A User’s Guide to GAuUcsD 1.4 *

Nicol N. Schraudolph
nict@cs.ucsd.edu
Computer Science & Engineering Department
University of California, San Diego

La Jolla, CA 92093-0114

John J. Grefenstette
gref@aic.nrl.navy.mil
Navy Center for Applied Research in Artificial Intelligence

Naval Research Laboratory
Washington, DC 20375-5000

July 7, 1992

Abstract

This document describes the GAUCsD system for function optimiza-
tion based on genetic search techniques. Genetic algorithms appear
to hold a lot of promise as general purpose adaptive search proce-
dures. However, the authors disclaim any warranties of fitness for a
particular problem. The purpose of making this system available is
to encourage the experimental use of genetic algorithms on realistic
optimization problems, and thereby to identify the strengths and
weaknesses of genetic algorithms.

GAucsD was developed by Nicol Schraudolph at the University of
California, San Diego; it is based on GENESIS 4.5, a genetic al-
gorithm package written by John J. Grefenstette. GAuUcCsSD and
related materials are available via anonymous ftp from cs.ucsd.edu
(132.239.51.3) in the pub/GAucsd directory or via electronic mail
from the first author, who welcomes bug reports, comments and sug-
gestions, and maintains a mailing list of users to announce patches
and new releases.

*Hardcopies of this document can be obtained by requesting technical report CS92-249
from Technical Reports, CSE Department, UC San Diego, La Jolla, CA 92093-0114. There is
a charge of 5 US$ for this service.

1 Introduction

This document describes the GAUCSD software package written to promote the
study of genetic algorithms for function minimization. Since genetic algorithms
are task-independent optimizers, the user must provide only an evaluation func-
tion which returns a value when given a particular point in the search space.
GAUCcsSD was written in C under the UNIx! operating system, but should be
portable to many platforms.

The remainder of this section gives a general overview of genetic algorithms
(GAs); for an in-depth introduction see [8]. Details on porting, installing, and
running GAUCSD are provided in subsequent sections.

GAs are iterative procedures which maintain a population P of n candidate
solutions to an objective function f:

P(t) = {z1(t), 22(1), . . .2 (1)}

Fach structure z; in population P(¢) at time ¢ is simply a binary string of
length [. Generally, each z; represents a vector of parameters to the function
f(z), but the semantics associated with the vector is unknown to the GA. During
each iteration step, called a generation, the current population is evaluated,
and, on the basis of that evaluation, a new population of candidate solutions is
formed. A general sketch of this procedure — known as generational GA — is
shown in Figure 1.

t <- 0;

initialize P(t);
evaluate P(t);

while (not finished) do

begin
t <-1t + 1;
select P(t) from P(t - 1);
operate on P(t);
evaluate P(t);
end;

Figure 1: A Generational Genetic Algorithm.

The initial population P(0) is usually chosen at random. Alternately, the
initial population may contain heuristically chosen initial points. In either case,
the initial population should contain a wide variety of structures. Each structure
in P(0) is then evaluated. For example, if we are trying to minimize a function
f, evaluation might consist of computing and storing f(x1), ... f(zy).

1UNIX is a trademark of Bell Laboratories

The structures of the population P(¢t + 1) are chosen from the population
P(t) by a randomized selection procedure that ensures that the expected number
of times a structure is chosen is proportional to that structure’s performance,
relative to the rest of the population. That is, if z; has twice the average
performance of all the structures in P(t), then it is expected to appear twice in
population P(t +1). At the end of the selection procedure, population P(t+ 1)
contains exact duplicates of the selected structures in population P(t).

In order to search other points in the search space, some variation is intro-
duced into the new population by means of idealized genetic operators. The
most important operator is called crossover. Under the crossover operator, two
structures in the new population exchange portions of their binary represen-
tation. This can be implemented by choosing a point at random, called the
crossover point, and exchanging the segments to the right of this point. For
example, let

x1 = 100 : 01010 and x5 = 010 : 10100,

and suppose that the crossover point has been chosen as indicated. The resulting
structures would be

y1 = 100 : 10100 and y» = 010 : 01010.

Crossover serves two complementary search functions. First, it provides
new points for further testing of the schemata already present in the popula-
tion. In the above example, both #; and y; are representatives of the schema
1004 #£ 77 #, where the # means ”don’t care”. Thus, by evaluating y;, the GA
gathers further information about this schema. Second, crossover introduces
representatives of new schemata into the population. In the above example,
y2 is a representative of the schema #1001###, which 1s not represented by
either parent. If this schema represents a high-performance area of the search
space, the evaluation of y, will lead to further exploration in this part of the
search space.

Termination may be triggered by finding an acceptable approximate solution
to f(x), by fixing the total number of evaluations, or some other application-
dependent criterion.

