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Abstract

System dynamics models are becoming increasingly common in the analysis of policy and managerial issues. The

usefulness of these models is predicated on their ability to link observable patterns of behavior to micro-level structure

and decision-making processes. This paper posits that model calibration––the process of estimating the model pa-

rameters (structure) to obtain a match between observed and simulated structures and behaviors––is a stringent test of a

hypothesis linking structure to behavior, and proposes a framework to use calibration as a form of model testing. It

tackles the issue at three levels: theoretical, methodological, and technical. First, it explores the nature of model testing,

and suggests that the modeling process be recast as an experimental approach to gain confidence in the hypothesis

articulated in the model. At the methodological level, it proposes heuristics to guide the testing strategy, and to take

advantage of the strengths of automated calibration algorithms. Finally, it presents a set of techniques to support the

hypothesis testing process. The paper concludes with an example and a summary of the argument for the proposed

approach.

� 2002 Elsevier B.V. All rights reserved.

Keywords: System dynamics; Simulation; Hypotheses testing; Model calibration; Parameter estimation
1. Introduction

Since its inception, system dynamics (SD) has

emphasized the importance of clarity of purpose

for any intervention––a defined problem, issue or

undesirable behavior to be corrected (Forrester,

1961). The problem behavior is usually described

in a reference mode, and the purpose of the in-

tervention is to identify how structure and decision

policies generate the identified reference mode so
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that solutions can be generated and implemented.

SD practitioners build and depend on formal
simulation models to overcome the cognitive lim-

itations to grasp the detailed complexity of the

problem situation, and to make reliable behavioral

inferences. Generation of problem solutions relies

on using these models for policy testing (Forrester,

1961), what-if scenarios (Morecroft, 1988), or

policy optimization (Kleijnen, 1995). All of these

efforts, however, presume confidence that the model
represents the structure of the problem situation

and that his structure is responsible for the ob-

served behavior. A theory that explicitly articu-

lates how structure and decision policies generate
ed.
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behavior is called a dynamic hypothesis (DH)

(Richardson and Pugh, 1981), and it aims to ex-

plain ‘‘behavior as endogenous consequences of

the feedback structure’’ (Sterman, 2000, p. 86). A

good DH links observable patterns of behavior to
micro-level structure and decision-making pro-

cesses (Forrester, 1979; Morecroft, 1983). Argu-

ably, the outcome of the modeling process should

be a DH in which there is a degree of confidence

that it represents the structure and observed be-

havior of the problem situation. Once confidence

in the DH has been achieved, it is possible to

proceed with the exploration of policies and sce-
narios, the optimization of policies, or the articu-

lation and diffusion of insights.

Most descriptions of the SD method emphasize

the iterative process required to build confidence in

these models, and there is extensive literature on

the kinds of tests that a model needs to pass

(Barlas, 1989; Barlas and Carpenter, 1990; Barlas,

1994; Forrester and Senge, 1980; Sterman, 2000).
Nevertheless, the iterative process to gain confi-

dence in a model has been underplayed in the lit-

erature, and the advice seldom reads beyond some

form of ‘‘iterate the process �articulate DH, build

model, test model� as necessary.’’ This paper

focuses on the iterative process used to develop

confidence in a simulation model.

Since a DH makes a causal claim between
structure and behavior, I argue that model cali-

bration––the process of estimating the model pa-

rameters (structure) to obtain a match between

observed and simulated structures and behav-

iors––is a stringent test of a DH. New software

developments have automated the calibration

process, thus making it possible to optimize the fit

to historical data with a given structure. Unfor-
tunately, because these algorithms can replicate

historical behavior with relative ease, automated

calibration (AC) often gives practitioners false

confidence in their models. The second objective of

this paper, then, is to create a framework for the

use of AC within the context of model testing.

The paper tackles model calibration as a testing

strategy at three levels: theoretical, methodologi-
cal, and technical. The ultimate aim is to provide

methodological coherence (Checkland, 1981;

Eden, 1990). First, the nature of the testing process
is described, and the modeling process is recast as

an experimental approach to gain confidence in a

DH. Caveats and limitations of the proposed ap-

proach are identified at this conceptual level. Sec-

tion 3, after a brief review of parameter estimation
and AC, takes the argument to a methodological

level, suggesting strategies and heuristics for model

calibration that assist in the testing process. Sec-

tion 4 introduces a set of tools and techniques that

support the calibration/testing process through

analysis and interpretation of the calibration re-

sults. Although the techniques are specific steps

that generate standard results, their applicability is
contingent on the complexity of the model being

tested, hence the need for the methodological

heuristics developed in the previous section. The

paper concludes with an example and a summary

of the argument for the proposed approach.
2. An argument for model calibration

As stated above, a DH is a theory about how

structure and decision policies generate (cause) the

observed behavior. The model is the conveyor of

the DH, formally positing the causal link between

structure––captured in terms of equations and

parameters––and behavior––the simulated output

generated by the interaction of the equations and
initial conditions. The experimental literature

outlines three criteria for inferring cause: (1) tem-

poral precedence of the cause, (2) covariation be-

tween the presumed cause and effect, and (3) the

need to rule out alternative explanations (Cook

and Campbell, 1979). While the mechanics of

simulation make the precedence of structure clear,

the second and third criteria for inferring cause
require a more thorough analysis.

For any given DH there will be many rival

hypotheses––other structural explanations that

might be capable of generating the observed be-

havior. DHs, however, are not instrumental theo-

ries, i.e., theories deemed useful for explaining

certain phenomena regardless of their truth or

falsehood (Flew, 1984). Rather, DHs are realistic
theories of behavior (Lane, 1999). Therefore,

in testing a DH, it is not enough for the model

to match the observed behavior; the behavior
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generated by the model has to be right for the right

reasons. Clearly, no single test will be able to rule

out all the possible alternative explanations.

