; — we can use the Savage rule of minimum regret
for the wrong decision:
choose the lottery which minimises the maximum regret,
where regret is the difference between the contingent
outcome’s payoff in the lottery you chose and the highest
contingent outcome’s payoff.

(See Apocalypse Maybe in the Readings.)

If we have the probabilities of the lotteries’ outcomes (say, from a
smoothly working roulette wheel), a new rule is possible:

5. Choose the lottery with the highest expected payoff: weight
each outcome with the probability of its occurrence.

Includes all payoffs and the probabilities of their occurrence,
but still assumes a risk-neutral decision maker.
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Risk aversion

Risk aversion: the clear evidence that many people will forgo
expected profit to ensure certainty by selling a gamble at a
price less than the expected profit.

Risk aversion is not indicated by the slope of the utility
curve: it’s the curvature: if the utility curve is locally —

I. linear (say, at a point of inflection), then the decision
maker is locally risk neutral.

2. concave (its slope is decreasing — Diminishing
Marginal Utility), then the decision maker is locally
risk averse;

3. convex (its slope is increasing), then the decision
maker is locally risk preferring.

See
http://www.gametheory.net/Mike/applets/Risk/risk.html
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Risk-averse, and risk-preferring utility functions.

|
T

Utility u(x)
i

N
T

0 I I I I I
-$100 $250 $500 $750 $1000

Sx
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The Certain Equivalent (C.E.) of a lottery.

Correct Incorrect D $ 2

$100 S0
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2. Expected Utilities

An ordering which avoids inconsistencies over preferences and
likelihoods:

[1 Assign utilities to all payoffs,
and probabilities to all states of the world,

[1 then rank lotteries by their expected utilities.

[1 The utility of a lottery is its expected utility.
(by definition)

U(x) = Zn’p,- U(x;), where X is the C.E.
i=1

According to Savage, this is the only ordering which satisfies five
general conditions (or axioms) we’d like a good decision rule to
satisfy:

Completeness and Transitivity,

Continuity,

Substitutability,

Monotonicity, and

Decomposability.
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Wealth Independence

Q: What if | gave each of you a $100 bill together with a ticket to
play your preferred lottery of the four at the top of this section.
Would your preferences among the lotteries now change?

If not, then your preferences exhibit wealth independence.

The Delta property (or Wealth Independence property): an
increase of all prizes in a lottery by an amount A increases the
Certain Equivalent (C.E.) by A.

[1 Suppose your C.E. for an equiprobable lottery on $0 and $100 is
$25.

[1 The lottery owner agrees to pay you an additional $100
regardless of outcome: your final payoffs will be $100 and $200
with equal probability.

[] If you feel that your C.E. would now be $125 and reason
consistently in all such situations, then you satisfy the Delta

property.
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Accepting Wealth Independence

Acceptance of the Wealth Independence (or Delta) property has
strong consequences:

[1 The utility curve is restricted to be either linear or an
exponential:

Uu(x) must have one of the forms:
u(x)=a+bx,
or U(x)=a+be ™,
where a, b, and 7 are constants.
[] The buying and selling prices of a lottery will be the same for
any individual.

Satisfying the Delta property means that the C.E. of any proposed
lottery is independent of the wealth already owned.

This wealth is just a “A” that does not affect the preference:

The linear and exponential utility curves are called wealth-
independent, or constant-absolute-risk-aversion (CARA) functions.
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3. Constant Absolute Risk Aversion

Parameterise the exponential utility function as:

1-e7x
(A) u(x)=——

where u(0) =0 and u(1) =1, or as:
(B) U(x)=1-eT%,
where U(0) = 0 and U(o0) = I.

r is the risk aversion coefficient = —

u"(x)
u'(x)

Sign of 7 Risk profile Curvature

r=0 risk neutral u"(x)=0
r>0 risk averse u"(x)<0
r<o0 risk preferring Uu"(x)>0

Acceptance of the Delta property leads to the characterisation of risk
preference by a single number, the risk aversion coefficient.

The reciprocal of the risk aversion coefficient is known as the risk

tolerance, R = %
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Assessing your Risk Tolerance R when your Utility is Wealth-
Independent.

The exponential utility function is given by:
Ux)=a+ber,
where R is a parameter that determines how risk-averse the utility

function is, the risk tolerance, and a and b are constants used to
normalise the function.

R = %, where 7 is the risk-aversion coefficient.