The basic concepts of GAs were developed by John Holland [9] and his stu-
dents [2, 4, 7, 10]. Theoretical considerations concerning the allocation of trials
to schemata [4, 9] show that genetic techniques provide a near-optimal heuristic
for information gathering in complex search spaces. A number of experimental
studies [2, 3, 4] have shown that GAs exhibit impressive efficiency in prac-
tice. While classical gradient search techniques are more efficient for problems
which satisfy tight constraints (e.g., continuity, low dimensionality, unimodal-
ity, etc.), GAs consistently outperform both gradient techniques and various
forms of random search on more difficult (and more common) problems, such as
optimizations involving discontinuous, noisy, high-dimensional, and multimodal

objective functions. GAs have been applied to various domains, including nu-
merical function optimization [2, 3], adaptive control system design [5], and
artificial intelligence task domains [12].

2 Installing the System

This section explains if and how GAUCSD can be ported to various computing
platforms. It assumes that you have successfully obtained and unpacked the
GAUcsD source distribution into a designated directory. You will see four sub-
directories there: src contains source code for the GAuUcsD library and utilities,
usr has various templates for files users have to write, etc contains a few sh
and awk scripts, and bin is where the compiled binaries will be installed.

If you want to run GAUCSD on multiple platforms, follow the instructions
below for each type of machine in succession. Since this version of GAUCSD
uses machine-dependent subdirectories for binaries, you can compile for multiple
target platforms from a single copy of the source distribution on a shared file
system.

2.1 Requirements

GAuUCcsD has been developed in a UNIX environment, but should be easy to port
to any platform that has a C compiler and the make and awk utilities. GNU
versions of cc, make and awk are available as source distributions and also as
binaries free of charge for a variety of machines.

Note that since make and awk are called as such from deep within the
GAuUcsD package, they must be available as commands by that name. Thus if
you are using GNU’s gawk for instance, you must define awk as a link or alias
for gawk on all target platforms. Also make sure that make and awk are both
in your command search path.

GAuCsD uses the names inset, report, and (on UNIX systems) ga & gx for
its own commands; if one of these clashes with some other command on your
system, you have to take steps to resolve the name conflict. The gx command
available on UNIX platforms uses "mail $USER” to notify users of completed ex-
periments; if this won’t work on the target machine, modify the mailing address
in file etc/gx accordingly, or remove the mail command altogether.

2.2 Customizing the Makefile

The top portion of the file src/Makefile needs to be customized for each target
platform. For many platforms this will be the only modification necessary; on
most UNIX systems the supplied makefile will work without any changes. On
each successful installation, a copy of the makefile will be saved along with the
binaries.

Since binaries are installed in machine-dependent subdirectories, the make-
file needs the variable MACH set to a directory name that is unique to each
target platform. The default is set to the output of the mach command, which
on many UNIX systems returns the machine type. If some of your target plat-
forms do not have a mach command, you may consider writing one, although
often 1t will be easier to just manually set MACH to a suitable name for each
target platform.

Next, you should set CFLAGS to whatever compiler flags you wish to set on
this particular platform. In particular, you should add -DNOGAGX to CFLAGS
for platforms where you can’t (or don’t want to) use the ga and gx utilities for
distributed computing, which work only in certain types of UNIX environment.

Further macros that may need to be customized deal with the command
shell’s behavior, file naming conventions, file handling and compilation com-
mands on the target platform; all of these are documented in the makefile itself.

2.3 Building GAvcsDp

Define the environment variable GAUCSD to be the full pathname to the
directory you unpacked the GAUCSD source distribution in. From there, change
into the src subdirectory and type "make all”. If all goes well, type "make
install” | then "make clean”. If you get errors due to missing include files; check
the top section of file define.h for details on how to work around these problems.
Finally, communicate to users where you have installed GAUCSD so that they
can set the GAUCSD variable in their environment.

3 Major Procedures

This section gives a more detailed description of the genetic algorithm imple-
mented in the GAuUcsD library.

3.1 Initialization

File init.c contains the initialization procedure, whose primary responsibility is
to set up the initial population. If you wish to seed the initial population with
heuristically chosen structures, put the structures in the ini file (see Section 11)
and use the 1 option (see Section 10). The rest of the initial population is filled
with random structures, or by a reduced-variance technique for super-uniform
initialization if the u option is used.

3.2 Generation

As previously mentioned, one generation (see generate.c) comprises the follow-
ing steps: selection, mutation, crossover, evaluation, and some data collection
procedures.

3.3 Selection

Selection is the process of choosing structures for the next generation from the
structures in the current generation. The selection procedure (see file select.c)
is a stochastic procedure that guarantees that the number of offspring of any
structure is bounded by the floor and the ceiling of the (real-valued) expected
number of offspring. This procedure is based on an algorithm by James Baker.
The idea 1s to allocate to each structure a portion of a spinning wheel propor-
tional to the structure’s relative fitness. A single spin of the wheel assigns the
number of offspring to all structures. This algorithm is compared to other se-
lection methods in [1]. The selection pointers are then randomly shuffled, and
the selected structures are copied into the new population.

3.4 Mutation

After the new population has been selected, mutation is applied to each struc-
ture in the new population (see mutate.c). Each position is given a chance
M _rate of undergoing mutation. This is implemented by computing an inter-
arrival interval between mutations, assuming a mutation rate of M _rate. The
mutation macro in define.h determines what happens if mutation does oc-
cur; the default action is to flip the bit value for that position. The mutated
structure is then marked for evaluation.