Although it is impossible to verify a hypothesis

(Oreskes et al., 1994), science has refined a sys-
tematic approach to increasing the confidence of

stated hypotheses: ‘‘subject your assumptions to

tough tests rather than soft ones’’ (Bunge, 1967, p.

10). The essence of the scientific method is cap-

tured in its experimentation ethos: strive to reject

the hypothesis. Thus, in order to gain confidence

in the causal argument stated in a DH, the testing

process has to be based on experiments that can
yield a false outcome.

Recasting the modeling process––articulate

DH, build model, test model––as the basic cycle of

the scientific method––state hypothesis, build a

laboratory, run experiments to refute hypothesis––

clarifies the role of the formal model as an aid to

experimentation. In this testing stage, the model

should be regarded only as a laboratory in which
to run experiments to refute the hypothesis––a role

consistent with Forrester�s (1971) view of the

modeling process (see also Graham, 2002). Once

there is confidence in the DH, the model shifts

roles and can be used to develop interven-

tion strategies. (The recasting of the SD model

as an experimental setting clarifies the role of

non-quantitative SD approaches, e.g., �systems
thinking� (Senge, 1990) and �qualitative SD�
(Wolstenholme, 1990), as tools for hypotheses

generation without the systematic approach to

falsify the hypothesis.)

The SD method is particularly well suited for

this experimental approach. According to Bunge

(1967), a well-formulated hypothesis should be (1)

logically sound, (2) grounded in previous knowl-
edge, and (3) empirically testable. First, the gram-

mar of SD modeling, and the requirement for

computer simulation, helps ensure that a DH�s
logic is sound. Formulating a model––i.e., ensur-

ing that all equations have consistent units, that

time constants are positive, that all feedback loops

contain at least one stock, etc.––enforces preci-

sion, making the DH ‘‘�specific,� �sharply defined,�
and �not vague�’’ (Forrester, 1961, p. 57). Second,
SD model development is grounded in previous

knowledge. SD is learned through apprenticeship,
i.e., becoming familiar with the existing knowledge

base. Furthermore, the SD academic community

has endeavored to ground SD work in findings

from other fields (see, for example, Morecroft,

1985; Sterman, 1989), and practitioners have a
clear set of values to determine if something is well

formulated (Martinez and Richardson, 2001).

Finally, since a DH will be used to generate

problem solutions, it needs to be relevant to the

problem situation being addressed. A model needs

not only to be internally consistent, logical, and

well formulated; it must also say something inter-

esting about the real world. Although a model
offers a simplified description of a problem situa-

tion, the appropriateness of that description needs

to be assessed as well. Forrester (1961, p. 57) used

the term ‘‘accuracy’’ to label ‘‘the degree of cor-

respondence to the real world.’’ To fully confront

the model with the piece of reality that it is sup-

posed to represent, we should capture the essence

of the real system through a series of observations,
measurements or facts. A DH links structure

to behavior. Accordingly, observations, measure-

ments or facts about the structure and the behavior

of the system are needed. In a SD model both

structure and behavior are, in most cases, directly

observable––‘‘model variables should correspond

to those in the system being represented’’ (For-

rester, 1961, p. 63)––and every model parameter
should have a real world interpretation. The for-

mal description of the model and the simulation

results constitute a refutable causal model with

multiple �points of testing� (Bell and Bell, 1980;

Bell and Senge, 1980).

Model calibration is the process of estimating

the model parameters to obtain a match between

observed and simulated behavior. Calibration ex-
plicitly attempts to link structure to behavior,

which is why it is a more stringent test than solely

matching structure or behavior. Confidence that a

particular structure, with reasonable parameter

values, is a valid representation increases if the

structure is capable of generating the observed

behavior. If the structure fails to match the ob-

served behavior, then it can certainly be rejected;
the calibration exercise constitutes a test for the

DH. Examining whether the model adheres si-

multaneously to observable structure and behavior



R. Oliva / European Journal of Operational Research 151 (2003) 552–568 555
is the toughest test to which that model can be

subjected, challenging both the logic of the hy-

pothesis and its relevance.

2.1. Caveats

The calibration process, however, has some

limitations. First, calibration is only a partial test

of the structure–behavior couple. Systemic struc-

ture in SD models is represented through equa-

tions and parameters (initial conditions for stocks

have the same computational and structural func-

tionality as system parameters). Calibration fixes
the model equations and adjusts the model para-

meters to match observed behavior. There is

a chance that a set of parameter values might

be capable of replicating the observed behavior

through a set of unrealistic formulations, and thus

generate the right behavior for the wrong reasons.

A full test of the structure–behavior couple should

include an assessment of the appropriateness of
model equations.

Second, rejecting a stated DH is not easy. If a

discrepancy in behavior emerges when comparing

the model�s output to the behavior in the real

world situation, a modeler�s first inclination may

be not to reject the DH in which so much time and

effort has been invested. Instead, she will deflect

falsification onto other assumptions used during
the modeling/testing process (e.g., formulation

error, measurement errors in the data). The process

of protecting the core hypothesis is referred as the

Quine–Duhem thesis: ‘‘because of all the back-

ground assumptions that might be wrong, any

outcome can be rationally distrusted and ex-

plained away by ad hoc hypotheses that alter the

background assumptions’’ (Cook and Campbell,
1979, p. 21). In order to perform a rigorous test

of the hypothesis, the modeler must press on to

gain confidence in the set of auxiliary assumptions

and strive to reject the DH (Wilson, 1997). Taken

to the extreme, the Quine–Duhem thesis can be

equated to Lakatos� (1974) research programs.

