
A User�s Guide to GAucsd ���
�

Nicol N� Schraudolph
nici�cs�ucsd�edu

Computer Science � Engineering Department
University of California� San Diego

La Jolla� CA ���������	

John J� Grefenstette

gref�aic�nrl�navy�mil

Navy Center for Applied Research in Arti
cial Intelligence
Naval Research Laboratory
Washington� DC ����������

July �� ����

Abstract

This document describes the GAucsd system for function optimiza�
tion based on genetic search techniques� Genetic algorithms appear
to hold a lot of promise as general purpose adaptive search proce�
dures� However� the authors disclaim any warranties of �tness for a
particular problem� The purpose of making this system available is
to encourage the experimental use of genetic algorithms on realistic
optimization problems� and thereby to identify the strengths and
weaknesses of genetic algorithms�

GAucsd was developed by Nicol Schraudolph at the University of
California� San Diego� it is based on Genesis ���� a genetic al�
gorithm package written by John J� Grefenstette� GAucsd and
related materials are available via anonymous ftp from cs�ucsd�edu
�������	�
���� in the pub�GAucsd directory or via electronic mail
from the �rst author� who welcomes bug reports� comments and sug�
gestions� and maintains a mailing list of users to announce patches
and new releases�

�Hardcopies of this document can be obtained by requesting technical report CS������

from Technical Reports� CSE Department� UC San Diego� La Jolla� CA ����������� There is
a charge of 	 US
 for this service�

�

� Introduction

This document describes the GAucsd software package written to promote the
study of genetic algorithms for function minimization� Since genetic algorithms
are task�independent optimizers� the user must provide only an evaluation func�
tion which returns a value when given a particular point in the search space�
GAucsd was written in C under the Unix� operating system� but should be
portable to many platforms�

The remainder of this section gives a general overview of genetic algorithms
�GAs�� for an in�depth introduction see ��� Details on porting� installing� and
running GAucsd are provided in subsequent sections�

GAs are iterative procedures which maintain a population P of n candidate
solutions to an objective function f �

P �t� � fx��t�� x��t�� � � �xn�t�g

Each structure xi in population P �t� at time t is simply a binary string of
length l� Generally� each xi represents a vector of parameters to the function
f�x�� but the semantics associated with the vector is unknown to the GA� During
each iteration step� called a generation� the current population is evaluated�
and� on the basis of that evaluation� a new population of candidate solutions is
formed� A general sketch of this procedure � known as generational GA � is
shown in Figure ��

t �� ��

initialize P�t��

evaluate P�t��

while �not finished� do

begin

t �� t � ��

select P�t� from P�t � ���

operate on P�t��

evaluate P�t��

end�

Figure �� A Generational Genetic Algorithm�

The initial population P ��� is usually chosen at random� Alternately� the
initial population may contain heuristically chosen initial points� In either case�
the initial population should contain a wide variety of structures� Each structure
in P ��� is then evaluated� For example� if we are trying to minimize a function
f� evaluation might consist of computing and storing f�x��� � � � f�xn��

�
Unix is a trademark of Bell Laboratories

�

The structures of the population P �t � �� are chosen from the population
P �t� by a randomized selection procedure that ensures that the expected number
of times a structure is chosen is proportional to that structure�s performance�
relative to the rest of the population� That is� if xj has twice the average
performance of all the structures in P �t�� then it is expected to appear twice in
population P �t���� At the end of the selection procedure� population P �t� ��
contains exact duplicates of the selected structures in population P �t��

In order to search other points in the search space� some variation is intro�
duced into the new population by means of idealized genetic operators� The
most important operator is called crossover� Under the crossover operator� two
structures in the new population exchange portions of their binary represen�
tation� This can be implemented by choosing a point at random� called the
crossover point� and exchanging the segments to the right of this point� For
example� let

x� � ��� � ����� and x� � ��� � ������

and suppose that the crossover point has been chosen as indicated� The resulting
structures would be

y� � ��� � ����� and y� � ��� � ������

Crossover serves two complementary search functions� First� it provides
new points for further testing of the schemata already present in the popula�
tion� In the above example� both x� and y� are representatives of the schema
��������� where the � means �don�t care�� Thus� by evaluating y�� the GA
gathers further information about this schema� Second� crossover introduces
representatives of new schemata into the population� In the above example�
y� is a representative of the schema ��������� which is not represented by
either parent� If this schema represents a high�performance area of the search
space� the evaluation of y� will lead to further exploration in this part of the
search space�

Terminationmay be triggered by �nding an acceptable approximate solution
to f�x�� by �xing the total number of evaluations� or some other application�
dependent criterion�

The basic concepts of GAs were developed by John Holland �	� and his stu�
dents ��� �� �� ���� Theoretical considerations concerning the allocation of trials
to schemata ��� 	� show that genetic techniques provide a near�optimal heuristic
for information gathering in complex search spaces� A number of experimental
studies ��� �� �� have shown that GAs exhibit impressive e�ciency in prac�
tice� While classical gradient search techniques are more e�cient for problems
which satisfy tight constraints �e�g�� continuity� low dimensionality� unimodal�
ity� etc��� GAs consistently outperform both gradient techniques and various
forms of random search on more di�cult �and more common� problems� such as
optimizations involving discontinuous� noisy� high�dimensional� and multimodal