3.5 Crossover

Crossover (see cross.c) exchanges alleles among C_rate * Popsize adjacent
pairs of structures in the new population. Note that a C_rate greater than 1.0
will cause some structures to undergo several crossovers. Crossover might be
implemented in a variety of ways, but there are theoretical advantages treating
the structures as rings, choosing two crossover points, and exchanging the sec-
tions between these points [4]. The segments between the crossover points are
exchanged, provided that the parents differ somewhere outside of the crossed
segment. If, after crossover, the offspring are different from the parents, then
the offspring replace the parents, and are marked for evaluation.

4 Fitness Scaling

When minimizing a numerical function with a GA, it is common to define the
performance value u(#) — the expected number of offspring — of a structure »
as u(z) = F' — f(x), where F' is a large baseline function value. Negative values
of u(x) can either be zeroed or avoided altogether by setting F' to fiaz, the
maximum value that f(x) can assume in the given search space. Often fiqq is
not available a priori, in which case we may use F' = f(#mqy), the maximum
value of any structure evaluated so far.

Either choice of F has the unfortunate effect of making good values of & hard
to distinguish. For example, suppose fqr = 100. After several generations, the
current population might contain only structures x for which 5 < f(x) < 10. At
this point no structure in the population has a performance which deviates much
from the average. This reduces the selective pressure towards better structures,
and the search stagnates. One solution is to update the baseline to, say, F' = 15,
and rate each structure against this new standard.

The problem is then to automate the baseline update in a manner that
keeps the amount of selective pressure under control. GAUCSD provides two
alternative fitness scaling algorithms for this task: window scaling and sigma
scaling.

Window scaling allows the user to control how aggressively the baseline is
updated via the scaling window size W. If W > 0, the system sets F' to the
greatest value of f(x) which has occurred in the last W generations. A value of
W = 0 indicates an infinite window, i.e. F' = f(#mqy). Note that this method
is overly attentive to individuals in that a single ”lethal” genotype can all but
eliminate selective pressure for W generations.

Sigma scaling (studied by Forrest [6]) achieves more robust performance by
setting F' to the average population fitness plus a certain multiple, the sigma
scaling factor s, of the standard deviation of population fitness; structures worse
than F are assigned zero performance. Note that for a structure « with f(z) one
standard deviation better than the population average, u(z) = (s + 1)/s; sigma
scaling thus provides very direct control over the selection pressure. Values for
s between 1 and 5 are commonly used in practice.

5 Dynamic Parameter Encoding

When encoding real-valued parameters of the evaluation function on a binary
genotype there is a conflict between the desire to keep the genes short for good
convergence and the need to know the result with a certain precision. An appro-
priate — but cumbersome — reaction when faced with this dilemma would be
to first run an experiment with short genes to quickly obtain a low-precision re-
sult, then repeating it with ever-increasing precision while keeping the genotype
short by restricting the search to the previously identified solution region.

Dynamic Parameter Encoding (DPE) [11] implements this strategy of iter-
ative refinement by gathering convergence statistics of the top two bits of each
parameter. Whenever the population is found to be converged on one of three
subregions of the search interval for a parameter, DPE invokes a zoom operator
that alters the interpretation of the gene in question such that the search pro-
ceeds with doubled precision, but restricted to the target subinterval. In order to
minimize its disruptiveness the zoom operator preserves most of the phenotype
population by modifying the genotypes to match the new interpretation.

The DPE algorithm logs its zoom activity in the dpe file (see Section 11).

Since the zoom operation is irreversible it has to be applied conservatively in
order to avoid premature convergence; to this end DPE smoothes its convergence
statistics through exponential historic averaging. The time constant of this
filtering process is an important characteristic of the algorithm: the smaller its
value, the bolder DPE becomes, accenting the risks and benefits associated with
fast convergence.

Note that although DPE often facilitates a radical reduction of gene length,
there is a point beyond which the function to be optimized will no longer be
sampled with enough resolution to yield useful results. In particular if the
basin of attraction around the optimum is small, a low-resolution search might
miss it altogether. Of the five test functions provided in the $GAUCSD /usr
subdirectory for instance, four can be solved with DPE using as little as three
bits per parameter, but the multimodal function £5 requires twice as much.

The DPE algorithm is activated by selecting a non-zero smoothing time con-
stant in the inset program; it may be selectively disabled for certain parameters
via a b or g flag in the GAeval comment line (see Section 7). Since DPE is
based on strong assumptions about the interpretation of the genome it is meant
to be used in conjunction with a high-level evaluation function as facilitated by
the wrapper described below.

This quick overview was intended to encourage experiments with the DPE
algorithm; many aspects have been somewhat glossed over. For a more detailed
discussion please refer to [11].