According to Lakatos, the hard-core ideas of a

research program represent the defining charac-
teristics of the research program (e.g., for SD the

assumption that structure drives behavior), and

are not subject to rejection. Thus, regardless of
how aggressively the modeler �attacks� the DH, the

alternative DH will probably be within the context

of the SD assumptions, and include explanations

in terms of rates, levels, delays, and feedback

loops.
Historical evidence shows that scientists (and

practitioners) discount data that refutes their

theory, as they prefer to work with an imperfect

theory than not to have a theory at all (Kuhn,

1970; Lakatos, 1974). Under this perspective,

theory validation becomes the process of building

confidence in a theory, either through falsification

or a functional perspective of the theory useful-
ness (see Gass, 1983; Miser, 1993; Mitroff, 1972;

Roy, 1993; Smith, 1993 for evidence of the OR/

MS community shifting to a functional perspec-

tive on model validity). Thus, validation is used

as an inherently partial assessment of the degree

of usefulness of the theory (van Horn, 1971). The

following sections provide heuristics and tools

to challenge both elements of model structure––
equations and parameters––in order to extract the

most information from data available, and strive

for falsification. These heuristics, however, should

be kept within the context of the functional

utility of the theory in reference to its specific

purpose.
3. Calibration heuristics

Parameter values for a SD model are normally

estimated a priori from direct observations, edu-

cated guesses, and other sources of data ‘‘below

the level of aggregation of model variables’’

(Graham, 1980, p. 144). The estimates are then

revised based on an iterative process designed to
match the real system�s behavior. Lyneis and Pugh

(1996, p. 1) describe the process as follows:

The calibration of the model . . . is typically

done ‘‘by hand.’’ In this iterative process,

the modeler examines differences between

simulated output and data, identifies possible

reasons for those differences, adjusts model
parameters in an effort to correct the discrep-

ancy, and re-simulates the model, looping

back to the first step. The entire parameter
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estimation process therefore relies on the ex-

pertise and experience of the modeler.

Unsurprisingly, the process has been criticized
for both its unreliability and its lack of replicable

outputs (see Lyneis and Pugh, 1996 for a list of

issues raised against ‘‘hand’’ calibration). Statisti-

cally based approaches have been adopted from

other fields in an attempt to make the parameter

estimation process more rigorous. Early studies

(Senge, 1977), however, concluded that econo-

metric approaches were not useful because of the
propensity of SD models to violate the ordinary

least squares estimation assumptions. Two ap-

proaches have been adopted to consistently esti-

mate parameters for whole models simultaneously:

full-information maximum-likelihood via optimal

filtering (FIMLOF) (Peterson, 1980) based on

engineering statistics (Schweppe, 1973), and model

reference optimization (MRO) (Lyneis and Pugh,
1996) based on non-linear optimization algorithms

that search across the parameter space. Both ap-

proaches are data- and computational-intensive;

they require an error function containing all data

available, and access to the set of model parame-

ters to be adjusted. The techniques, however, yield

an optimal fit with the given structure and adjusted

parameters. Consequently, even novice modelers
can generate good fits (Lyneis and Pugh, 1996)

and, perhaps more importantly, replicable results.

Operationally, the main difference between these

approaches is that FIMLOF requires lineariza-

tion of the system and the covariance matrix for

the driving noise, while MRO can work with the

model and data available �as is�. Throughout the
rest of the paper, I will use the MRO formulation
of a calibration problem to illustrate some of the

issues with AC, and to develop insights and heu-

ristics for model testing. These insights and heu-

ristics are transferable to calibration efforts with

FIMLOF.

3.1. Automated calibration

Under MRO, the calibration problem from

longitudinal data is specified as an optimization

problem, adjusting system parameters ðpÞ, to

minimize a function of the differences between the
available data series ðd tÞ and the corresponding

model variable ðytÞ. Since multiple data series

might be available, the objective function must

specify the relative weighting ðwÞ for each series.

Model outcome variables are a function of the
model�s state variables ðstÞ, parameters ðpÞ, and

known inputs ðutÞ. Lastly, the values of system

parameters can be limited to a feasible range [ll,

ul]. Formally, the calibration problem is stated as

Min
p

Xn

i¼1

wi

XTf

t¼T0

f yitð � ditÞ;

Subject to yt ¼ cðst; p; utÞ; ll6 p6 ul

where

wi ¼weight of ith error series,

yit ¼model variable i at time t,
dit ¼ data for variable i at time t,
st ¼model state variables,

p¼model parameters,

ut ¼ known inputs (data series),

ll¼ lower limit of parameter feasible range,

ul¼ upper limit of parameter feasible range,

T0 ¼ initial simulation time,

Tf ¼ final simulation time, and
n¼ the number of variable) data pairs in error

function.

There is a range of options for defining the

error function f and the relative weight of each

error series wi (Kleijnen and Sargent, 2000; see

also Reichelt et al., 1996 for a detailed compari-

son of error functions and their relative attributes

when used to estimate cyclical SD models). The
constraint function c, however, is directly deter-

mined by the model equations, and in most cases

will not be linear. A variety of available optimi-

zation algorithms are suitable to search the pa-

rameter space to minimize the deviation between

model outcome and historical data. Good algo-

rithms for this task should be capable of search-

ing over large parameter spaces while confronting
noise, discontinuities, and pervasive non-linearity

(Miller, 1998); algorithms typically implemented

include grid-search, hill-climbing, simulated anneal-

ing, genetic algorithms, and gradient estimation

techniques (see Miller, 1998 for a brief discus-

sion and references on these optimization tech-

niques).
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While AC techniques are capable of generating

an optimal fit to historical data with a given

structure and calibration parameters, a number of

critiques have been offered against this approach

to inferring parameter values. These critiques can
be grouped under three main headings: the source

of the estimated parameter values, the tractability

of mismatches and model diagnosis, and the

nature of the implied testing process.