�

objective functions� GAs have been applied to various domains� including nu�
merical function optimization ��� ��� adaptive control system design �
�� and
arti�cial intelligence task domains �����

� Installing the System

This section explains if and how GAucsd can be ported to various computing
platforms� It assumes that you have successfully obtained and unpacked the
GAucsd source distribution into a designated directory� You will see four sub�
directories there� src contains source code for the GAucsd library and utilities�
usr has various templates for �les users have to write� etc contains a few sh
and awk scripts� and bin is where the compiled binaries will be installed�

If you want to run GAucsd on multiple platforms� follow the instructions
below for each type of machine in succession� Since this version of GAucsd
uses machine�dependent subdirectories for binaries� you can compile for multiple
target platforms from a single copy of the source distribution on a shared �le
system�

��� Requirements

GAucsd has been developed in aUnix environment� but should be easy to port
to any platform that has a C compiler and the make and awk utilities� GNU
versions of cc� make and awk are available as source distributions and also as
binaries free of charge for a variety of machines�

Note that since make and awk are called as such from deep within the
GAucsd package� they must be available as commands by that name� Thus if
you are using GNU�s gawk for instance� you must de�ne awk as a link or alias
for gawk on all target platforms� Also make sure that make and awk are both
in your command search path�

GAucsd uses the names inset� report� and �on Unix systems� ga � gx for
its own commands� if one of these clashes with some other command on your
system� you have to take steps to resolve the name con�ict� The gx command
available on Unix platforms uses �mail �USER� to notify users of completed ex�
periments� if this won�t work on the target machine� modify the mailing address
in �le etc�gx accordingly� or remove the mail command altogether�

��� Customizing the Make�le

The top portion of the �le src�Make�le needs to be customized for each target
platform� For many platforms this will be the only modi�cation necessary� on
most Unix systems the supplied make�le will work without any changes� On
each successful installation� a copy of the make�le will be saved along with the
binaries�

�

Since binaries are installed in machine�dependent subdirectories� the make�
�le needs the variable MACH set to a directory name that is unique to each
target platform� The default is set to the output of the mach command� which
on many Unix systems returns the machine type� If some of your target plat�
forms do not have a mach command� you may consider writing one� although
often it will be easier to just manually set MACH to a suitable name for each
target platform�

Next� you should set CFLAGS to whatever compiler �ags you wish to set on
this particular platform� In particular� you should add �DNOGAGX to CFLAGS
for platforms where you can�t �or don�t want to� use the ga and gx utilities for
distributed computing� which work only in certain types of Unix environment�

Further macros that may need to be customized deal with the command
shell�s behavior� �le naming conventions� �le handling and compilation com�
mands on the target platform� all of these are documented in the make�le itself�

��� Building GAucsd

De�ne the environment variable GAUCSD to be the full pathname to the
directory you unpacked the GAucsd source distribution in� From there� change
into the src subdirectory and type �make all�� If all goes well� type �make
install�� then �make clean�� If you get errors due to missing include �les� check
the top section of �le de�ne�h for details on how to work around these problems�
Finally� communicate to users where you have installed GAucsd so that they
can set the GAUCSD variable in their environment�

� Major Procedures

This section gives a more detailed description of the genetic algorithm imple�
mented in the GAucsd library�

��� Initialization

File init�c contains the initialization procedure� whose primary responsibility is
to set up the initial population� If you wish to seed the initial population with
heuristically chosen structures� put the structures in the ini �le �see Section ���
and use the i option �see Section ���� The rest of the initial population is �lled
with random structures� or by a reduced�variance technique for super�uniform
initialization if the u option is used�

��� Generation

As previously mentioned� one generation �see generate�c� comprises the follow�
ing steps� selection� mutation� crossover� evaluation� and some data collection
procedures�

��� Selection

Selection is the process of choosing structures for the next generation from the
structures in the current generation� The selection procedure �see �le select�c�
is a stochastic procedure that guarantees that the number of o�spring of any
structure is bounded by the �oor and the ceiling of the �real�valued� expected
number of o�spring� This procedure is based on an algorithm by James Baker�
The idea is to allocate to each structure a portion of a spinning wheel propor�
tional to the structure�s relative �tness� A single spin of the wheel assigns the
number of o�spring to all structures� This algorithm is compared to other se�
lection methods in ���� The selection pointers are then randomly shu�ed� and
the selected structures are copied into the new population�

��� Mutation

After the new population has been selected� mutation is applied to each struc�
ture in the new population �see mutate�c�� Each position is given a chance
M rate of undergoing mutation� This is implemented by computing an inter�
arrival interval between mutations� assuming a mutation rate of M rate� The
mutation macro in de�ne�h determines what happens if mutation does oc�
cur� the default action is to �ip the bit value for that position� The mutated
structure is then marked for evaluation�

��� Crossover

Crossover �see cross�c� exchanges alleles among C rate � Popsize adjacent
pairs of structures in the new population� Note that a C rate greater than ���
will cause some structures to undergo several crossovers� Crossover might be
implemented in a variety of ways� but there are theoretical advantages treating
the structures as rings� choosing two crossover points� and exchanging the sec�
tions between these points ���� The segments between the crossover points are
exchanged� provided that the parents di�er somewhere outside of the crossed
segment� If� after crossover� the o�spring are di�erent from the parents� then
the o�spring replace the parents� and are marked for evaluation�

� Fitness Scaling

When minimizing a numerical function with a GA� it is common to de�ne the
performance value u�x� � the expected number of o�spring � of a structure x
as u�x� � F � f�x�� where F is a large baseline function value� Negative values
of u�x� can either be zeroed or avoided altogether by setting F to fmax� the
maximum value that f�x� can assume in the given search space� Often fmax is
not available a priori� in which case we may use F � f�xmax�� the maximum
value of any structure evaluated so far�

�

Either choice of F has the unfortunate e�ect of making good values of x hard
to distinguish� For example� suppose fmax � ���� After several generations� the
current population might contain only structures x for which
 � f�x� � ��� At
this point no structure in the population has a performance which deviates much
from the average� This reduces the selective pressure towards better structures�
and the search stagnates� One solution is to update the baseline to� say� F � �
�
and rate each structure against this new standard�

The problem is then to automate the baseline update in a manner that
keeps the amount of selective pressure under control� GAucsd provides two
alternative �tness scaling algorithms for this task� window scaling and sigma
scaling�

Window scaling allows the user to control how aggressively the baseline is
updated via the scaling window size W � If W � �� the system sets F to the
greatest value of f�x� which has occurred in the last W generations� A value of
W � � indicates an in�nite window� i�e� F � f�xmax�� Note that this method
is overly attentive to individuals in that a single �lethal� genotype can all but
eliminate selective pressure for W generations�

Sigma scaling �studied by Forrest ���� achieves more robust performance by
setting F to the average population �tness plus a certain multiple� the sigma
scaling factor s� of the standard deviation of population �tness� structures worse
than F are assigned zero performance� Note that for a structure x with f�x� one
standard deviation better than the population average� u�x� � �s� ���s� sigma
scaling thus provides very direct control over the selection pressure� Values for
s between � and
 are commonly used in practice�

� Dynamic Parameter Encoding

When encoding real�valued parameters of the evaluation function on a binary
genotype there is a con�ict between the desire to keep the genes short for good
convergence and the need to know the result with a certain precision� An appro�
priate � but cumbersome � reaction when faced with this dilemma would be
to �rst run an experiment with short genes to quickly obtain a low�precision re�
sult� then repeating it with ever�increasing precision while keeping the genotype
short by restricting the search to the previously identi�ed solution region�

Dynamic Parameter Encoding �DPE� ���� implements this strategy of iter�
ative re�nement by gathering convergence statistics of the top two bits of each
parameter� Whenever the population is found to be converged on one of three
subregions of the search interval for a parameter� DPE invokes a zoom operator
that alters the interpretation of the gene in question such that the search pro�
ceeds with doubled precision� but restricted to the target subinterval� In order to
minimize its disruptiveness the zoom operator preserves most of the phenotype
population by modifying the genotypes to match the new interpretation�

The DPE algorithm logs its zoom activity in the dpe �le �see Section ����

�

Since the zoom operation is irreversible it has to be applied conservatively in
order to avoid premature convergence� to this end DPE smoothes its convergence
statistics through exponential historic averaging� The time constant of this
�ltering process is an important characteristic of the algorithm� the smaller its
value� the bolder DPE becomes� accenting the risks and bene�ts associated with
fast convergence�

Note that although DPE often facilitates a radical reduction of gene length�
there is a point beyond which the function to be optimized will no longer be
sampled with enough resolution to yield useful results� In particular if the
basin of attraction around the optimum is small� a low�resolution search might
miss it altogether� Of the �ve test functions provided in the �GAUCSD�usr
subdirectory for instance� four can be solved with DPE using as little as three
bits per parameter� but the multimodal function f� requires twice as much�

The DPE algorithm is activated by selecting a non�zero smoothing time con�
stant in the inset program� it may be selectively disabled for certain parameters
via a b or g �ag in the GAeval comment line �see Section ��� Since DPE is
based on strong assumptions about the interpretation of the genome it is meant
to be used in conjunction with a high�level evaluation function as facilitated by
the wrapper described below�

This quick overview was intended to encourage experiments with the DPE
algorithm� many aspects have been somewhat glossed over� For a more detailed
discussion please refer to �����

� Evaluation Procedure

To use GAucsd� the user must write an evaluation procedure� There are three
levels of abstraction at which such a procedure may be written� At the lowest
level a function called eval�� receives a pointer to the genome and its length
in bit as input and returns a double precision value� It must be declared as

double �eval�genome	 length�

char genome
��

int length�

The interpretation of the genome is entirely up to the user� thus allowing
great �exibility and e�ciency� However� the packed form of the genotype can be
awkward to deal with if the parameters are not aligned with byte boundaries�
Therefore an evaluation function eval�� may be declared instead which receives
an unpacked genotype�

double eval�buff	 length�

char buff
��

int length�

where bu� is a character array containing �integer� zeroes and ones� and
length indicates the length of the array bu�� This form of evaluation function
was used in the original Genesis software and is assisted by some functions
which facilitate its interpretation� One is called Ctoi���

double Ctoi�buf	 length�

char buf
��

int length�

and takes two arguments� a pointer to a char array and a length indicator�
Ctoi�� returns the value computed by interpreting the bu�er as an unsigned
binary string with the indicated length� If the A option is used� Ctoi�� will
add a random fractional part to the value in order to avoid aliasing e�ects that
might otherwise compromise the search of continuous spaces �see Section ����

Gray codes are often used to represent integers in genetic algorithms� They
have the property that adjacent integer values di�er at exactly one bit position�
their use avoids the unfortunate e�ects of Hamming cli�s in which adjacent
values� say �� and ��� di�er in every position of their �xed point binary repre�
sentations ������ and ������ respectively�� Functions which translate between
Gray code and �xed point representations are provided�

Gray�inbuf	 outbuf	 length�

char �inbuf	 �outbuf�

register int length�

Degray�inbuf	 outbuf	 length�

char �inbuf	 �outbuf�

register int length�

In the function Gray��� inbuf contains the �xed point integer� one bit per
char� while outbuf gets the Gray coded version� one bit per char� InDegray���
inbuf contains the Gray code integer and outbuf gets the corresponding �xed
point integer�

A procedure Error�� is provided which writes an error message to both
the �le errors and the standard error output �stderr�� and then terminates
the program� Functions for re�encoding� packing and unpacking genomes are
also provided � see the �les encode�c and decode�c in �GAUCSD�src for
details�

Figure � shows a low�level evaluation function which makes use of these
GAucsd procedures� Note how a call to the evaluation function with negative
length parameter is used by GAucsd to ask for a phenotypic description of the
most recently evaluated structure� This description is provided automatically
if you use the wrapper �see Section �� and will be printed in the min �le �see
Section ����

	

�� file f��c ����

double �eval�genome	 length�

char genome
��

int length�

�

register int i�

char buff
����

char outbuf
����

double sum � ����

� phenotype description	 must be static �

static double x
���

� return previous phenotype on request �

if �length � ��

sprintf�genome	 ��n�lf �lf �lf�	 x
��	 x
��	 x
����

else

�

� GAlength �� �

if �length �� ��� Error��length error in eval���

� unpack the genotype �

Unpack�genome	 buff��

for �i � �� i � �� i���

�

� convert next �� bits to an integer �

Degray��buff
i����	 outbuf	 ����

x
i� � Ctoi�outbuf	 ����

� scale x to the range
�����	 ����� �

x
i� � �x
i� � ������ ������

� accumulate sum of squares of x�s �

sum �� x
i��x
i��

�

�

return�sum��

�

��� end of file ����

Figure �� A Low�level Evaluation Function�

��

A comment of the form � GAlength l � �as shown in Figure �� is recog�
nized by the inset program and used to set the default value of the �Genome
Length� parameter� It may safely be omitted but is provided automatically by
the wrapper�

It is often desirable to pass parameters to the evaluation function that might
vary from experiment to experiment but should not be subjected to the GA
search� GAucsd uses a method similar to that of passing C command line
arguments to make such application�speci�c parameters� entered via the inset
program� accessible through the declarations�

extern int GArgc�

extern char �GArgv
��

which� again� the wrapper provides for you� Note that each of the GArgc
string parameters in GArgv	
 may contain blank spaces but not � n�� or � n n��

If you are writing evaluation functions as shown in this section� GAucsd
leaves the interpretation of the genome entirely up to you� While this a�ords
great �exibility� it also means that the DPE technique � which assumes a
known layout of gray�coded parameters on the genome � cannot be used unless
additional information about this layout is provided� This can be done by
declaring and initializing the global variables GAgenes� GAposn� GAbase
and GAfact in the evaluation �le� For further details� consult the sample �le
f� ga�c in �GAUCSD�usr�

� The Wrapper

GAucsd includes an awk script called wrapper which provides a higher level
of abstraction� by supplying the code for decoding and printing the evaluation
function parameters automatically� it allows the direct use of most C functions
as evaluation functions� The only restrictions are�

� the function must not be called eval���

� it must return a scalar type or a pointer to such a type�

� all its parameters must be simple C types as described below� or pointers
to such types �this allows for passing arrays by reference��

The wrapper gets invoked from the inset program and constructs from
�name��c the �le �name� ga�c which includes a function eval�gene� length�
interfacing your evaluation function to the GAucsd system� In order to do its
job the wrapper needs a comment line �occurring after the �rst declaration of
your evaluation function� in �name��c which looks as follows�

� GAeval �fn� �field�� �field�� ��� �

��

where �fn� is the name of your evaluation function� possibly pre�xed with
an asterisk for indirect return values� It is followed by one or more �elds� where
each �eld speci�es a parameter to the evaluation function� White space delimits
�elds and hence may not occur within �elds� The format of an individual �eld
is �in this order��

�� an integer indicating the number of bits to be used for representing this
parameter on the genotype� This must be between � and the number of
bits of an �int� on your machine to make sense�

�� �optional� a colon followed by a number r specifying the range of the pa�
rameter� This means that the parameter will range from �r �or zero if
unsigned � see below� inclusive to �r exclusive� If omitted� the range is
determined directly from the number of bits used to represent the param�
eter� A second number s� separated by a colon� may be speci�ed� forcing a
range from r inclusive to s exclusive� Both r and s may contain a decimal
point and a sign� but no exponent� and s must be strictly greater than r�

�� a character string containing in any order� in upper or lower case�

� exactly one of c� s� i� l� f or d� specifying the parameter type as
char� short� int� long� �oat or double respectively�

� �optional� a b or g indicating that the parameter is to be encoded
in binary or Gray code� respectively� Either character causes the
parameter to be left alone by the DPE algorithm which relies on the
default Gray coding for its operation�

� �optional� a u indicating that the parameter is unsigned� For �oat
or double parameters the type will not change� but the default range
will be from zero to r instead of �r to r �see above��

�� �optional� an integer n indicating replication� the parameter is a pointer
to an array of n values of the same format� Values of � �simple indirection�
or � �same as no n at all� for n are allowed�

Space for parameters on the genotype is allocated from the left in order of the
�elds� Figure � demonstrates how the evaluation function of Figure � is greatly
simpli�ed when the wrapper is used� The function shown is the �rst of a suite of
�ve test functions that have been used extensively in the GA community since
their introduction by De Jong ���� all �ve can be found in the �GAUCSD�usr
subdirectory�

If awk is not available on your system� you will not be able to use the
wrapper� You can emulate its operation manually by writing your low�level
evaluation function in a �le ending with ga�c and including the additional
data the wrapper normally provides� Please refer to the sample wrapper output
�le f� ga�c in �GAUCSD�usr for further details�

��

�� file f��c ����

double f��x�

register double �x�

�

register int i�

register double sum�

� accumulate sum of squares of x�s �

for �sum � ���	 i � �� i � �� i���

sum �� x
i��x
i��

return �sum��

�

� GAeval f� �������d� �

�� end of file ����

Figure �� Same Evaluation Function using the Wrapper�

� Setting up Experiments

In order to use GAucsd� you must set the variable GAUCSD in your envi�
ronment to the full pathname of the directory where GAucsd was installed on
your system� You also have to add the directory where the GAucsd binaries
for your system are located � a subdirectory of �GAUCSD�bin whose name
re�ects the machine type � to your command search path� On Unix systems�
the directory �GAUCSD�etc should be added to the command search path
as well� You may want to put the commands that achieve this into a �le that
gets executed automatically whenever you use the system� such as �cshrc under
Unix or AUTOEXEC�BAT under DOS�

The easiest way to write an evaluation function for GAucsd to optimize
is to copy one of the examples provided in �GAUCSD�usr and use it as
a template� Once you have the desired evaluation function in your current
directory� run the inset program to construct an in �le� As inset prompts for
various GA parameters� hitting return in response results in the default value
shown in brackets being used� Many defaults �indicated with a � below� are
computed on the �y by inset from previously entered data�

It is important to keep in mind that while these �dynamic defaults� are a nice
feature� the heuristics employed by no means guarantee a good� nor indeed even
adequate setting of GA parameters� The research on how to �nd good values for
them is still in its infancy� and as of today there are no strong results that could
replace the intuitive exploration of this parameter space by the experimenter�

��

The parameters set via inset are�

� Evaluation File Name �f���

At this point make is called to preprocess� compile and link the appropri�
ate �les� If the wrapper aborts with an error� examine the ga�c �le for
diagnostics�

� Name of Experiment � ��

The basename for all �les associated with this experiment �see Section ����
it defaults to the name of the evaluation �le� If an in �le with the chosen
basename exists already� it will be read at this point and used as default
for subsequent prompts� If the existing in �le is read�only� you will be
asked to provide an alternative basename for writing � thus inset may
be used to re�edit existing in �les� or to make modi�ed copies from a read�
only master �le� If there is no appropriate in �le� inset will create it and
try to guess reasonable defaults as described above�

� Genome Length � ��

If there is a comment of the form � GAlength l � � as produced au�
tomatically by the wrapper � in the evaluation �le� the default length
suggested will be l�

� Population Size � ��

The number of structures in the population�

� Trials per Run � ��

The maximumnumber of function evaluations in each GA run� When they
are computationally expensive� trials are a better indicator of processing
time than the number of generations�

� Number of Runs ����

The number of independent optimizations of the same function in this ex�
periment� multiple runs can increase the chance of �nding a good solution�

� Crossing Rate �per individual� � ��

The expected number of two�point crossovers for each structure�

� Mutation Rate � ��

The expected number of mutations for each bit in the population�

� Generation Gap ������

The generation gap is the percentage of the population which is replaced in
each generation� Note that GAucsd operates very ine�ciently for small
generation gaps�

��

� Windowsize �����

The size of the scaling window �see Section ��� Zero indicates in�nite size�
and any negative value indicates sigma scaling�

� Sigma Scaling Factor ������

Used only when sigma scaling is chosen�

� DPE Time Constant ����

This is the time constant �in generations� with which the DPE algorithm
smoothes its convergence statistics through exponential historic averaging
in order to avoid premature convergence� A value of zero switches DPE
o� altogether�

� Convergence Threshold � ��

The percentage of the population that needs to have the same value in
a given allele for it to be considered converged� Since it is used as the
trigger threshold for the zoom operator� this is an important parameter
for DPE� The default value follows an analysis in �����

� Max Alleles to Converge � ��

� Maximum Bias ���		��

� Max Gens w!o Evaluation ����

The three parameters above allow termination of a run when a certain bias is
reached� a certain number of alleles have converged� or a certain number of gen�
erations has passed without creating a new genome� If any of these conditions is
met� the remainder of the run will be �faked� by reprinting the current statistics
an appropriate number of times� this simpli�es post�processing ofGAucsd data
e�g� into graphs� The bias check can be disabled with a value of ��� or greater�
the other two with a value of zero�

� Report Interval � ��

The number of evaluations between data collections� zero indicates collec�
tions at the start and end of each run only�

� Structures Saved � ��

How many of the best structures should be saved to the min �le�

� Dump Interval � ��

The number of generations between data dumps to the cpt �le� zero in�
dicates that no dumps will be made�

�

� Dumps Saved ����

The number of dump �les that should be kept� One means that only the
current dump �le is kept� zero indicates that no dumps will be made�

� Options �Aclu��

Used to set a variety of options� see Section �� for details�

� Random Seed � ��

The seed value for the random number generator used by GAucsd� Its
control allows exact replication of experiments� the default is derived from
the system clock�

At this point inset writes all settings out to the in �le and prompts for any
application�speci�c arguments �cf� Section ��� Hitting return will obtain the
default read previously from the in �le� or exit the loop when no default exists�

IfGAucsd was compiled with the DNOGAGX �ag on your system� inset
then prints the command that will start the experiment and exit� On someUnix
systems� however� it will prompt with queue
 ��� Hitting return in reply will
start the program via ga in background mode� any other response will queue it
in the named �le for collective � possibly distributed � execution of a set of
experiments via gx �see Section 	��

� Running Experiments

��� Direct Execution

A GAucsd program compiled from� say� evaluation �le �f��c� may be run di�
rectly on an experiment named �foo� by typing �f� foo�� On systems supporting
Unix�style signal handling� you can terminate the experiment prematurely by
sending it INT or TERM signals� which can be generated by pressing key
combinations such as CTRL�C� The �rst such signal causes the experiment to
conclude after the current run while the second forces a cpt dump and exit
after the current generation� The third signal causes immediate termination� in
this case all progress since the last cpt dump will be lost�

��� The Report Utility

If the c or C option is active� the experiment will append a line of data to the
out �le every �Report Interval� trials� To summarize the mean and variance of
these measurements over all runs� use the report utility� typing report foo
for instance will summarize data �le foo�out�

The summary contains a copy of the in �le� followed by the means and
variances of measurements such as online performance� o�ine performance� the

��

average performance of the current population� and the current best value� On�
line performance is the mean of all evaluations� o�ine performance is the mean
of all current best evaluations � see �
��

If option c is active� three measures of convergence are also printed� �Conv�
is the number of positions which have converged at least to the chosen thresh�
old� �Lost� is the number of those which have converged ���" �i�e� the entire
population has the same value�� and �Bias� indicates the average percentage of
the most prominent value in each position� For instance� a bias of ���
 means
that on average each position has converged to either �
" zeroes or �
" ones�

��� Remote Execution via ga

On Unix systems� the command ga f� foo � will run the same experiment as
f� foo� but at low priority and in the background� ga also calls the report
program if appropriate� and can be used to execute GAucsd experiments re�
motely provided you have the necessary permissions in your �rhosts �le on the
remote machine� the command

ga f� foo neuromancer smith usrga �

for instance will recompile f� on host neuromancer in the directory usrga�
It will then copy foo�in �also foo�ini� foo�out and foo�sma if applicable� into
the remote directory� run the program there �using login name smith�� then
copy any resulting data �les back into your local directory and produce a report
if appropriate�

For binary compatible hosts the directory may be omitted� causing the exe�
cutable program to be run directly in �tmp on the remote host� This eliminates
the compilation time and does not require GAucsd to be installed on the re�
mote host� In this mode the login name defaults to �USER if omitted� If
the remote machine has direct access to the local directory through a shared
�le system� specify the remote host�s path to it as directory argument� ga can
exploit this special case to avoid the overhead of copying �les between the hosts�

��� Distributed Execution via gx

On Unix systems� you can execute entire sets of experiments sequentially or in
parallel on a network of machines� This is done by accumulating experiments
in one or several queue �les �see Section � whose names are then given as
arguments to the gx script� When all experiments have been completed� gx
will notify you via write or � if that fails � mail�

gx distributes experiments to remote hosts speci�ed in the GAhosts in
the local directory� your home directory or �GAucsd�usr� Each entry in the
GAhosts �le consists of a load factor �how many programs will be sent to that
host� followed by the remote execution arguments to ga as described above

��

� see the sample GAhosts �le in �GAucsd�usr for details� Any remaining
experiments �after the GAhosts �le has been exhausted� are executed locally�

�	 Options

GAucsd allows a number of options which control the kinds of output pro�
duced� as well as certain strategies employed during the search� Each option is
associated with a single character� The options are indicated by responding to
the �Options� prompt in inset with a string containing the appropriate char�
acters� If no options are desired� respond to the prompt by typing ���� Options
may be indicated in any order� All options may be invoked independently�

a � evaluate all structures in each generation� This may be useful when evalu�
ating a noisy function� since it allows the GA to sample a given structure
several times� If this option is not selected then structures which are
identical to parents are not evaluated�

A � causes Ctoi�� to add a random fractional part to its conversion results in
order to avoid aliasing problems that might otherwise occur when search�
ing continuous spaces� due to the quantized nature of the genetic encoding�
Since this option makes Ctoi�� stochastic� A automatically implies a�

b � at the end of the experiment� write the average best value �over all runs�
to the standard output�

c � collect statistics concerning the convergence of the algorithm� These statis�
tics are written to the out �le every �Report Interval� trials� The intervals
are approximate� since statistics are collected only at the end of a gener�
ation� Option c implies C but is computationally more expensive�

C � collect statistics concerning the performance of the algorithm� These
statistics are written to the out �le every �Report Interval� trials� The
intervals are approximate� since statistics are collected only at the end of
a generation�

d � dump the current population to cpt �le after each evaluation� This may
considerably slow down the program� and is only useful when each evalu�
ation represents a large amount of computation�

e � use the elitist selection strategy� The elitist strategy stipulates that the
best performing structure always survives intact from one generation to
the next� In the absence of this strategy� it is possible that the best
structure disappears due to crossover or mutation�

i � read structures from the ini �le into the initial population� If the �le con�
tains fewer structures than the population needs� the remaining structures
will be initialized randomly� or super�uniformly if the u option is used�

�

l � log activity �such as starts and restarts� in the log �le� Some error messages
also end up in the log �le�

L � dump the last generation to the cpt �le� This allows the user to extend
the experiment at a later time� using the r option�

o � at the end of the experiment� write the average online performance to the
standard output� Online performance is the average of all evaluations�

O � at the end of the experiment� write the average o�ine performance to the
standard output� O�ine performance is the average of the �best value so
far� over the course of the run�

r � restart a previously interrupted execution� In this case� the cpt �le is read
back in� and the GA takes up where it left o��

s � trace the history of one schema� This options requires that a sma �le
exists in which the �rst line contains a string which has the length of
one structure and which contains only the characters ���� ���� and ���
�and no blanks�� The system will append one line to the schema �le after
each generation describing the performance characteristics of the indicated
schema �number of representatives� relative �tness� etc���

t � trace each major function call� only useful for debugging purposes� Tracing
statements are written to the standard output�

u � create a super�uniform initial population in which all schemata up to a
certain de�ning length �limited by the population size� are equally repre�
sented� In crossover�dominated GAs �i�e� those with low mutation rate�
this eliminates the risk of pathological initial populations in which an
important low�order schema just happens to be missing� and has to be
created by an unlikely mutation event� The u option uses a reduced�
variance stochastic algorithm which produces a population with no local�
but large global correlations� Crossover is very e�ective in destroying such
long�range correlations� but this option should not be used in mutation�
dominated GAs with very low crossover rates�

�	

�� Files

For any the �le names listed below� you may create a subdirectory in which
these �les are collected� The output of an experiment with name �foo�� for
instance� will be in the �le foo in the subdirectory out if that exists� in the �le
foo�out in the current directory otherwise� There is also a �le �errors� in which
GAucsd error messages are collected�

cpt � a checkpoint �le containing a snapshot of important variables� and the
current population� This �le is produced if the d option is set� the second
termination signal is received� or both the number of saved dumps and
the dump interval are positive� This �le is necessary for the restart option
r to work� but can also be interesting in its own right�

dpe � this �le� produced when the DPE algorithm is used� logs the activity
of the zoom operator� For each zoom one line is appended� containing
generation and trial number� the index of the zoomed parameter �starting
at zero�� the endpoints of its new search interval� and its new precision�

in � contains all input parameters� This �le is required�

ini � contains structures which will be included in the initial population� This
is useful if you have heuristics for selecting plausible starting structures�
This �le is read if the i option is set�

log � logs the dates of starts and restarts� produced if the l option is set�

min � contains the best structures found by the GA� Each paragraph of the
min �le displays a binary structure� its evaluation� and the generation and
trial counters at the time of the �rst occurrence of this structure� followed
by a phenotypic description of the structure as provided by the evaluation
function� The number of elements in min is indicated by the response to
inset�s �Structures Saved� prompt� If the number of runs is greater than
one� the best structures are stored in min�n during run number n�

out � if the c or C option is set� a line of data describing the performance
of the GA is appended to this �le every �Report Interval� trials� From
left to right� the data columns are� generations� trials� lost and converged
alleles� bias� and online� o�ine� best and average performance�

rep � produced by ga �via the report program� from the out �le� this �le
summarizes the performance of the GA� It consists of a copy of the in �le
followed by the mean and variance of the out �le data averaged over all
runs�

sma � logs a history of a single schema� This �le is required for the s option�
its �rst line must contain the schema in question and is read at the start

��

of the experiment� A line of data describing the schema�s performance is
then appended each generation �cf� option s��

�� Making Modi
cations

GAucsd was designed to encourage experiments with genetic algorithms� It
is relatively easy for the user to create variations of GAucsd� Suppose for
example that you wish to test a new crossover operator� Simply copy the �le
�GAUCSD�src�cross�c into your own directory and modify it as desired�

Now copy the GAucsd Make�le from the appropriate subdirectory of
�GAUCSD�bin into your directory and add �cross�o� �or �CROSS�OBJ� un�
der DOS� to the LOBJSmacro at its top� Now when you run inset� or compile
your experiment manually� the loader will include your crossover function in�
stead of the one provided in the GAucsd library� Recompilation of the library
is thus not necessary�

In order to facilitate such experimentation� most of the important variables
in GAucsd are global� All global identi�ers in �GAUCSD�src�global�h
begin with a capital letter to minimize con�ict with user�de�ned identi�ers�

Acknowledgments

John Grefenstette wishes to thank the early users of Genesis for their sugges�
tions and comments� especially Ray Ford� Jeremy Norton and Mike Fitzpatrick�
Nicol Schraudolph is indebted to John Grefenstette for providing with the Gen�
esis package such a useful basis for modi�cations� and a User�s Guide that forms
the backbone of this manual� Special thanks go to all the users of GAucsd�
who with countless bug reports and suggestions have been vital in shaping this
package� Further suggestions and comments are welcome�

��

References

��� James E� Baker� Reducing bias and ine�ciency in the selection algorithm�
In John J� Grefenstette� editor� Proc� �nd Int� Conf� Genetic Algorithms
and their Applications� pages ��#��� Hillsdale� NJ� �	�� Lawrence Erlbaum
Associates�

��� A� D� Bethke� Genetic Algorithms as Function Optimizers� PhD thesis�
Dept� of Computer and Comm� Sciences� Univ� of Michigan� Ann Arbor�
MI� �	��

��� A� Brindle� Genetic Algorithms for Function Optimization� PhD thesis�
Computer Science Dept�� Univ� of Alberta� �	��

��� Kenneth A� De Jong� An Analysis of the Behavior of a Class of Genetic
Adaptive Systems� PhD thesis� Dept� of Computer and Comm� Sciences�
Univ� of Michigan� Ann Arbor� MI� �	�
� Univ� Micro�lms No� ���	���

�
� Kenneth A� De Jong� Adaptive system design� a genetic approach� IEEE
Trans� Systems� Man� and Cybernetics� SMC����	��
��#
��� �	��

��� Stephanie Forrest� Documentation for prisoner�s dilemma and norms pro�
grams that use the genetic algorithm� Technical report� Univ� of Michigan�
Ann Arbor� MI� �	
�

��� D� R� Frantz� Non�linearities in Genetic Adaptive Search� PhD thesis�
Dept� of Computer and Comm� Sciences� Univ� of Michigan� Ann Arbor�
MI� �	���

�� David E� Goldberg� Genetic Algorithms in Search� Optimization � Machine
Learning� Addison�Wesley� Reading� MA� �		�

�	� John H� Holland� Adaptation in Natural and Arti�cial Systems� The Univ�
of Michigan Press� Ann Arbor� MI� �	�
�

���� R� B� Hollstien� Arti�cial Genetic Adaptation in Computer Control Sys�
tems� PhD thesis� Dept� of Computer and Comm� Sciences� Univ� of Michi�
gan� Ann Arbor� MI� �	���

���� Nicol N� Schraudolph and Richard K� Belew� Dynamic parameter encoding
for genetic algorithms� Machine Learning� 	�	#��� �		��

���� S� F� Smith� Flexible learning of problem solving heuristics through adap�
tive search� In Proc� 	th Int� Joint Conf� Artif� Intelligence
IJCAI�� August
�	��

��

