
- 1 -

Canonical Task Environments for Social Simulation

Scott Moss
Centre for Policy Modelling

Manchester Metropolitan University
s.moss@mmu.ac.uk

http://www.cpm.mmu.ac.uk/~scott

1 Introduction

The purpose of this paper is to propose and describe an alternative to an

overarching theory for social simulation research. There are a number of reasons why

some general framework will be useful.

One is that the social simulaton community seems to produce a bespoke model

for every situation or issue modelled. The evidence is not hard to find. The only

attempt explicitly to relate models to one another was reported by Axtell et al. [1].

The results reported in that paper were achieved by means of a collaboration between

Axtell and Epstein at Brookings and Axelrod and Cohen at Michigan to demonstrate

that their respective models yield the same results when applied to the same social

situations.

One reason for aligning models in this way is that, informally, we have more

confidence in results obtained from a wide range of model specifications than we

would if different models gave contradictory results. To the extent that we want to

search for results that are robust with respect to the social situation or with respect to

the particular representaton of agent cognition in a given social situation, then it is

clear that the accumulation of model alignments in this way is essential in all

circumstances where analytical results are not available.

A second reason is to be able to determine when or whether agent

representations of modelling techniques used in the analysis of one issue can be used

in the analysis of others. In extending domains of application of models, is it

necessary to change representations of cognition channels of interaction among agents

and, if so, how?

In summary, an important guide to the direction of social simulation research

and application would be some means of situating models relative to one another and

relative to domains of application.

- 2 -

While the procedures and results reported in [1] represent an important step in

this direction, the effort involved seems to have been considerable, involving large

amounts of programming and personal visits between the two institutions. The result

was a useful and impressive demonstration of the possibilities of “docking” or

“aligning” models developed in different software environments for different

purposes. Moreover, those authors were interested in determining one relationship

among models: subsumption or what econometricians call nesting. This means that

one model is a special case of the other.

The development of what are called below provides a basis for model alignment

and situating which can be more general than subsumption and which is a much more

economical approach than that used by Axtell et al.

2 Canonical task environments

In mathematics, canonical matrices are effectively matrices of a standard form

and there are transformations which can be performed on other matrices to show that

they can be made into canonical matrices. All matrices which, by means of allowable

operations, can be transformed into a canonical matrix have the properties of the

canonical matrix.

So a canonical task environment in social simulation will naturally be defined as

an abstract form with known properties that can be used to represent environments

and the effects of cognitive behaviour in such a way that models with particular

domains of application can be mapped unambiguously into models set in canonical

task environments.

The virtues of canonical task environments will be demonstrated by using it to

capture three computational models of organizational behaviour. These are the

Carley-Svoboda [3] model in which workers in an organization have the task

collectively to recognize the modal digit in a digit string; the Moss [8] model of the

resolution of critical incidents by an environmentally sensitive organization and the

virtual design team (VDT) model [7] in which agents have to cooperate in order to

achieve a design task. The Carley-Svoboda model incorporates a recognition task; the

Moss model an independent action task and the VDT model a cooperative acton task.

The Moss and VDT models are distinguished in this regard by latter’s incorporation

of a critical path model to describe the necessary work programme for the design task

- 3 -

while, in the Moss model, any sequence is possible and effective sequences emerge as

a result of agent cognition and behaviour.

All of these models are intended to capture elements of agent cognition in

organizations. The Carley-Svoboda model relates organizational structure to effective

agent cognition; the Moss model relates communication among agents to effective

organizational performance and the VDT model relates both organizational structure

and communication to performance. So, although the models are implemented in

different ways and represent cognition differently, they are clearly in the same

domain. The verbal description of their areas of application suggests that the Carley-

Svoboda task environment is nested in the task environment of the Moss model which

in turn is nested in the task environment of the VDT model.

One purpose of this paper is to state that set of nesting (or subsumption)

relationships analytically. This is done by showing that both the Moss and VDT task

environments map directly into the Carley-Svoboda specification of the task

environment. This, for reasons to be considered in the section following, is the

starting point for the canonical task environment developed below. In order to

maintain as much comparability as possible among the implementations of the three

models, a single base representation of cognition will be employed, although some

differences in implementation are required for each model. These differences and the

reasons they are required are themselves informative in relating these models to one

another. Finally, although a simple matrix-based set of relations among the aspects of

the environment and the relationships among actions and aspects of the environment

is implemented here, generalization of the techniques to arbitrarily complex

relationships among aspects of environmental states and agents’ actions will be

described though not implemented here.

3 Developing a canonical task environment

The customary form of reporting models and results is as if a problem were

identified and the model used to analyse that problem appeared like the 7th Cavalry

riding to the rescue. In this case, an account of the development of the suggested

canonical form of task environment robot will itself help to demonstrate its canonicity

and to suggest an approach to the development of canonical task environments in

general.

- 4 -

The inspiration for the model described here is a set of models by Kathleen

Carley and her colleagues which represent the environment as a digit string and model

agents with the objective of recognising certain characteristics of that string such as

whether it contains more 1s or 0s. The key paper here is by Carley and Svoboda [3].

This model has much the same content as the Radar-Soar model [15] in which radar

station analysts were observing airplane characteristics in order to determine whether

they were friendly, neutral or hostile. The airplanes had nine observable

characteristics each of which could take values of low, medium or high. Agents were

either analysts or managers. In both cases, cognition was represented in Soar, the

computer architecture manifestation of Alan Newell’s [12]unified theory of cognition.

Several alternative formulae were applied to relate the characteristic values to the

“actual” status of the airplane as friendly, etc. There is no analytical difference

between representing an airplane as a list of tokens from the set {low, medium, high}

on the one hand or a list of digits from the set {0, 1, 2} on the other. In fact,

converting the tokens into numbers was one of the steps involved in calculating the

status of the aircraft.

This gives us an initial representation of the environment for a canonical model:

the digit string. In all of these models, organizational structure is represented by

specifying agents that observe subsets of charcteristics or, equivalently, positions in

the digit string and the agents to which the observing agents report and the agents to

which they report, and so on. Decision-making within that structure is imposed by the

modeller or at random or, in the latest version, by a special agent (the CEO) who

periodically modifies the organizational structure as a cognitive act. In all of these

cases, the function of the organization is correctly to recognize some characteristic of

the digit string. In the radar model, the recognition task is in practice to recognize in

which of three ranges lay the value of a function of the elements of the digit string and

in the Carley-Svoboda model to recognize whether a bit string contained more 1s or

0s.

A canonical task environment that is restricted to the representation of

recognition tasks is clearly too limited to provide a focus for the issues of concern to

the social simulation community as represented by, say, recent conference volumes in

the field such as [5] and [6]. To extend the model to allow for agents to act is

therefore a natural step.

- 5 -

In order to support social simulation modelling of real institutions and systems,

it is essential to demonstrate that a canonical task environment supports application

models of such institutions and systems in its domain. For this reason, the elaboration

of the radar and digit string models to include action by agents entailed a mapping

from a model of the organizational structure and systems involved in the management

of critical incidents in an environmentally sensitive industry—the UK water and

treatment industry. The model was based on interview and documentary data provided

by North West Water PLC [8].

The relevant characteristics of the model are the representation of operating

sites as non-cognitive agents that communicated by telemetry with the central

systems. The telemetry data included alarm states for intruders, fires, floods, leaks of

various kinds, pump failures, and so on. There was also information provided by the

public concerning publicly observable events such as mains collapses or dead fish in

the rivers. In each case the event could be occurring or not. So far, this application is

not essentially different from the radar problem. The occurrence of an event is

represented by a 1 and the non-occurrence by a 0. Ordering the 1s and 0s by operating

site and event type (intruder, fire, mains collapse, chlorine leak, etc.) yields a digit-

string representation of the environment. In addition, each of these critical events has

associated with it a corrective action such as remove intruder, extinguish fire, repair

leak. The simplest extension to the Carley-Svoboda model that will capture the

possibilities for action to resolve critical incidents is a bit string s implemented as a

vector and another bit string a, also a vector, of the same length as s and in which a 1

represents taking the action such as remove intruder at a particular operating site and a

0 indicates that the action is not being taken at that site. The effect of a 1 in a given

position in the action string a changes the value of the corresponding digit of s from a

1 to a 0, unless it is already 0.

This gives us a straightforward difference equation for the state string:

(1) Ias −=∆

The North West Water engineers allow for probabilities that action taken to

resolve one event might create another so that, as a fictional example, in repairing a

pump it is possible that a fire will be started. This implies that the coefficient matrix

of equation (1) might have off-diagonal elements. Consequently, we require a more

general form of the coefficient matrix: an action-state-change matrix (ASCM), to be

denoted by A where [aij] is the effect of the unit action at the ith digit of the action

- 6 -

string on the jth digit of the state string. The notion of a probability or observed

frequency distribution of such events is captured in the usual way by a probability

matrix P where [pij] is the probability that a change in the ith digit of the action string

will have the specified effect on the jth digit of the state string

A further effect is that of “snowballing”. One event might trigger another

without any actions having been taken. The “snowballing” or state-state-change

matrix (SSCM) will be denoted by S. There is no reason not to allow for each link in

the sequence of state-state interaction to be subject to an observed frequency

distribution and if that is the case we define an appropriate probability matrix.