(i) Source of the estimated parameter values. AC

estimates parameter values from model equations

and aggregate data––collected statistics corre-

sponding to model variables. This process, how-
ever, assumes that the model structure (equations)

is known, and that all uncertainty resides in the

parameter values. Using aggregated data to de-

termine parameter values ‘‘forces’’ the proposed

structure, through the estimated parameters, to

match historical behavior. Graham (1980, p. 144)

argues that most parameters in SD models should

be estimated from �unaggregate data�––‘‘informa-
tion [that is] more detailed than data that corre-

sponds (sic) directly to model variables.’’

Graham (1980) provides two strong reasons

for estimating parameters with data below the

level of aggregation. First, most factual knowl-

edge about the system falls into the category of

unaggregate data, and parameters can be esti-

mated independently of model equations. Second,
parameters that are directly observable, or that

can be estimated from unaggregate data––records,

interviews, etc.––increase the model�s ability to

anticipate events outside of the historical experi-

ence, and are intrinsically more robust than

parameters that are inferred from observed be-

havior.

(ii) Tractability of mismatches and model diag-

nosis. One of the main benefits of the AC tech-

niques is that it is possible to specify the calibration

problem as a single optimization problem with

an error function that contains all data available

and allows for adjustment of all model para-

meters. By providing total flexibility to the model

structure to adapt to the existing data, such an

approach generates the best possible fit to all data
available. From an operational perspective, how-

ever, having a complex error function and multiple

parameters to adjust makes the tractability of the
errors and the diagnosis of mismatches more diffi-

cult.

Since not all model parameters affect all output

variables in the model, as the number of data series

in the error function increases, individual para-
meters become less significant; variations in indi-

vidual parameter values have a small impact in a

complex error function, thus resulting in wider

confidence intervals for the estimated parameters.

Similarly, increasing the number of parameters to

be estimated through an error function reduces the

degrees of freedom in the estimation problem, thus

resulting in wider confidence intervals, i.e., less
efficient estimators.

The most serious difficulty with a large number

of calibration parameters, however, is the in-

creased difficulty in detecting formulation errors.

In an effort to match historical data, the calibra-

tion process �fixes� the model structure to cover

formulation errors. Since these corrections are

distributed among the parameters being used in
the calibration problem, as the number of pa-

rameters being estimated increases, the �correc-
tion� to each parameter becomes smaller. Small

deviations from �reasonable� values and wider

confidence intervals make it more difficult to de-

tect fundamental formulation errors, especially

when a �good fit� to historical behavior has been

achieved.
(iii) Nature of implied testing process. The main

critique that can be raised against AC is that it

constitutes a confirmation test––rather than a fal-

sification test––of the structure�s ability to repli-

cate historical behavior. By using AC to generate

the best possible match to the historical behavior

(taking the proposed structure as given), a modeler

is attempting to obtain an affirmative response to
the question: ‘‘Is the proposed structure capable of

replicating the observed behavior?’’ While not a

trivial test, this is a confirmation test of the DH,

i.e., a test seeking evidence consistent with the DH.

As discussed above, the ethos in testing a hy-

pothesis should be to attempt to falsify it. Tests

that focus on confirmation of current hypotheses

have a diminished ability to identify and recognize
anomalies that might lead to improvements (see

Sterman, 1994). Unless there are obvious mis-

matches, the AC process is likely to confirm our
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current beliefs and does not support a process

aiming to reject the DH.

From the three types of issues raised against the

AC process, it is clear that its outcome––the esti-

mated parameter values and the judgment of ad-
equacy of the model structure––should not be

accepted at face value. AC�s effectiveness to esti-

mate the value of model parameters is dubious

because of the ‘‘correct structure’’ assumption and

the multiple degrees of freedom inherent to the

process. The assessment of adequacy of model

structure is also questionable since its based on a

confirmation test of the DH. Thus, we are faced
with a paradox: while model calibration, by re-

quiring simultaneous adherence to observable be-

havior and structure, constitutes a stringent test of

the DH, AC, the most powerful tool available for

calibration, strips the process of its power to per-

form the test.

3.2. Proposed heuristics

Working around this paradox requires lever-

aging the strengths of AC without simultaneously

overriding the process of testing the DH. AC is a

reliable and efficient way to fit a structure to

the observed behavior. However, to maintain the

power of calibration as a test of the DH, AC has to

be used judiciously. Three simple heuristics to
frame the use of AC are enough to address the

criticisms raised against it. The first two heuristics

aim to increase the process�s capability of identi-

fying and diagnosing sources of differences. The

third heuristic addresses the nature of the test be-

ing performed when using AC. Together these

heuristics reorient the calibration process such that

it becomes a testing strategy for dynamic hypoth-
eses.

I. Include in calibration problem all knowledge

available about system parameters. If parameters

can be directly observed––or estimated from data

below the level of aggregation––they should be

treated as part of the known structure (Graham,

1980). Leaving a known parameter as a calibration

lever increases the risk of an error being masked
by small adjustments to that parameter. If knowl-

edge about a parameter is not precise, but it can

be limited to a feasible range, such information
should be introduced into the calibration problem

by restricting the search range for that parameter.

Limiting the flexibility of a parameter to its feasi-

ble range, or altogether treating it as part of the

known structure, forces the AC process to correct
for deviations by �fixing� other pieces of the

structure where the uncertainty lies.

II. Apply AC to the smallest possible calibration

problems. By ‘‘small,’’ I mean a reduced number

of equations and, consequently, parameters, i.e.,

partial-model testing (Homer, 1983). Working

with small calibration problems reduces the risk of

the structure being forced into fitting the data,
increases the efficiency of the estimation (estima-

tors with smaller variances), and concentrates the

differences between observed and simulated be-

havior in the piece of structure responsible for that

behavior.