Larger values of R make the exponential utility function less
curved and so closer to risk neutral, while smaller values of R
model greater risk aversion.

As we have seen, the exponential utility function is appropriate if
(and only if) the individual’s preferences satisfy the Delta Property
of wealth independence.
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A simple choice to obtain one’s CARA Risk Tolerance

LIWin $Y with probability 12
- Lose $1 Y with probability 2

has a C.E. of $0

Yes No

$0

¥ -1y

1
2

Q: What is the maximum size of Y at which you’d prefer doing
nothing to having this lottery: the point at which you’d give the
lottery ticket away (i.e. at which it has a C.E. of zero)?

This Y is approximately equal to your risk tolerance R in the
exponential (wealth-independent) utility function.

(See Clemen, Making Hard Decisions, pp. 379-382.)
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Ron Howard’s insights ...

Howard (1988) gives reasonable values of determining a company’s
risk tolerance R in terms of sales, net income, or equity.

According to Howard, a company’s risk tolerance R is
approximately:

[1 6.4% of annual sales,
[1 1.24 X annual net income, or
[1 15.7% of equity.

Exponential utility functions exhibit CARA.

Logarithmic utility functions exhibit falling risk aversion (strictly:
constant relative risk aversion) — more realistic?

See: Howard R A (1988), Decision analysis: practice and promise,
Management Science, 34, 679-695.
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Two Types of Decision-Makers: Fred and Mary.

Fred’s preferences across lotteries don’t change when he comes into
an inheritance: his utility function exhibits Wealth Independence
(or satisfies the Delta Property).

Mary, however, finds that her preferences do change with her
wealth, even for small amounts. She doesn’t exhibit Wealth
Independence in her preferences over lotteries.

Fred’s utility function is easily determined by eliciting his risk
tolerance R through the C.E. of the Y lottery on the previous
page, and plugging it into an exponential utility function. Let’s
say for fred Y = R =900 =1/7.

Mary’s utility curve can be derived by asking her the C.E. of a
series of lotteries, as described below. Each of her answers
determines the next lottery she confronts. In general, the lotteries
(and so the utility curve elicitted) will be specific to a particular
decision of Mary’s.
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4. Eliciting Utility Functions

Choose among the four lotteries depicted below:

.58\ 22 G .1 2 \I 9 05

$25 S$I150 $600 $80 $90 $98 -—-520 SO $100 S$1000 S105 -S100

The probabilities are objectively determined:

the lotteries are all based on things like the spin of a smooth
roulette wheel, etc.
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Choosing among lotteries ...

It is difficult to choose: difficult to think —
[1 about probabilities such as 0.22, and
[1 about gambles with four possible prizes.

But if Mary, say, subscribes to the three axioms of utility theory
(Transitivity, Substitution, Continuity),

then we know that Mary’s choice should be based on:
maximising the expectation of a utility function.

So we want Mary’s choice behaviour among the four gambles to
conform to her expected utility maximisation.

We need to discover Mary’s utility function: how?

We can assess Mary’s utility function:
by making some judgements that are easier than those called for in
a direct choice among the four gambles above.
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Question I: What is Mary’s C.E. for the lottery LI:
Uprobability 2 of getting $1000
Eprobability 2 of owing $100
This gamble is selected so that its two prizes span all the prizes in the

four gambles from which Mary must choose (set u($1000) = | and
u(—-$100) = 0), and it gives probability 2 to each:

O,

-$100 $1000
Not a trivial judgement to make, but not so hard, because:

comparing a sure thing with a gamble having only two prizes and a
simple 50—50 probability structure.

Mary’s Answer I: she’s indifferent between the gamble above and $400 for
sure. So Mary’s C.E. for lottery LI is $400.

If u(-$100) =0, and u($1000) = I, then U(L1) = 0.5 = U($400), since the
utility of a lottery equals its expected utility, by definition.
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Question 2: What is Mary’s C.E. for the gamble L2:

$400 $1000

This gamble has:

[1 top prize equal to the upper prize from the question, and
[] bottom prize equal to Mary’s previously assessed C.E.

Mary’s Answer 2: Approximately $675.
So Mary’s Certain Equivalent for lottery L2 is $675.
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Question 3: What is Mary’s C.E. for the gamble L3:

—$100 $400

Mary’s Answer 3: Approximately $100.
So Mary’s Certain Equivalent for lottery L3 is $100.
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Why these questions?