While the SSCM will naturally be a square matrix of size equal to the length of

the state digit string, we would not expect in general that there will be an action to

affect every aspect of the environment or, in the present context, as many rows as

columns of the ASCM. So if there are a actions and s defined aspects of the state of

the environment, the ASCM will by an a×s matrix. So, ignoring snowballing, instead

of equation (1) the change in state digits due to actions will be

(2) 1−=∆ tt Aas

In keeping with the evidence from North West Water, we assume that a change

in a state digit at one period will affect the values of a some state digits at the next

period so that, ignoring for the moment constraints on the values of the digits,

(3) 11 −− ∆+=∆ ttt sSAas

Substituting recursively into the second term on the right,

(4))1(
1

1
0

+−
+

−
=

∆+=∆ ∑ Tt
T

t

T

t sSaSAs
τ

τ

At period 0, the change from the “previous” period is 0 and so at period t, the

change in the state string is

(5) ∑
=

==∆
t

tt aSAs
0τ

τ
λ

Planning issues become important when the value of coefficients in the A matrix

are larger in magnitude than the differences between current and target values of the

state string digits they affect. Reaching the target values can only be done indirectly

by changing related state string digits or by an indirect route of increasing the

discrepancy from the target values in order to converge in some other way. This kind

of planning is a natural application for representations of cognition both as modelling

- 7 -

and as formal logics of any of the intelligent planning algorithms and to investigate

how the efficiencies of these various approaches relates to organizational structures.

4 Action in the canonical task environment

In this section, the environments from two further models are mapped into the

canonical task environment to demonstrate how to allow for agents to take actions to

influence the environment. Moss’ North West Water model [8] is concerned with

actions that can be taken independently of every other. The VDT model captures

certain features of critical path models including the requirement that some results

require several actions to be completed in parallel or in a certain order. The Moss

model gives to individuals independent control tasks while the VDT model gives to

individuals some co-operative control tasks. In this section, we demonstrate that they

are both in the domain of the same augmentation of the recognition task environment

4.1 Recognition task environment.

The Carley models as noted do not represent action by agents — only

observation, reporting and formulating hypotheses about the implications of the

observations. In terms of the canonical model, the action string contains all 0s and

equation (4) becomes

(6) ∆st = 0

In this model, nothing would ever change without some exogenous perturbation

of the digit string. In order to represent changes in organizational forms and to

analyse the effectiveness of different assumed structures in the recognition task, states

in this model are changed by random mutations in the digits of the state string so that,

in the recognition task model, the state change equation is

(7) ttt msSs +∆=∆ −1

This yields the usual sort of geometric progression so that

(8) 0
0

sSmSs t
t

tt ∆⋅+⋅=∆ ∑
=

−
τ

τ
τ

Since the value of ∆s0 = 0 by construction, the change in the state string at any

time t is simply

(9) ∑
=

−⋅=∆
t

tt mSs
0τ

τ
τ

- 8 -

In all of the task environments discussed in this paper, there is a user-specified

probability that any element of mt will be non-zero and, if non-zero, an equal chance

of being positive or negative. Changes in the state digit string are bounded so that the

value of every element in the state string is a non-negative, single-digit number. The

number base of the state string is therefore the number of categories in which each

observed event could be placed. An increment of (say) 1 from the highest single-digit

number is always 0 and a decrement of 1 from 0 is the highest single-digit number.

4.2 Independent control task model

This is the model already reported. In the simulation runs reported in the next

section, random mutation of the state string digits was implemented in order to

generate some noise in the system. When the agents were successful in eliminating

discrepancies between observed and target digits at the positions they observed, the

noise was necessary to create new discrepancies and, so, use the cognitive capacities

of the agents and their organizational structures. This is also consistent with the view

of the critical-incident managers of North West Water that particular types of events

have known probabilities of occurrence. The state change equation for the

independent control task model is

(10))(
0

∑
=

− +=∆
T

ttt mAaSs
τ

τ
τ

Figure 1: Digraph representing relationship between α and a strings

α 1 α 2 α 3 α 4 α 5

a1
a2 a3

- 9 -

4.3 Co-operative task control model

A co-operative control task model effectively requires a network relationship

among actions and targets. In order to see what is involved here, and how it is

incorporated into the canonical model, we interpret the action string of equations (5)

and (10) as intermediate outcomes of lower-level acts denoted by the string a.

Suppose that there are three intermediate outcomes represented by the digit string a =

[a1, a2, a3] and three direct actions available to agents represented by the values of the

digit string α = [α1, α2, α3, α4, α5]. The relationship between the values of the

elements of α and the elements of a are given by the digraph in Figure 1.

The corresponding edge matrix is

(11)

=

11010

00110

00011

E

We define the operator ⊕ so that

(12))1|min(==⊕ ijji EE αα

This is a perfectly standard path algebra so that we could allow for as many

links among the α nodes leading to the a nodes as we wished. Two steps in the

traverse from a leaf node to an a node would be determined by E ⊕E and three steps

by E ⊕E⊕E, and so on. Each of these steps would be assumed to take one appropriate

time period.

Allowing only for single links between the α nodes and the a nodes,

(13) it Ea α⊕=

The state change equation is then

(14))(
0

t

T

t mEASs +⊕⋅=∆ ∑
=

τ
τ

τ α

4.4 The canonical task environments: a summary

The relationships among the canonical task environments defined so far are

easily seen in Figure 2.