III. Use AC to test the hypothesis ‘‘The estimated

parameter matches the observable structure of the

system.’’ Calibration, as discussed above, consti-
tutes a confirmation test of the question: ‘‘Is the

inferred structure capable of generating the his-

torical behavior?’’ This important question needs

to be addressed. However, since AC yields the best

possible set of parameters to match the observed

behavior, setting the null hypothesis to test the

a priori parameter estimates is a much more

powerful test. The question we should be asking
after AC is not whether the behavior was matched,

but whether the estimated parameters are consis-

tent with what we know about the system. Of

course, testing the relevance of a parameter esti-

mate presupposes success in matching the observ-

able behavior. That is, it is not possible to evaluate

the appropriateness of a parameter value if that

parameter is embedded in a structure incapable of
generating the observed behavior.

The first heuristic can be easily handled by

omitting the directly observable parameters from

the calibration problem, or by limiting its search

space. This measure has the additional benefit of

reducing the size of the calibration problem (heu-

ristic II). Heuristic II requires knowledge of model

structure, the role of individual parameters in de-
termining the model�s behavior, and the sources of

data available. The goal is to partition the model

as finely as possible, in order to focus the analysis
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and generate more efficient estimators. Finally,

heuristic III requires a way of thinking about

calibration output beyond the fit to historical data.

The next section explores the set of tests available

to test the adequacy of fitness to historical be-
havior and structural evidence.

Before proceeding, it should be noted that it is

not new to claim that calibration should be an it-

erative process of controlled experiments (partial-

model structure) to reject the hypothesis linking

structure to observed behavior. As can be inferred

from the titles of his papers, Homer (1983, 1996,

1997) has been arguing for a similar process, and
the approach is also consistent with Forrester�s
view of the modeling process and model testing

(Forrester, 1971; Forrester and Senge, 1980). My

proposal, however, goes further by tapping into

the power of the AC procedures in a manner

consistent with the ethos of model testing.
4. Analysis of both historical and structural fit

Although it is much more difficult to hide for-

mulation flaws when calibrating small model par-

titions, given the effectiveness of AC in matching

historical behavior, it is still possible to overlook

the signals that there is a problem with model

formulation (see Example A in Section 5). In this
section, I summarize the use of some tools to di-

agnose the adequacy of historical fit, and test the

hypothesis of structural fit. A module to facilitate

the analysis described in this section has been de-

veloped (Oliva, 1995), and is available online.
4.1. Does the model match the historical behavior?

There are multiple measures of fit of simulation

output to historical data, and the selection of a

measure should be based on the purpose of error

analysis (Kleijnen and Sargent, 2000; Reichelt

et al., 1996; Sterman, 1984). Beyond assessing the

magnitude of the error, the traditional test to

identify the sources of errors for historical fit of

SD models is based on the Theil inequality statis-
tics (Theil, 1966). The Theil inequality statistics

decompose the mean-square-error ðMSE ¼
1=n
Pn

t¼1 ðyt � dtÞ2Þ between simulated and actual

series into three components: bias, unequal varia-

tion, and unequal covariation. Dividing each

component by the MSE gives the fraction of the

error that is due to unequal means, unequal varia-
nces, or imperfect correlation. For a full description

of how to interpret these statistics for goodness of

fit of systems dynamics models and the identifica-

tion of systematic errors, see Sterman (1984).

Although Theil�s statistics are good at flagging

systematic errors in model formulation, they are

not very effective in helping diagnose the output of

AC. Two strengths of AC combine to reduce the
power of these statistics as a diagnosis aid. First,

AC normally generates very good fits between

simulated and historical behavior. The AC process

is geared to optimizing the fit between the simu-

lated and historical behavior. If there is a mis-

match between observed and simulated structure

and behavior, AC will minimize the behavior

mismatch and ‘‘hide’’ the source of error in the
parameter estimates. Second, error functions based

on the squared differences between simulated and

historical data (the most common error functions

utilized in MRO) minimize large errors. This re-

sults in a tendency for AC processes to replicate

the historical mean and place most of the error in

the unequal variance and unequal covariance com-

ponents of Theil�s statistics. The desired result of a
calibration process is, of course, small residuals

with zero-mean (unbiased). However, by perfor-

ming well in these metrics and masking the sources

of errors somewhere else, AC diminishes the diag-

nosis power of Theil�s statistics. Typically, sys-

tematic errors in a formulation calibrated through

AC will be signaled by a large value in the unequal

variance component of the MSE. The signal,
however, is not symmetric, as a small unequal

variance does not mean that the model is good.

Furthermore, clear interpretation of these num-

bers tends to be difficult because of the relatively

small errors (mean average percent error < 3%)

that AC generates. To diagnose the source of error

in a calibration problem, it is necessary to explore

the residuals of the match (Sterman, 1984).
A simple inspection of the plot of residuals over

time is helpful in detecting biases, trends, and cy-

clical components. The auto-correlation spectrum
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of the residuals is helpful in identifying cyclical

components of the time series and auto-correlated

errors. Finally, a scatter plot of residuals against

independent variables is useful to check for viola-

tions of the equality of variance assumptions
(heteroskedasticity), and diagnose the structural

sources of those deviations (see Oliva, 1995 for a

description of these plots and their use in identi-

fying behavioral and structural mismatches).
4.2. Does the model match the structure?