If Mary can answer these questions, then we’ll have five points on
Mary’s utility function in the range —$100 to $1000:

arbitrarily assigning —$100 utility = 0 and $1000 utility = I,
then the answers reveal that

[] Mary’s utility of $400 [ u($400) ] = 0.5,

[1 Mary’s utility of $675 [ u($675) ] =0.75, and

[1 Mary’s utility of $100 [ u($100) ] = 0.25.
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Plotting Mary’s Curve:

With these five values, we can rough in a pretty good
approximation of Mary’s utility function and compute her expected
utilities for the four original gambles, making her choice
accordingly.

Even if our approximation is off, it is close to Mary’s “true utility”
and her choice according to the approximation will be nearly as
good as the best gamble using Mary’s “true utility”.

Mary’s making some judgement calls above, and she may not be
doing so well.
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Checking for consistency ...

The data above allow us to run consistency checks, such as:
“What is Mary’s C.E. for L4:”

$100 $675

It should be $400. Why?

Because this is a gamble whose prizes have utilities of 0.25 and
0.75 for Mary, so that it has expected utility of 0.5,

and the certain amount of money that has utility 0.5 is $400, for
her.

Mary’s assessed C.E. for this gamble is approximately $375, but
now we can return to Mary’s original assessments and iterate so
that we have five consistent values.
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Why this procedure?

Why is this procedure better than just choosing one of the original
gambles?

Because the numerical judgements that we’re asking Mary to make
are for the easiest conceivable cases that aren’t trivial — two-prize
lotteries with equally likely outcomes.

Mary is quite ready to believe that she’s better at processing that
sort of gamble than she is at the four more complicated gambles
with which we started.

Is this benefit coming for free?

No — we also had to make a qualitative judgement that in this
choice situation, the three axioms are good guides for choice
behaviour.

But because we know where the pitfalls in those axioms are, we
are confident that, in this case, the axioms are a sound guide to
behaviour.
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The Utility Curve

How does eliciting the C.Es. of simple lotteries allow us to construct
Mary’s utility curve?

[]
[]

[]

[]

[]

Using the rule that the utility of a lottery is its expected utility,

and setting U(—$100) = 0 and U($1000) = I, so that the utility function
spans the possible payoffs,

we see that Mary’s utility of the first of the simple lotteries above (the
lottery over —$100 and $1000, C.E $400) is
b X0+ 12 X]=0.5;

her utility of the second (over $400 and $1000, C.E. $675) is
b X055+ X1 =0.75;

her utility of the third (over —$100 and $400, C.E. $100) is
I X0+ Y% xX0.5=0.25;

and her utility of the fourth (over $100 and $675, C.E. $375) is
2 X 0.25 +Y2 X 0.75 =0.5.

The last three C.E.s ($675, $100, and $375) have been plotted against the
lotteries’ utilities (0.75, 0.25, and 0.5, resp.) on the following graph, and
we’ve joined the five points with straight lines, to get an approximation
for Mary’s utility function. Iterate.
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Utility Curves u = u(x): Mary’s, Fred’s normalised, and

~
T

Utility u
i

.25-

0—+—HHH— —
-$100 $250 $ssoo $750  $1000
X
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5. The Choice: Using the answers ...

We can use Mary’s utility function as plotted, and Fred’s utility

function u(x) =1 — e 0, to calculate their utilities of the four
lotteries, A, B, C, and D, of section 4.

Simply a matter of reading off Mary’s utilities of the dollar payoffs of
the lotteries, and calculating her expected utilities of the four
lotteries.

Dollars Mary’s Utility  Fred’s Utility

—-$100 0.000 -0.118
—-$20 .100 -0.022
$0 125 0.0

$25 156 .027
$80 .225 .085
$90 .238 .095
$98 .248 .103
$100 .250 .105
$105 .255 A1
$150 .295 154
$600 .69 487

$1000 1.0 671
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Mary’s expected utilities ...

[1 Mary’s utility of lottery A is:
0.7%0.156 + 0.2x0.295 + 0.1%x0.69 = 0.237

[1 of lottery B:
0.2%x0.225 + 0.58%0.238 + 0.22%0.248 = 0.238

[] of lottery C:
0.6x0.100 + 0.1x0.125 + 0.2X0.250 + 0.1 %1 = 0.223

[] and of lottery D:
0.95%0.255 + 0.05%0 = 0.248

So Mary would choose lottery D.

We can see from the plot of her utility function that she’s slightly
risk averse.
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Fred’s expected utilities ...

Using Fred’s utility function: u(x) =1 - e %0
[1 Fred’s utility of lottery A is:
0.7%x0.027 + 0.2%x0.154 + 0.1x0.487 = 0.098
[1 of lottery B:
0.2x0.085 + 0.58%0.095 + 0.22x0.103 = 0.095
[1 of lottery C:
0.6%(—0.022) + 0.1x0 + 0.2x0.105 + 0.1x0.671 = 0.086
[ and of lottery D:
0.95%0.11 + 0.05%(—0.118) = 0.074

So Fred would choose lottery A.

(Remember: we’re only interested in the relative utilities, not the
absolute values, and we can’t compare Mary’s with Fred’s utilities
directly.)
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The risk-neutral decision maker ...

The risk-neutral decision maker would choose the lottery with the
highest expected dollar payoff.

[1 The expected dollar payoff of lottery A is:

0.7%$25 + 0.2%$150 + 0.1x$600 = $107.50
[] of lottery B:

0.2x$80 + 0.58%$90 + 0.22%$98 = $89.76
[1 of lottery C:

0.6%x—$20 + 0.1%X$0 + 0.2x$100 + 0.1x$1000 = $108.00
[1 and of lottery D:
0.95%x$105 + 0.05%—$100 = $94.75

So the risk-neutral player would choose lottery C (or perhaps
lottery A).
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6. App: Approximating a Certain Equivalent

Fred (whose Risk Tolerance R = 900 from the R.T. lottery on p.I5)
is considering the lottery L:

Ewm $2,000 with probability 0.4
JWin $1,000 with probability 0.4
BWin $500 with probability 0.2

Its mean m = $1,300, and standard deviation o = $600.
n
Variance = Y[x; — m]? Prob.(X = x;) = $600% = $360,000,
i=1
n
where the mean m = Y x; Prob.(X = x;).

i=1

(Standard deviation o = square root of the variance.)
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Approximating a C.E. (cont.)

Since Fred’s R = 900, then use the utility function:
U(x)=1-¢e o,
Check normality OK: U(co) = 1 and U($0) = 0.

0 U($2,000) = 0.8916, U($1,000) = 0.6708, and
U($500) = 0.4262.

U(L) =0.8916x0.4 + 0.6708%0.4 + 0.4262x0.2 = 0.7102
Fred’s expected utility of this lottery is 0.7102, and
his C.E. is $1,114.71, since U($1,114.71) = 0.7102:

remember: the utility of a lottery is its expected utility, by
definition.

L O O O

The C.E. can be approximated:

1 Variance
2 Risk Tolerance

C.E. = $1,300 — 1 x 220% = 51, j00.

(Exact with a normal distribution.)

C.E. = mean -




Lecture 10 UNSW © 2009 Page 34

7. Appendix: Application to Finance

Consider a lottery on X described by the probability density
function f,(.).

[0 Its C.E. , X, must satisfy the equation:
u(x) = [ fx(xo) u(xo) dxo.

Why? By the definition of utility, the utility of a lottery
[ u(x) ] equals its expected utility.

[0 Substituting the exponential form u(x) =1 - e 7*, we can
derive:

X = —% Ine7X = —% Inf2(7),

where 2 (.) represents the exponential transform of the density

function f,(.), and where e77* is the mean of the function e 7*

for the lottery.

[1 The C.E. of any lottery is therefore the negative reciprocal of
the risk aversion coefficient times the natural logarithm of the
exponential transform of the variable evaluated at the risk
aversion coefficient.

(So there!)
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Finance (cont.)

[] As 7y approaches zero, this expression approaches Xx: the C.E. of
any lottery to a risk-indifferent individual is the expected value,
X.

asy - 0, x - X.

A constant-risk-averse decision maker (with a risk-aversion
coefficient 7) is facing a normal (or Gaussian) lottery. (For a

normal distribution, the exponential transform of the density
1,22

function, fZ(7), is given by e 7" 27°7"))

Then his C.E. to this lottery =
the mean minus a half y times the variance, or

~

X=m-1ro?
Hence a risk-averse individual will prefer the lottery with the lower

variance 0%, when both have the same expected value, or mean
m. (See Finance.)