6 FEvaluation Procedure

To use GAUCSD, the user must write an evaluation procedure. There are three
levels of abstraction at which such a procedure may be written. At the lowest
level a function called _eval() receives a pointer to the genome and its length
in bit as input and returns a double precision value. It must be declared as

double _eval(genome, length)
char genome[];
int length;

The interpretation of the genome is entirely up to the user, thus allowing
great flexibility and efficiency. However, the packed form of the genotype can be
awkward to deal with if the parameters are not aligned with byte boundaries.
Therefore an evaluation function eval() may be declared instead which receives
an unpacked genotype:

double eval(buff, length)
char buff[];
int length;

where buff is a character array containing (integer) zeroes and ones, and
length indicates the length of the array buff. This form of evaluation function
was used in the original GENESIS software and is assisted by some functions
which facilitate its interpretation. One is called Ctoi():

double Ctoi(buf, length)
char buf[];
int length;

and takes two arguments, a pointer to a char array and a length indicator.
Ctoi() returns the value computed by interpreting the buffer as an unsigned
binary string with the indicated length. If the A option is used, Ctoi() will
add a random fractional part to the value in order to avoid aliasing effects that
might otherwise compromise the search of continuous spaces (see Section 10).

Gray codes are often used to represent integers in genetic algorithms. They
have the property that adjacent integer values differ at exactly one bit position;
their use avoids the unfortunate effects of Hamming cliffs in which adjacent
values, say 31 and 32, differ in every position of their fixed point binary repre-
sentations (01111 and 10000, respectively). Functions which translate between
Gray code and fixed point representations are provided:

Gray(inbuf, outbuf, length)
char *inbuf, *outbuf;
register int length;

Degray(inbuf, outbuf, length)
char *inbuf, *outbuf;
register int length;

In the function Gray(), inbuf contains the fixed point integer, one bit per
char, while outbuf gets the Gray coded version, one bit per char. In Degray(),
inbuf contains the Gray code integer and outbuf gets the corresponding fixed
point integer.

A procedure Error() is provided which writes an error message to both
the file errors and the standard error output (stderr), and then terminates
the program. Functions for re-encoding, packing and unpacking genomes are
also provided — see the files encode.c and decode.c in $§GAUCSD /src for
details.

Figure 2 shows a low-level evaluation function which makes use of these
GAUcsD procedures. Note how a call to the evaluation function with negative
length parameter is used by GAUCSD to ask for a phenotypic description of the
most recently evaluated structure. This description i1s provided automatically
if you use the wrapper (see Section 7) and will be printed in the min file (see
Section 11).

/A koo okkkok kool ok ok ok ok ok bk kkkkkkokkkk . file fl.c kkkk/

double _eval(genome, length)
char genomel[];
int length;
{
register int 1i;
char buff[30];
char outbuf[10];
double sum = 0.0;

/* phenotype description, must be static */
static double x[3];

/* return previous phenotype on request */
if (length < 0)
sprintf(genome, "\n%lf %1f %1f", x[0], x[1], x[21);
else
{
/* GAlength 30 */
if (length != 30) Error("length error in eval");

/* unpack the genotype */
Unpack(genome, buff);

for (1 = 0; 1 < 3; i++)

{
/* convert next 10 bits to an integer */
Degray(&buff[i*10], outbuf, 10);
x[i] = Ctoi(outbuf, 10);
/* scale x to the range [-5.12, 5.11] */
x[il = (x[i] - 512.0) / 100.0;
/* accumulate sum of squares of x’s */
sum += x[i]*x[i];
}
}
return(sum);

3

Seokokokokokokok ook kokkokskokkkokokokokskokskok sk ok ok bk bk kkkkokkkk end of file *%%%/

Figure 2: A Low-level Evaluation Function.

10

A comment of the form /* GAlength [*/ (as shown in Figure 2) is recog-
nized by the inset program and used to set the default value of the ” Genome
Length” parameter. It may safely be omitted but is provided automatically by
the wrapper.

It is often desirable to pass parameters to the evaluation function that might
vary from experiment to experiment but should not be subjected to the GA
search. GAUCSD uses a method similar to that of passing C command line
arguments to make such application-specific parameters, entered via the inset
program, accessible through the declarations:

extern int GArgc;
extern char *GArgv[];

which, again, the wrapper provides for you. Note that each of the GArgc
string parameters in GArgv[] may contain blank spaces but not "\0’ or >\ n’.

If you are writing evaluation functions as shown in this section, GAUCSD
leaves the interpretation of the genome entirely up to you. While this affords
great flexibility, it also means that the DPE technique — which assumes a
known layout of gray-coded parameters on the genome — cannot be used unless
additional information about this layout is provided. This can be done by
declaring and initializing the global variables GAgenes, GAposn, GAbase
and GAfact in the evaluation file. For further details, consult the sample file
f1_ga.c in $GAUCSD /usr.

7 The Wrapper

GAucsD includes an awk script called wrapper which provides a higher level
of abstraction: by supplying the code for decoding and printing the evaluation
function parameters automatically, it allows the direct use of most C functions
as evaluation functions. The only restrictions are:

e the function must not be called _eval();
e it must return a scalar type or a pointer to such a type;

e all its parameters must be simple C types as described below, or pointers
to such types (this allows for passing arrays by reference).

The wrapper gets invoked from the inset program and constructs from
<name>.c the file <name>_ga.c which includes a function _eval(gene, length)
interfacing your evaluation function to the GAUCSD system. In order to do its
job the wrapper needs a comment line (occurring after the first declaration of
your evaluation function) in <name>.c which looks as follows:

/* Gheval <fn> <fieldl> <field2> ... */

11

where <fn> is the name of your evaluation function, possibly prefixed with
an asterisk for indirect return values. It 1s followed by one or more fields, where
each field specifies a parameter to the evaluation function. White space delimits
fields and hence may not occur within fields. The format of an individual field
is (in this order):

1. an integer indicating the number of bits to be used for representing this
parameter on the genotype. This must be between 1 and the number of
bits of an ”int” on your machine to make sense.

2. (optional) a colon followed by a number r specifying the range of the pa-
rameter. This means that the parameter will range from —r (or zero if
unsigned — see below) inclusive to +r exclusive. If omitted, the range is
determined directly from the number of bits used to represent the param-
eter. A second number s, separated by a colon, may be specified, forcing a
range from 7 inclusive to s exclusive. Both r and s may contain a decimal
point and a sign, but no exponent, and s must be strictly greater than r.

3. a character string containing in any order, in upper or lower case:

e exactly one of ¢, s, 1, 1, f or d, specifying the parameter type as
char, short, int, long, float or double respectively;

e (optional) a b or g indicating that the parameter is to be encoded
in binary or Gray code, respectively. Fither character causes the
parameter to be left alone by the DPE algorithm which relies on the
default Gray coding for its operation.

e (optional) a u indicating that the parameter is unsigned. For float
or double parameters the type will not change, but the default range
will be from zero to r instead of —r to r (see above).

4. (optional) an integer n indicating replication: the parameter is a pointer
to an array of n values of the same format. Values of 1 (simple indirection)
or 0 (same as no n at all) for n are allowed.

Space for parameters on the genotype is allocated from the left in order of the
fields. Figure 3 demonstrates how the evaluation function of Figure 2 is greatly
simplified when the wrapper is used. The function shown is the first of a suite of
five test functions that have been used extensively in the GA community since
their introduction by De Jong [4]; all five can be found in the $GAUCSD /usr
subdirectory.

If awk is not available on your system, you will not be able to use the
wrapper. You can emulate its operation manually by writing your low-level
evaluation function in a file ending with _ga.c and including the additional
data the wrapper normally provides. Please refer to the sample wrapper output
file f1_ga.c in $GAUCSD /usr for further details.

12

/A ok ok okkkokkkokkkokkok ok ok ok ok kb kkkkkkkkk . £ile fl.c kkkk/

double f£1(x)

register double *x;

{
register int 1i;
register double sum;

/* accumulate sum of squares of x’s */
for (sum = 0.0, i = 0; i < 3; i++)

sum += x[il*x[i];
return (sum);

b
/* Gheval f1 10:5.12d3 */

/A ook kokkkok ko okkok ok ok ok ok ok ok bk kkkkkokk end of file kkkk/

Figure 3: Same Evaluation Function using the Wrapper.

8 Setting up Experiments

In order to use GAUCSD, you must set the variable GAUCSD in your envi-
ronment to the full pathname of the directory where GAUCSD was installed on
your system. You also have to add the directory where the GAUCSD binaries
for your system are located — a subdirectory of $GAUCSD /bin whose name
reflects the machine type — to your command search path. On UNIX systems,
the directory $GAUCSD /etc should be added to the command search path
as well. You may want to put the commands that achieve this into a file that
gets executed automatically whenever you use the system, such as .cshrec under
UnNiX or AUTOEXEC.BAT under DOS.

The easiest way to write an evaluation function for GAUCSD to optimize
is to copy one of the examples provided in $§GAUCSD /usr and use it as
a template. Once you have the desired evaluation function in your current
directory, run the inset program to construct an in file. As inset prompts for
various GA parameters, hitting return in response results in the default value
shown in brackets being used. Many defaults (indicated with a * below) are
computed on the fly by inset from previously entered data.

It is important to keep in mind that while these ” dynamic defaults” are a nice
feature, the heuristics employed by no means guarantee a good, nor indeed even
adequate setting of GA parameters. The research on how to find good values for
them is still in its infancy, and as of today there are no strong results that could
replace the intuitive exploration of this parameter space by the experimenter.

13

The parameters set via inset are:

Evaluation File Name [f1]:

At this point make is called to preprocess, compile and link the appropri-
ate files. If the wrapper aborts with an error, examine the _ga.c file for
diagnostics.

Name of Experiment [*]:

The basename for all files associated with this experiment (see Section 11);
it defaults to the name of the evaluation file. If an in file with the chosen
basename exists already, it will be read at this point and used as default
for subsequent prompts. If the existing in file is read-only, you will be
asked to provide an alternative basename for writing — thus inset may
be used to re-edit existing in files, or to make modified copies from a read-
only master file. If there is no appropriate in file, inset will create it and
try to guess reasonable defaults as described above.

Genome Length [*]:

If there is a comment of the form /* GAlength [*/ — as produced au-
tomatically by the wrapper — in the evaluation file, the default length
suggested will be [.
Population Size [*]:

The number of structures in the population.