Once adequacy of fitness to historical behavior

has been asserted, it is possible to move to the

actual testing of the hypothesis whether the esti-

mated parameters match what is known about the

system structure. The test of estimated parameters

can be broken down into three increasingly de-

manding tests: feasibility, consistency, and confi-

dence.
Feasibility is the first test for the estimated val-

ues for parameters. Estimated time constants

should be positive, initial conditions for physical

stocks should obey the laws of conservation of

matter, ‘‘fractions’’ should have values between 0

and 1, and the resulting formulation should be

robust to extreme condition testing. The evaluation

of the feasibility of estimated parameters is con-
text-sensitive, and should be performed with full

understanding of model formulation. A way to

facilitate this test is, as suggested by heuristic I, to

limit a parameter�s search range to its feasibility

area. However, if the result of the estimation is at

one of the limits specified for the search space, we

should question the adequacy of the DH or the

model formulation. Normally, when AC results in
parameter estimates at one of the limits in the

search space, the fit to historical behavior is not

very good. Estimates at a limit indicate that the

model structure is being ‘‘bent to fit’’ the data up to

a feasible limit (see Example B in Section 5). If

the structure cannot be accommodated within the

feasible solution space, the difference is reflected in

the residuals. Removing the limiting constraint,
and performing the calibration again, will allow the

model to be freely adjusted to the data; yielding a

more precise diagnosis of the formulation flaw.
A final assessment of parameter feasibility is to

check if estimates are consistent with other pa-

rameters in the model. For example, we should

reject a structure whose calibration yields delays

shorter than the simulation computation interval,
DT. Non-feasible parameter estimates are a clear

sign of a formulation error, indicating that the

proposed structure should be revised.

The next test is to determine if the parameter is

consistent with what is known about the system

structure. The estimated parameter needs to match

other sources such as interviews and direct obser-

vations. See Graham (1980) and Forrester (1994)
for a detailed discussion of other data sources for

parameter estimates. Formally, the test of whether

the estimated parameter ðb̂bÞ is consistent with

what is known about the system structure––the

a priori estimate ðb0Þ––should be stated as the

null hypothesis ðH0 : b̂b ¼ b0Þ. If the a priori esti-

mate differs from the computed estimate value, we

need to reject the null hypothesis and reconsider
the proposed formulation, the prior parameter

estimate, or the DH (see Senge, 1978 for an ex-

ample of formal tests of estimates).

In ordinary least squares estimation, the t-sta-
tistic for an estimate––the ratio of the distance

between the computed estimate and the test value

to the estimated standard deviation of the estimate

ððb̂b� b0Þ=r̂rbÞ––gives a sense of the confidence that
can be placed in the estimate being equal to the test

value. This statistical test, however, belongs to the

single-equation class, and does not yield informa-

tion on the significance of the parameter for model

specification (Mass and Senge, 1980, p. 222).

Under MRO, for the case when the error

function f is defined as the square of the predicted

error, and wi is set as the reciprocal of the variance
of the predicted error ð1=r̂r2Þ, the objective func-

tion corresponds to the likelihood equation, and

the parameter estimates are the maximum-likeli-

hood estimates (Greene, 1997). Using the response

surface of the likelihood equation, it is possible to

determine confidence intervals for the parameter

estimates by performing sensitivity analysis inside

the hyper-volume defined by the parameters being
estimated. The confidence intervals for the pa-

rameters are calculated from the curvature of the

response surface by varying each parameter and



R. Oliva / European Journal of Operational Research 151 (2003) 552–568 561
measuring the change in response (Peterson, 1980;

see also Long, 1997, p. 87). The intervals are de-

termined based on a percentage reduction of the

objective function equal to the desired significance

of the test. If the response surface around the
optimal point is steep, small variations of the

parameter will yield a significant drop in the ob-

jective function. The tightness of the reported con-

fidence interval measures how useful the data are

for estimating a parameter. Although not explic-

itly computing the variance of the estimate, this

computation of the confidence intervals takes into

consideration the full structure specified in the
calibration problem (as opposed to a single equa-

tion). When confidence intervals of the parameters

are reported, the test for H0 is simple, as it is only

necessary to test whether the a priori estimate falls

within the reported confidence interval––testing

against a priori feasibility interval ðbll; bulÞ can be

done through a couple of one-tailed tests ðb̂bll > bll

and b̂bul < bulÞ. The test is similar to a Wald test
based on estimates of the unrestricted model

(Greene, 1997; Long, 1997), but using the curva-

ture of the response surface to infer the variance of

the estimate.

The final test for the parameter estimates is to

assess its confidence interval. Although there is no

fixed rule to determine when a confidence interval

is tight enough, the confidence test is here outlined
as a necessary step to assess the quality of AC

outcomes, and the power of the consistency test

described above. Ultimately, the appropriateness

of the interval, and its associate risk to incur in a

type II error, is determined by the purpose of the

model and the potential benefits of increasing its

accuracy (Raiffa and Schlaifer, 1961).

It should be noted that the reported confidence
intervals could also be interpreted as a sensitivity

analysis. A tight confidence interval means that

data-structure combination was effective in dis-

criminating among parameter values. A wide con-

fidence interval, on the other hand, implies that,

at least for the variables in the error function,

the model is not sensitive to variations in that

parameter. This suggests that additional efforts to
increase the precision of estimates of parameters

that are not critical to the model�s performance

might be unwarranted. Additionally, because mul-
tiple compensating feedback loops, SD models are

characterized by not being very sensitive to chan-

ges in most model parameter (Forrester, 1961),

further making the case for not spending resources

increasing the efficiency of the estimates. Never-
theless, sensitivity to changes in parameter values

depends on the variable being used to measure

the behavioral change. In some instances vari-

ables might be susceptible to small changes in

parameters that were thought not critical during

modular optimizations and greater precision is

required.

If model calibrations are performed through the
smallest model partitions possible, parameter

changes should have direct impact on the outcome

variables, and the confidence intervals for the es-

timated parameters will be small. Wide confidence

intervals under these conditions generally mean

that either the parameter has small impact in

the selected error function, or there is significant

multicollinearity among independent data series
and changes in parameters do not affect the

dependent variable. In either case, if more pre-

cise estimates are required, more data should be

incorporated into the calibration problem to in-

crease the efficiency of the estimates (reduce their

variance). If a parameter has small impact in the

selected error function, it might be necessary to

obtain a data series for a variable more sensitive to
its variations. Multicollinearity, on the other hand,

results in estimates with large variance because

only unique variations between the dependent and

independent data series are used to estimate the

parameters that govern their relationship. Data

series in SD models normally share a time trend

and tend to show strong multicollinearity, thus

additional data needs to be collected to increase
the power of the test. Additional data might be

brought to bear upon the estimation problem by

removing one parameter from the search space,

formalizing the relationship between two parame-

ters through model equations, or integrating more

the data points in order to increase the variance

among independent variables (Kennedy, 1992).

Given the characteristics of AC, the proposed
tests (behavior match, feasibility of parameters,

consistency of parameters, and confidence of tests)

are incrementally demanding.However, in practice,
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the process is iterative. Modifications to the esti-

mation problem aimed at improving performance

in one test frequently undermine the results of

other tests that had previously been passed. The

process––formulation, parameter estimation, ana-
lysis of fit, and model re-formulation––should be

iterated until a specification of model structure

that simultaneously matches observed structure

and behavior is achieved. The following section

illustrates the suggested iterative process for the

calibration of a model segment used in a study for

a retail lending operation of a bank. The process

resulted in an improved formulation with direct
consequences for the policy recommendations.
5. Example

During the 1990s, a major retail bank in the UK

sought to cut costs by moving back-office opera-

tions from branches to centralized processing
centres in more affordable locations. While the

strategy to centralize and standardize the back-

office operations had improved the productivity of

the lending officers and the quality of the lending

book, employees with direct customer contact had

some concerns about the level of service provided.

Our hypothesis, developed in previous work in the

service industry (Senge and Sterman, 1992; Senge
and Oliva, 1993), suggested that efforts to maxi-

mize throughput drove employees to work harder
Table 1

Calibration problem

Minimize:P
(Time per order ðtÞ)Time per order(t))2 for {tjTime per ord

Over:

Initial DTO > 0; a < 0; t to adjust up > 0; t to adjust down > 0

Subject to:

Time per order¼max(Desired TO �Effect of WP on TPO, Min

Desired TO¼ INTEG (DTO chg, Initial DTO)

DTO chg¼ (Time per order)Desired TO)/Time to adjust DTO

Time to adjust DTO¼ IF THEN ELSE (Time per order > Desi

Desired service capacity¼Desired order fulfillment rate � Desired

Work pressure¼ (Desired service capacity)Service capacity)/Ser

Effect of WP on TPO¼EXP (Work pressure � a)
Min processing TPO¼ 0.6

Bold variable names represent the historical time series for the variab

For clarity the time subindex has been eliminated from the constrain
and, eventually, to reduce the attention given to

customers. In the absence of accurate assessments

of service quality and customer satisfaction, man-

agers construe the reduction of attention given to

customers as productivity gains, and, consistent
with their objective of minimizing cost, reduce

their estimates of required service capacity. Erod-

ing standards mask this underinvestment in service

capacity as servers, their managers, and customers

come to expect mediocre service and justify current

performance based on past performance. To ex-

plore this proposition we developed a formal

model that integrates the structural elements of
service delivery, as well as the goals, expectations,

and choices of the actors in the situation (see Oliva

and Sterman, 2001 for a full description of the

model).

Table 1 lists the calibration problem for a set of

equations representing the �eroding goal� structure
in which the employees� standard for time allo-

cated per customer order (Desired TO) is adjusted
to past performance (Time per order) (see Fig. 1).

Consistent with previous work on adjustment of

expectations (Cyert and March, 1963; Lant, 1992;

Levinthal and March, 1981), the original formu-

lation for this structure included a time constant to

modify the speed of the adjustment process (Time

to adjust DTO). The employees� standard of service

is in turn used in conjunction with the Desired

order fulfillment rate to determine the Desired

service capacity. The relative difference between
erðtÞ¼ value}

processing TPO)

red TO, t to adjust up, t to adjust down)

TO

vice capacity

le.

t equations.



Fig. 1. Allocation of time per order.
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Desired service capacity and Service capacity is

defined as Work pressure. Finally, the actual time

allocated to each order (Time per order) is adjusted

to eliminate Work pressure––the higher work

pressure leads to lower time per order in order to
reduce the backlog of customer orders and the

Desired order fulfillment rate (not shown in equa-

tions). The effect of Work pressure on Time per

order was specified as an exponential function

ðTime per order ¼ EXPðWork pressure� aÞÞ, where
the parameter a determines how aggressively em-

ployees cut Time per order in response to Work

pressure.
The error function for the calibration problem

was specified with Time per order as the only data-

variable, and historical data on Service capacity

and Desired order fulfillment rate (bold in Table 1

and Fig. 1) were used as known inputs. The De-

sired order fulfillment rate (incoming orders plus

desired backlog adjustment) was standardized in a

way that one-hour-per-standard-order represented
a neutral standard of service. With this data series

and the model equations it was possible to specify

a calibration problem to estimate the parameters

Initial DTO, Time to adjust DTO, and a. Note that

the Minimum processing time per order was not

included in the calibration problem since this pa-

rameter was directly observable from other sour-
ces, thus reducing the size of the calibration

problem. The output of the calibration problem

(with 95% confidence intervals) and some tools for

the analysis of fit are reported in Fig. 2A. The fit to

historical behavior is quite good. 95% of the MSE
is concentrated in the imperfect covariation com-

ponent of the Theil inequality statistics, mean-

absolute-percent-error (MAPE) is below 2%, and

R2 is almost 0.8. Furthermore, there is no sys-

tematic bias, and the residuals do not show a sig-

nificant trend. The estimated parameters all have

the expected sign and tight confidence intervals––a

feasible structure. However, the value for the es-
timated Initial DTO, 10% below the neutral stan-

dard of service (0.9 hour/std. order), implied an

evolution of the Desired TO not consistent with

what was known about the system. Interviews with

employees suggested a high initial standard of

service, and that they had felt pressure to reduce it

over the last year. When asked how they felt the

lending centres were working for the bank, here is
what two lending officers had to say

. . . the feedback you get back [from the cus-

tomer] is ‘‘I�m dehumanized, I just became a

number. I can no longer talk to you as a per-

son, you just treat me as a number.’’ . . . we
have lost the customers along the way.