Trials per Run [*]:

The maximum number of function evaluations in each GA run. When they
are computationally expensive, trials are a better indicator of processing
time than the number of generations.

Number of Runs [1]:

The number of independent optimizations of the same function in this ex-
periment; multiple runs can increase the chance of finding a good solution.

Crossing Rate (per individual) [*]:

The expected number of two-point crossovers for each structure.

Mutation Rate [*]:

The expected number of mutations for each bit in the population.

Generation Gap [1.0]:

The generation gap is the percentage of the population which is replaced in
each generation. Note that GAUCSD operates very inefficiently for small
generation gaps.

14

Windowsize [-1]:

The size of the scaling window (see Section 4). Zero indicates infinite size,
and any negative value indicates sigma scaling.

Sigma Scaling Factor [2.0]:

Used only when sigma scaling is chosen.

DPE Time Constant [0]:

This is the time constant (in generations) with which the DPE algorithm
smoothes its convergence statistics through exponential historic averaging
in order to avoid premature convergence. A value of zero switches DPE
off altogether.

Convergence Threshold [*]:

The percentage of the population that needs to have the same value in
a given allele for it to be considered converged. Since it is used as the
trigger threshold for the zoom operator, this is an important parameter
for DPE. The default value follows an analysis in [11].

Max Alleles to Converge [*]:
Maximum Bias [0.99]:

Max Gens w/o Evaluation [2]:

The three parameters above allow termination of a run when a certain bias is
reached, a certain number of alleles have converged, or a certain number of gen-
erations has passed without creating a new genome. If any of these conditions is
met, the remainder of the run will be ”faked” by reprinting the current statistics
an appropriate number of times; this simplifies post-processing of GAucsD data
e.g. into graphs. The bias check can be disabled with a value of 1.0 or greater,
the other two with a value of zero.

Report Interval [*]:

The number of evaluations between data collections; zero indicates collec-
tions at the start and end of each run only.

Structures Saved [*]:

How many of the best structures should be saved to the min file.

Dump Interval [*]:

The number of generations between data dumps to the cpt file; zero in-
dicates that no dumps will be made.

15

e Dumps Saved [1]:

The number of dump files that should be kept. One means that only the
current dump file is kept; zero indicates that no dumps will be made.

e Options [Aclu]:

Used to set a variety of options; see Section 10 for details.

e Random Seed [*]:

The seed value for the random number generator used by GAucsp. Its
control allows exact replication of experiments; the default is derived from
the system clock.

At this point inset writes all settings out to the in file and prompts for any
application-specific arguments (cf. Section 6). Hitting return will obtain the
default read previously from the in file, or exit the loop when no default exists.

If GAucsD was compiled with the -DNOGAGX flag on your system, inset
then prints the command that will start the experiment and exit. On some UNIX
systems, however, it will prompt with queue []:. Hitting return in reply will
start the program via ga in background mode; any other response will queue it
in the named file for collective — possibly distributed — execution of a set of
experiments via gx (see Section 9).

9 Running Experiments

9.1 Direct Execution

A GAucsD program compiled from, say, evaluation file ”fl.c” may be run di-
rectly on an experiment named ”foo” by typing ”fl foo”. On systems supporting
Unix-style signal handling, you can terminate the experiment prematurely by
sending it INT or TERM signals, which can be generated by pressing key
combinations such as CTRL-C. The first such signal causes the experiment to
conclude after the current run while the second forces a cpt dump and exit
after the current generation. The third signal causes immediate termination; in
this case all progress since the last ept dump will be lost.

9.2 The Report Utility

If the ¢ or C option is active, the experiment will append a line of data to the
out file every ” Report Interval” trials. To summarize the mean and variance of
these measurements over all runs, use the report utility: typing report foo
for instance will summarize data file foo.out.

The summary contains a copy of the in file, followed by the means and
variances of measurements such as online performance, offline performance, the

16

average performance of the current population, and the current best value. On-
line performance is the mean of all evaluations; offline performance is the mean
of all current best evaluations — see [5].

If option c¢ is active, three measures of convergence are also printed: ”Conv”
is the number of positions which have converged at least to the chosen thresh-
old, ”Lost” is the number of those which have converged 100% (i.e. the entire
population has the same value), and ”Bias” indicates the average percentage of
the most prominent value in each position. For instance, a bias of 0.75 means
that on average each position has converged to either 756% zeroes or 75% ones.

9.3 Remote Execution via ga

On UNIX systems, the command ga £1 foo & will run the same experiment as
1 foo, but at low priority and in the background. ga also calls the report
program if appropriate, and can be used to execute GAUCSD experiments re-
motely provided you have the necessary permissions in your .rhosts file on the
remote machine: the command

ga f1 foo neuromancer smith /usr/ga &

for instance will recompile £1 on host neuromancer in the directory /usr/ga.
It will then copy foo.in (also foo.ini, foo.out and foo.sma if applicable) into
the remote directory, run the program there (using login name smith), then
copy any resulting data files back into your local directory and produce a report
if appropriate.

For binary compatible hosts the directory may be omitted, causing the exe-
cutable program to be run directly in /tmp on the remote host. This eliminates
the compilation time and does not require GAUCSD to be installed on the re-
mote host. In this mode the login name defaults to $USER. if omitted. If
the remote machine has direct access to the local directory through a shared
file system, specify the remote host’s path to it as directory argument: ga can
exploit this special case to avoid the overhead of copying files between the hosts.

9.4 Distributed Execution via gx

On UNIX systems, you can execute entire sets of experiments sequentially or in
parallel on a network of machines. This is done by accumulating experiments
in one or several queue files (see Section 8) whose names are then given as
arguments to the gx script. When all experiments have been completed, gx
will notify you via write or — if that fails — mail.

gx distributes experiments to remote hosts specified in the GAhosts in
the local directory, your home directory or $GAucsd/usr. Each entry in the
G Ahosts file consists of a load factor (how many programs will be sent to that
host) followed by the remote execution arguments to ga as described above

17

— see the sample GAhosts file in $GAucsd/usr for details. Any remaining
experiments (after the GAhosts file has been exhausted) are executed locally.

10 Options

GAucsD allows a number of options which control the kinds of output pro-
duced, as well as certain strategies employed during the search. Fach option is
associated with a single character. The options are indicated by responding to
the ”Options” prompt in inset with a string containing the appropriate char-
acters. If no options are desired, respond to the prompt by typing ’.”. Options
may be indicated in any order. All options may be invoked independently.

a — evaluate all structures in each generation. This may be useful when evalu-
ating a noisy function, since it allows the GA to sample a given structure
several times. If this option is not selected then structures which are
identical to parents are not evaluated.

A — causes Ctoi() to add a random fractional part to its conversion results in
order to avoid aliasing problems that might otherwise occur when search-
ing continuous spaces, due to the quantized nature of the genetic encoding.
Since this option makes Ctoi() stochastic, A automatically implies a.

b — at the end of the experiment, write the average best value (over all runs)
to the standard output.

¢ — collect statistics concerning the convergence of the algorithm. These statis-
tics are written to the out file every ” Report Interval” trials. The intervals
are approximate, since statistics are collected only at the end of a gener-
ation. Option ¢ implies C but is computationally more expensive.

C — collect statistics concerning the performance of the algorithm. These
statistics are written to the out file every ”Report Interval” trials. The
intervals are approximate, since statistics are collected only at the end of
a generation.

d — dump the current population to cpt file after each evaluation. This may
considerably slow down the program, and is only useful when each evalu-
ation represents a large amount of computation.

e — use the elitist selection strategy. The elitist strategy stipulates that the
best performing structure always survives intact from one generation to
the next. In the absence of this strategy, it is possible that the best
structure disappears due to crossover or mutation.

1 — read structures from the ini file into the initial population. If the file con-
tains fewer structures than the population needs, the remaining structures
will be initialized randomly, or super-uniformly if the u option is used.

18

1 — log activity (such as starts and restarts) in the log file. Some error messages
also end up in the log file.

L — dump the last generation to the cpt file. This allows the user to extend
the experiment at a later time, using the r option.

o — at the end of the experiment, write the average online performance to the
standard output. Online performance is the average of all evaluations.

O — at the end of the experiment, write the average offline performance to the
standard output. Offline performance is the average of the ”best value so
far” over the course of the run.

r — restart a previously interrupted execution. In this case, the cpt file is read
back in, and the GA takes up where 1t left off.

s — trace the history of one schema. This options requires that a sma file
exists in which the first line contains a string which has the length of
one structure and which contains only the characters ’0°; ’1’, and "#’
(and no blanks). The system will append one line to the schema file after
each generation describing the performance characteristics of the indicated
schema (number of representatives, relative fitness, etc.).

t — trace each major function call; only useful for debugging purposes. Tracing
statements are written to the standard output.

u — create a super-uniform initial population in which all schemata up to a
certain defining length (limited by the population size) are equally repre-
sented. In crossover-dominated GAs (i.e. those with low mutation rate)
this eliminates the risk of pathological initial populations in which an
important low-order schema just happens to be missing, and has to be
created by an unlikely mutation event. The u option uses a reduced-
variance stochastic algorithm which produces a population with no local,
but large global correlations. Crossover is very effective in destroying such
long-range correlations, but this option should not be used in mutation-
dominated GAs with very low crossover rates.

19

11 Files

For any the file names listed below, you may create a subdirectory in which
these files are collected. The output of an experiment with name ”foo”, for
instance, will be in the file foo in the subdirectory out if that exists, in the file
foo.out in the current directory otherwise. There is also a file ”errors” in which
GAUCSD error messages are collected.

cpt — a checkpoint file containing a snapshot of important variables, and the
current population. This file is produced if the d option is set, the second
termination signal is received, or both the number of saved dumps and
the dump interval are positive. This file is necessary for the restart option
r to work, but can also be interesting in 1ts own right.

dpe — this file, produced when the DPE algorithm is used, logs the activity
of the zoom operator. For each zoom one line is appended, containing
generation and trial number, the index of the zoomed parameter (starting
at zero), the endpoints of its new search interval, and its new precision.

in — contains all input parameters. This file is required.

ini — contains structures which will be included in the initial population. This
1s useful if you have heuristics for selecting plausible starting structures.
This file is read if the 1 option is set.

log — logs the dates of starts and restarts; produced if the 1 option is set.

min — contains the best structures found by the GA. Each paragraph of the
min file displays a binary structure, its evaluation, and the generation and
trial counters at the time of the first occurrence of this structure, followed
by a phenotypic description of the structure as provided by the evaluation
function. The number of elements in min is indicated by the response to
inset’s 7 Structures Saved” prompt. If the number of runs is greater than
one, the best structures are stored in min.n during run number n.

out — if the ¢ or C option is set, a line of data describing the performance
of the GA is appended to this file every ”Report Interval” trials. From
left to right, the data columns are: generations, trials, lost and converged
alleles, bias, and online, offline; best and average performance.

rep — produced by ga (via the report program) from the out file, this file
summarizes the performance of the GA. It consists of a copy of the in file
followed by the mean and variance of the out file data averaged over all
runs.

sma — logs a history of a single schema. This file is required for the s option,;
its first line must contain the schema in question and is read at the start

20

of the experiment. A line of data describing the schema’s performance is
then appended each generation (cf. option s).

12 Making Modifications

GAucsD was designed to encourage experiments with genetic algorithms. It
is relatively easy for the user to create variations of GAUCSD. Suppose for
example that you wish to test a new crossover operator. Simply copy the file
$GAUCSD /src/cross.c into your own directory and modify it as desired.

Now copy the GAucsD Makefile from the appropriate subdirectory of
$GAUCSD /bin into your directory and add ”cross.o” (or ?CROSS.OBJ” un-
der DOS) to the LOBJS macro at its top. Now when you run inset, or compile
your experiment manually, the loader will include your crossover function in-
stead of the one provided in the GAUcsD library. Recompilation of the library
1s thus not necessary.

In order to facilitate such experimentation, most of the important variables
in GAucsD are global. All global identifiers in $GAUCSD /src/global.h

begin with a capital letter to minimize conflict with user-defined identifiers.

Acknowledgments

John Grefenstette wishes to thank the early users of GENESIS for their sugges-
tions and comments, especially Ray Ford, Jeremy Norton and Mike Fitzpatrick.
Nicol Schraudolph is indebted to John Grefenstette for providing with the GEN-
ESIS package such a useful basis for modifications, and a User’s Guide that forms
the backbone of this manual. Special thanks go to all the users of GAucsD,
who with countless bug reports and suggestions have been vital in shaping this
package. Further suggestions and comments are welcome.

21

References

(1]

[10]

[11]

[12]

James E. Baker. Reducing bias and inefficiency in the selection algorithm.
In John J. Grefenstette, editor, Proc. 2nd Int. Conf. Genetic Algorithms
and their Applications, pages 14-21, Hillsdale, NJ, 1987. Lawrence Erlbaum
Associates.

A. D. Bethke. Genetic Algorithms as Function Optimizers. PhD thesis,
Dept. of Computer and Comm. Sciences, Univ. of Michigan, Ann Arbor,
MI, 1981.

A. Brindle. Genetic Algorithms for Function Optimization. PhD thesis,
Computer Science Dept., Univ. of Alberta, 1981.

Kenneth A. De Jong. An Analysis of the Behavior of a Class of Genetic
Adaptive Systems. PhD thesis, Dept. of Computer and Comm. Sciences,
Univ. of Michigan, Ann Arbor, MI, 1975. Univ. Microfilms No. 76-9381.

Kenneth A. De Jong. Adaptive system design: a genetic approach. I[FEE
Trans. Systems, Man, and Cybernetics, SMC-10(9):566-574, 1980.

Stephanie Forrest. Documentation for prisoner’s dilemma and norms pro-
grams that use the genetic algorithm. Technical report, Univ. of Michigan,

Ann Arbor, MI, 1985.

D. R. Frantz. Non-linearities in Genetic Adaptive Search. PhD thesis,
Dept. of Computer and Comm. Sciences, Univ. of Michigan, Ann Arbor,
MI, 1972.

David E. Goldberg. Genetic Algorithms in Search, Optimization & Machine
Learning. Addison-Wesley, Reading, MA, 1989.

John H. Holland. Adaptation in Natural and Artificial Systems. The Univ.
of Michigan Press, Ann Arbor, MI, 1975.

R. B. Hollstien. Artificial Genetic Adaptation i Computer Control Sys-
tems. PhD thesis, Dept. of Computer and Comm. Sciences, Univ. of Michi-
gan, Ann Arbor, MI, 1971.

Nicol N. Schraudolph and Richard K. Belew. Dynamic parameter encoding
for genetic algorithms. Machine Learning, 9:9-21, 1992.

S. F. Smith. Flexible learning of problem solving heuristics through adap-
tive search. In Proc. 8th Int. Joint Conf. Artif. Intelligence (IJCAI), August
1983.

22