Fig. 2. Example of iterative formulation, calibration, and analysis.
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. . . because of the various pressures on us, we

are going to be asked to be more proactive in

selling . . . We just don�t have the relationship

basis to sell effectively. The customers have
said that they become a number; and in a

way they have. . . It is difficult to sell that way.

According to these interviews, and other indi-

cators of service quality for the same period, the

employee�s standard of service should start high

and erode over time (compare this to the raising

value of Desired TO in Fig. 2A). To incorporate
this additional information into the calibration

problem, the search space for the Initial DTO pa-

rameter was limited to be greater or equal to one––

a neutral standard of service. Results are reported

in Fig. 2B, and, at a first glance, they are not too

bad: MAPE is 2%, the bias component of the MSE

is small, and R2 is almost 0.7. The large estimated

value of the Time to adjust DTO suggests that
Desired TO does not adjust to past performance. a
has the right sign and tight confidence intervals;

again, a plausible structure. However, one pa-

rameter (Initial DTO) is at the limit of its feasi-

bility range, and the residuals show a significant

downward trend (also reflected in the high value

for the unequal variation component of the MSE),

indicating that a part of the behavior still has not
been fully captured by the structure.

Further exploration of the situation, in part

guided by the downward trend of the residuals,

revealed that employees had experienced a signif-

icant learning curve during the period when data

were collected. The effect of the learning curve was

incorporated into the historical data on Service

capacity, and multiple alternative formulations
were tested through iterations of this process. A

match of the historical behavior and what was

known about the system�s structure was finally

achieved when an asymmetric adjustment process

for the Desired TO was considered. Asymmetry of

adjustments means that employees adjust their

internal standard at different rates depending on

whether the actual performance is above or below
the internal standard. This is reflected in the for-

mulation by allowing different time constants (t to

adjust up and t to adjust down) to govern the ad-

justment of Desired TO. The results of the cali-
bration (see Fig. 2C) show that when work

pressure forces actual Time per order to fall below

the desired level, the desired level erodes quickly––

with a time constant of 19 weeks. There is, how-

ever, no evidence of any upward revision in
Desired TO when work pressure is low (t to adjust

up �1), despite the fact that actual Time per order

exceeded Desired TO in more than half the data

set. This formulation change had a direct impact

on the policy recommendations emerging from

the study once the asymmetric adjustment was

identified as an erosion of quality and not a pro-

ductivity gain; the new understanding on the for-
mation of expectations created the need for

aggressive management driven quality initiatives

(Oliva, 2001; Oliva and Sterman, 2001).

The example was selected to show how good fit

of behavior is not enough when calibrating a model

(Example A), and how––despite constraints––the

AC process is capable of generating fairly good

matches to the observed behavior (Example B).
Assessing the goodness of fit of an AC outcome

requires a full consideration of the estimated para-

meters as they shape the model structure. Although

the initial formulation provided a good behavioral

match to the observed variables, the iterative test-

ing process described above yielded an improved

formulation with important implications for the

behavior of the system.
6. Conclusions

The argument for calibration as a testing

strategy for a DH has been articulated as follows.

SD interventions can only be as good as the DH

that is used for policy design, thus careful con-
sideration must go into building confidence in a

DH. A DH explicitly posits a causal link between

structure and behavior. Although it is impossible

to verify a hypothesis, science has refined a sys-

tematic approach for increasing the confidence in a

stated hypothesis and ruling out alternative ex-

planations, namely, experiments designed to fal-

sify the hypothesis. SD models are well suited
for this experimental approach since they are logi-

cally sound and need to be relevant to the prob-

lem situation, i.e., they are empirically testable.
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Calibration explicitly attempts to link structure

and behavior, thus making it a more stringent

test than matching either structure or behavior

alone.

AC techniques are capable of generating an
optimal fit to historical data from a given structure

and set of parameters. However, because of the

assumption of correct structure and the effort to

match the historical behavior, AC techniques are

typically used to confirm the DH––can the struc-

ture match the observed behavior? Three heuristics

are suggested to increase the power of AC as a

testing tool: do not override known (observable)
structure, tackle small calibration problems (mod-

ularize), and use AC to test the hypothesis: ‘‘the

estimated parameter matches the observable

structure of the system.’’ Finally, a set of increas-

ingly demanding tests were outlined to guide as-

sessment of the AC output in the context of

hypothesis testing. Ultimately, the best calibration

is not the calibration that generates the best fit to
historical behavior, but the calibration that best

reflects the observed structural characteristics of

the system and simultaneously captures the ob-

served historical behavior.

Placing this paper in a broader context, it

should be noted that calibration is only the first

step for testing a DH and should really be viewed

as part of the model building process. Forrester
(1961, p. 133) argues that ‘‘confidence in a model

arises from a twofold test––the defense of the

components and the acceptability of over-all sys-

tem behavior.’’ The proposed testing strategy aims

only to increase the defensiveness of the model

components. Full testing of a DH also requires

tests at the system level (Oliva, 1996), and assess-

ment of the model�s application domain (Graham
et al., 2002; Oliva, 1996). Further research should

look into formal ways of partitioning a model for

estimation purposes, and integrating these strate-

gies into a rigorous battery of tests for dynamic

hypotheses.
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