The cooperative task environment is reduced to the independent task

environment by conflating the first level of actions taken by individuals with the

“levers” on the environment. Formally, this amounts to allowing only one level of

- 10 -

actions which is equivlent to setting the edge matrix equal to the identity matrix. To

reduce the task environment further to the recognition task environment, we simply

allow there to be no non-zero values of the actions. This will reduce either of the

more general task environments to the recognition task environment.

The relationship among models whereby one is reduced to another by setting

individual parameters to specific values is known in econometrics as nesting and is, I

believe, what Axtell et al. had in mind by subsumption. Consequently, the argument

of this section indicates that the co-operative action environment subsumes the

independent action task environment which in turn subsumes the recognition task

environment.

Figure 2: Relationships among the three canonical task environments

)(
0

t

T

t mEASs +⊕⋅=∆ ∑
=

τ
τ

τ α

)(
0

∑
=

− +=∆
T

ttt mAaSs
τ

τ
τ

∑
=

−⋅=∆
t

tt mSs
0τ

τ
τ

E=I

0=−ταt (all τ)

 α
t- τ =

0 (all τ)

5 The scope of simulation results

While it is important to investigate relationships such as subsumption among

models and the canonical task environments will certainly facilitate such

investigations, it is also important to determine the scope of the results obtained from

individual models. By scope of the results, I mean the range of canonical

environments over which a set of results will be replicable. For example, Carley and

Svoboda obtained a number of results about organizational structure in the recognition

task environment. Those results are themselves clearly more robust if they are also

found in the independent and cooperative action environments. Moreover, and

- 11 -

perhaps more importantly, if we find that results obtained in the recognition task

environment typically can be replicated in the more complicated task environments,

there will be obvious computational economies to be had in simulation experiments.

In order to identify those results that are dependent on the task environment, it is

obviously important to implement the other features of models in common ways.

Clearly there will have to be some differences. Agents in the recognition task

environment will not require the capacity to act and agents in the independent action

task environment will not require the capacity to co-operate while action and

co-operation both are required in the co-operative action task environment. In order

to minimize the differences in results due to implementations of agents, the agent

specifications will have to be nested in a manner corresponding to the nesting of the

task environments.

Accordingly, the three canonical forms of the task environment are

implemented in SDML, using its object oriented features to ensure that these are

nested in the manner identified in section 4. The purpose is to investigate the scope of

the results obtained in the original models that inspired the canonical representations

of the task environment in the first place.

SDML supports three hierarchies with object oriented features. Two of these

hierarchies support multiple inheritance and one supports simple inheritance. The

top-level hierarchy is the module hierarchy. Within each module is a hierarchy of

types. The type hierarchy entails the definition of containers and a hierarchie of

agents containing other agents. The module and type hierarchies support multiple

inheritance and the container hierarchy supports simple inheritance.

Models in SDML are associated with modules. The modules associated with

models for the various task environments will require either to contain or inherit both

the functionality required for the task environments and the representations of agents

with cognitive capacities relevant to their respective task environments.

5.1 The module hierarchy

The module hierarchy for the development of the task environments is

reproduced in Figure 3. The top-level module, standard, contains the essential

functionality of SDML and cannot be modified by the user. All of the other modules

must be submodules of standard and, so, inherit the essential SDML functionality.

- 12 -

The two modules, Endorsing and Cognition implement a representation of

decision-making and mental modelling that has been used in a large number of

models including those reported by Moss (1998), Moss and Sent (1998), Moss and

Dautenhahn (1998), and Moss, Gaylard, Wallis and Edmonds (1997). The Endorsing

module contains the implementation of a development from Paul Cohen’s (1985)

endorsements scheme. Agents endorse information, other agents, mental models,

rules of behaviour, information sources or other objects of the model. The

endorsements are mnemonic tokens which have positive values if good or negative

values if bad. The magnitude of the value associated with each endorsement token

indicates its class of importance. This is used to calculate the overall endorsement

value of one object in order to compare it with the endorsement values of other

objects.

Figure 3: The task environment module hierarchy

standard

Endorsing

Cognition

Canonical

ActionModelRecognitionModel

IndependentActionModel

IndependentHumans IndependentRobots

CooperativeActionModel

vdtModel CooperativeRobotsModel

Every endorseable type of object (rules, mental models, etc.) has associated with

it an endorsement scheme which defines the endorsement tokens and values as well as

a number base for calculating the values of all endorsements of an object. If the

number base is b, the endorsement valueof an object will be

- 13 -

(15) ∑∑
<≥

−=
00 i

i

i

i

e

e

e

e bbE

where ei is the value of the ith endorsement token. Clearly, the value of an

endorsement token in class n is b times as important as a token in class (n-1). The

finer the grain of endorsement values, the closer b is to 1.

An example of an endorsement scheme is reproduced in Figure 4 from the

SDML rule setting up the endorsement scheme for the workers in organizations in the

action models.

Figure 4: SDML rule setting up plan endorsement scheme

and
 = ?grain 1.3\
 = ?endorsementValues

[[planSuccessful 3]
 [planOnTrack 2]
 [planOffTrack -1]
 [planWrongInDirection -2]]

permanent
 (endorsementSchemeDefinition

planEndorsementScheme
?endorsementValues
?grain)

The grain of the endorsement scheme (b in equation (15)) is 1.3. The variable

?endorsmentValues is set equal to the list of tokens and their respective values.

The object planEndorsementScheme is then asserted to the permanent database so

that each worker in the model can access it at any time during a simulation run.

Because this rule is defined for the cognitive element of agents of type Worker

in the ActionModel module, all agents of that type in every task environment

providing for agent actions will have the same endorsement scheme for plans of

action.

The Cognition module implements a representation of agent cognition taken

from Soar and ACT-R at the computational end of cognitive science. This is based on

a problem space architecture with a set of tasks being associated with each problem

- 14 -

space. The problem spaces are alarm, noPlanExists and communicate. In other

models, the problem space architecture has been considerable more elaborate. A cut-

down version is used in the models reported here in order to maintain the issues

assoicated with canonical task environments in the sharpest possible relief.

The problem space alarm arises when a worker notices that the value of the state

string at a position observed by that agent differs from some target value. The

objective of the agent is then to change the value of the state string digit to its target

value. The first question is whether the agent has a plan defined that will be

applicable in the current circumstances and which has as a goal the change in the

value of the state string at the specified position. If not, then the agent enters the

problem space noPlanExists and then has a number of rules to guide the creation of a

plan. If there is an appropriate plan, or once one is defined, the agent is no longer in

the noPlanExists problem space and the problem space communicate becomes

apposite. In that problem space, the worker communicates with a superior in the

organization to inform that superior of the action taken or that no action could be

taken but that the observed digit of the state string is not at its target value. The

possible components of the plans will differ with the model but the problem space

architecture and the plan endorsement scheme will not. If there are several possible

plans, the chosen plan will be one with the highest endorsement value.

Inspection of the module hierarchy will confirm that the extent of such common

properties of the various models is substantial. The problem space architecture and

the endorsements mechanism have been defined in this way because they are

compliant with Soar and ACT-R cognition as used in social simulations by Ye and

Carley (1995) and Moss (1998) and because they allow for the specification of the

problem spaces and associated tasks as well as the endorsements and their values on

the basis of data supplied by domain experts. The expert input is not relevant in this

case but it is by no means inconsistent with the canonical task environments.

5.2 The type hierarchy

Type hierarchies are augmented by modules but all types and their subtypes

defined higher in the module hierarchy are inherited. In the present case, there is one

type hierarchy defined in the Canonical module (see Figure 3). In the type hierarchy

are two types which can be changed by users and for which subtypes can be defined.

These are the types Object and Agent. In fact, Agent is a subtype of Object. Its added

- 15 -

functionality is in having rulebases and databases and the ability to access them.

Similar type hierarchies to that implemented for the models set in canonical task

environments have been reported several times previously (e.g. in Moss (1998)).

The segment of the type hierarchy starting with type Agent and including its

subtypes that are relevant to the substance of the models set in canonical task

environments is reproduced in Figure 5. The types in boldface are defined in the

module Canonical. The types CognitiveAgent and CogSimModel are defined in the

module Cognition. The other types are primitive to SDML and are inherited from the

module standard.

Figure 5: Segment of type hierarchy from the Canonical module

Agent

TaskGenerator LoopingAgent

OrganizationModelOpsContainer

CogSimModelCompositeAgent

SerialCompositeAgentParallelCompositeAgent

CognitiveAgent

WorkerMeta CEO

MetaAgent

Worker

Industry Organization

In the lower left corner of Figure 5 are the type MetaAgent and its subtypes.

Instances of type MetaAgent are unique agents in that they have not only their own

databases and rulebases but, in addition, they can treat the rulebases of certain other

agents as databases. That is, instances of type MetaAgent and its subtypes can read

the rules on certain rulebases and they can also write rules on those rulebases. In all

of the models reported here, each agent of type Worker contains an instance of type

WorkerMeta. The instance of WorkerMeta devises mental models and, on the basis

of those mental models, devises plans of action. These plans of action comprise

sequences of actions and the conditions in which those actions will be taken. The

- 16 -

actions are actually taken by the containing instance of Worker because the conditions

and actions are written as rules to the rulebase of the Worker instance.

In general, any agent can contain a meta agent and any meta agent can read

from and write to the rulebase of its containing agent, or container. Instances of the

type CEO are the mea agents of instances of Organization. Each organization

contains one CEO instance which, following Carley and Svoboda (1996), reorganizes

the structure of the organziation periodically in order to improve its effectiveness.

Instances of LoopingAgent and its subtypes function over nested iterations

corresponding to time levels. The instances of ParallelCompositeAgent and its

subtypes contain subagents that fire their rules in parallel at each time period. The

instances of SerialCompositeAgent and its subtypes contain agents that fire their rules

in a specified order.

The combination of parallel and serial behaviour with time levels is most easily

seen in relation to the container hierarchy.

5.3 The container hierarchy

The outermost container in SDML is always universalAgent which is the only

instance of type Universe. Usually it contains only a single subagent which is an

instance of a user defined type of model. The container hierarchy defined by the

types in module Canonical is reproduced in Figure 6.

The model has two active subagents: taskGenerator and industry. Industry

can contain an arbitrary number of organizations. In all of the models reported here,

there was only one industry but, in Figure 6, two are shown to indicate better the

capacity of the setup. Each organization contains a ceo and an operations container

called opsContainer. The rulebases of ceo are active before the rules of

opsContainer and its subagents. The rulebases of the workers contained by

opsContainer become active effectively in parallel. That is, no worker can “see” the

actions or consequences of any actions of any other worker in the current time period.

At the start of each task cycle, taskGenerator collects all of the actions taken

in the previous task cycle and calculates the consequential changes in the state string,

incorporating any mutations which it also determines. After the state has been

updated, the industry becomes active and the organization rulebases are activated in

parallel. So the model cycles in this way over taskcycles. There are three taskCycles

per day. The only effect of the distinction is that, at the start of each day, the ceo of

- 17 -

each organization considers the need for reorganization on the basis of conflicting

actions by workers in the organization observed during the previous day. The ceo has

no other function and it has no active rulebases except at the start of the day.

Figure 6: Container hierarchy defined in module Canonical

organizationModel

taskGenerator

industry

organization-2

ceo

ops-
Container

w-1
w-2
 .
 .
w-n”

organization-1

ceo

ops-
Container

w-1
w-2
 .
 .
w-n’

day

taskCycle

In order to allow for communication among agents in the determination of

actions, opsContainer in each organization cycles over a time level called

decisionCycle. This enables agents to decide to refer some decision up to a superior

or to issue an instruction to a subordinate so that the communication is received

during the same task cycle. The need for this additional time level follows from the

parallel nature of the actions of each worker in the organization. Consequently, one

worker will “say” something to another worker (by asserting a clause to the receiving

worker’s database) but the recipient of the message will not be able to observe it until

the following time period – in this case the following decision cycle.

Before each worker activates its rulebases, its meta agent (if any) is activated.

In the representation of cognition used here, each meta agent cycles over time level

elaborationCycle during which it moves among its problem spaces to get as far as

possible in deciding on the approapriate rules of action for its containing worker. This

is explained more fully by Moss et al. (1997).

- 18 -

6 Experimental design

The purpose of the experiments reported below is to use the framework of the

canonical task environments to assess the extent to which results obtained in (say) the

recognition task environment extend to more complicated task environments.

The object-oriented features of SDML are used to ensure that there is a single

implementation of as many as possible of the common features among task

environments and models. Some features, such as organizational structure are not

hard-wired. Indeed, the purpose of the experiments reported below is to identify any

implications for organizational structure that extend over different task environments.

So we start with a common organizational structure for all models as reproduced in

Figure 7 and allow the CEO of the organization to alter the structure at the start of

each day. This agent is allowed only to eliminate conflicting actions by workers and

managers in the organization.

Figure 7: Initial organizational structure in all models

W -5 W -6 W -7

W -2

W -8 W -9 W -1 0

W -3

W -1 1 W -1 2 W -1 3

W -4

W -1

In the remainder of this section, the experiments with each of the canonical task

environments are described and motivated.

6.1 Recognition task environment

The general innovative aspect of the Carley-Svoboda paper was that it

combined the modelling of structural organizational change with learning by adaptive

agents within the organization. Their findings focused on comparisons of

organizational performance under individual learning with no change in

organizational structure, structural change with no individual learning and dual-mode

learning in which both structure can change as the CEO learns and individuals within

the organization learn and, in this case, new individuals can be hired. Their

conclusions in each case were based on simulations of 1,000 initial organizational

forms over 20,000 task cycles each. Evidently, they simulated 60,000,000 recognition

tasks.

- 19 -

The purpose of this section is not to conduct a replication experiment. It is,

instead, to use the canonical task environments to determine how the results from one

experiment fare under increasingly complex task environments. The recognition task

environment provides our baseline. Experiments were run in which agents are

adaptive and develop mental models of relationships between their observations of

assigned state string digits and their predictions of the modal numeral in the string.

The only possible representations of an increase in the complexity of the environment

is an increase in the number of non-zero elements of the state-state change matrix

(SSCM), an increase the number base of the state string or an increase in the length of

the state string. Demonstration of the experimental value of canonical task

environments will sufficiently entail increases in the interaction among digits in the

state string while using only bit strings of different lengths. Via the endorsements

mechanism, managers come increasingly to value subordinates who correctly guess

the modal numeral and to ignore those who persistently guess the incorrect modal

numeral. The observer-workers generate and test relationships between their

observations and the modal state string digit value, endorsing those relationships (or

models) accordingly.

6.2 Independent action task environment

A further dimension of complexity is supported by the action task environments

in that the off-diagonal, non-zero elements of the action-state change matrix (ASCM)

can be increased as well as increasing the non-zero elements of the SSCM. In order

cleanly to compare the effects of complexity on the results obtained in the recognition

task environment with the results from the independent action task environment,

increasing SSCM-based complexity alone will be undertaken first and then, for given

levels of SSCM-based complexity, different levels of ASCM-based complexity will

be modelled.

In keeping with the specification of the Moss (1998) model, the objective of the

organization will be to maintain a set of target values of observed digits in the state

string. In these experiments, the initial state string provides the target values for the

organization. The state string is then perturbed by mutation and the task of the

organization is to bring the value of the state string back to its target value. If all

events are to be “off”, then the natural initial (and target) value of the state string is 0

at every position.

- 20 -

6.3 Co-operative task environment

Two sets of experiments are required here. The first is to replicate the task

environment of the VDT model itself and the second to compare results in the

cooperative action task environment with the results obtained in experiments with the

other task environments.

The purpose of the VDT model was to represent a design problem. That is, the

relevant “environment” was, for example, a space launch vehicle which did not exist

and the task was to create a vehicle with specified characteristics. In effect, the space

launch vehicle had no characteristics at the start of the design process and had a

specified set of requisite characteristics at the end. If we consider each digit in the

state string to represent the absence (if 0) or presence (if 1) of a characteristic, then the

initial state string would contain all zeroes and the target state string would contain all

1s and the actions would change the state string over the course of the simulation from

the initial to the target string. The first set of experiments demonstrate that the

specification of cognition and the process of organization restructuring implemented

in this model supports the achievement of all design objectives. One question of

interest here is how robustly effective the organizational structuring process is with

respect to the complexity of inter-relationships among the design features (SSCM-

based complexity).

The second set of experiments relates the co-operative action task environment

back to the previously considered environments by taking the target state to be the

initial state with random perturbations. The effect of both types of complexity in the

cooperative action environment can then be compared with the effects of complexity

in the independent action task environment.

7 Experimental results

7.1 Recognition task environment

The recognition task environment model was run with three configurations in

which different state string lengths and different degrees of connectivity among states

were set. The agents were adaptive but no changes in organizational structure or

reporting arrangements were allowed. The cumulative percentage of correct

assessments of the modal digit value by the top-most manager is reported in Figure 8.

These results are representative of the outputs from the runs conducted with these

- 21 -

models. There are nine observer-agents who report their views of the modal digit

value to their managers who, in turn, report to the top-most manager. If the state

string is of length nine, then as Carley and Svoboda pointed out, a majority voting rule

will correctly identify the modal digit value. However the rule used by managers in

this model was to take the views of the majority positively endorsed subordinates.

Figure 8: Recognition task environment: results with three configurations

0

0.2

0.4

0.6

0.8

1

1.2

1 7 13 19 25 31 37 43 49 55 61 67 73 79 85 91 97 10
3

10
9

11
5

12
1

12
7

13
3

13
9

14
5

15
1

15
7

16
3

16
9

17
5

18
1

18
7

19
3

elapsed task cycles

cu
m

ul
at

iv
e

%
 c

or
re

ct
 g

ue
ss

es

length=12;conn= 0.05

length=36;conn= 0.05

length=36;conn= 0.4

With a nine-digit state string, accuracy was perfect. The 12-digit and 36-digit

state strings gave more interesting results and these are reported in Figure 8. By

inspection, the effect of the initial conditions ceases to dominate the series by the 50th

task cycle. The average cumulative percentage of correct guesses over the remaining

149 task cycles was just over 92.5% while for the two runs with 36-digit state strings,

the averages were just under 79% and just over 79.5%. There is no chance in that

period of either a type I or a type II error in correctly assigning an observation to

simulation run with a 12-digit or a 36-digit state string.

If we take the same interval of task cycles to distinguish between the two runs

with 36-digit state strings but different degrees of connectivity among states, then

formally the series with the higher degree of connectivity (0.4) has the lower average

of correct assessments of the modal digit value than does the series with the lower

degree of connectivity (0.05). However this result is spurious since, eliminating the

- 22 -

last 30 observations from the series (that is from the point where the two time series

cross), the series reflecting the higher degree of connectivity shows the higher average

of correct assessments (0.793) than does the series reflecting the lower degree of

connectivity (0.798) also with high levels of confidence (at least 99.9% in all cases).

The conjecture that arises naturally from these results is that complexity of

relations among the digits of the state string has no unambiguous effect while

increasing the length of the state string reduces accuracy of organization judgement.

It is simply noted for further investigation that the results with the longer string are

remarkably close to the level of the cumulative correct estimates found by Carley and

Svoboda for the nine-digit state string at 76.14% for the case where individuals learn

but there is no structural change in the organization.

7.2 Independent action task environment

The measure of organizational efficiency used in the models with action task

environments was the number of task cycles that elapsed between the time the value

of a digit was changed from its target value until the time it was returned to its target

value. The results of four simulation runs, collected in Figure 9, indicate that the

results are more sensitive to the length of the state string that to the complexity of the

relations among the digits of the state string or, in this case, the complexity of

relations among actions and state-string digits.

All of the simulation runs were conducted over two hundred event cycles in 50

days. At the start of each day, the CEO could change the manager to which any agent

reported but not the fundamental organizational structure.

The forward-most row on the y-axis of the chart in Figure 9 is obtained from a

simulation run in which the state string had 12 digits while in all other runs the state

string had 36 digits. As indicated along the x-axis, giving the intervals of event

durations, a considerably higher proportion of the events in the 12-digit simulation

were resolved within two event cycles than in any of the 36-digit simulations

including the 36-digit simulation which was otherwise identical to the 12-digit

simulation.

In none of the simulation runs were there many episodes lasting more than 10

event cycles although even that number was reduced to zero by either higher degrees

of interaction among states (SSCM-connectivity) or between actions and states

- 23 -

(ASCM- connectivity). These effects of SSCM- and ASCM- connectivity are more

easily seen in Figure 10.

Figure 9: Distribution of event durations (independent actions)

n=<2
2<n=<5

5<n=<10
10<n=<30

30<n

{12; 0.05; 0.15}

{36; 0.05; 0.15}

{36; 0.05;0.3}

{36; 0.25; 0.15}

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 10: Scatters of event durations over time (independent action)

Length=12; SSCM-conn=0.05; ASCM-conn=0.15

0

10

20

30

40

50

60

70

80

0 20 40 60 80 100 120 140 160 180 200

elapsed task cycle

du
ra

tio
n

Length=36; SSCM-conn=0.05; ASCM-conn=0.15

0

10

20

30

40

50

60

70

80

0 20 40 60 80 100 120 140 160 180 200

elapsed task cycles

du
ra

tio
n

Length=36; SSCM-conn=0.05; ASCM-conn=0.3

0

10

20

30

40

50

60

70

80

0 20 40 60 80 100 120 140 160 180 200

elapsed task cycles

du
ra

tio
n

Length=36; SSCM-conn=0.25; ASCM-conn=0.15

0

10

20

30

40

50

60

70

80

0 20 40 60 80 100 120 140 160 180 200

elapsed task cycles

du
ra

tio
n

- 24 -

All of the scatter diagrams in Figure 10 are on the same scales of elapsed task

cycles (the x-axis) and event durations (the y-axis). Each point corresponds to the

elapsed task cycle at which an event ended (x) and the duration of the event (y). In

the top row, are the scatters for two runs with low SSCM- and ASCM-activity.

Clearly, although a larger proportion of events are resolved within two event cycles in

the 12-digit simulation, there is also a higher volatility of the durations as indicated by

the dots scattered up to 80 task cycles as well as their distributions in the upper

reaches of the chart through the simulation. The scatter in the upper reaches of of the

upper right hand chart is less pronounced, though again it is not related in any way to

the passage of time. It appears from the two lower charts that either a higher degree

of ASCM-connectivity or of SSCM connectivity provides enough information to the

agents and the CEO to forestall the longer durations of events. The longest duration

in either case was seven event cycles as opposed to 80 and 60 event cycles,

respectively, in the lower-connectivity runs.

The purpose of this paper is not to enter into detailed analysis of the reasons for

these changes but, rather, to identify the questions that require more complicated

models if they are to be answered by means of simulation experiments. Nonetheless,

one possibility for the cause of these differences is that the CEO will have had more

information resulting from conflicting actions by agents in the higher connectivity

runs and, so, was adjusting the reporting relations among workers and managers more

actively. If so, the activities undertaken within the organization and the conditions in

which they are undertaken are important influences on managers’ ability to modify

organizational structure in order to improve organizational performance. This

conjecture is entirely consistent with Alfred Chandler’s (1962) historical analaysis of

the development of, for example, the multi-divisional firm.

7.3 Co-operative action task environment

The experiments with the co-operative action task environment were set up

identically to the experiments with the independent action task environment except

that the critical path model was specified in addition. Apart from that difference, the

effects of which are the subject of interest here, experiments were run with 12- and

36-digit strings and the same parameter values for generating the ASCM and the

SSCM. In keeping with the purpose of the VDT model, a series of experiments was

run in which the ASCM was the identity matrix of rank equal to the length of the state

- 25 -

string and the initial state string contained only 0s while the target state string

contained only 1s.

The critical path network was generated by setting

• the maximum path length from an atomic action to a final action that

determined the value of a digit in the a-string,

• the number of further actions that any action in the network could support

and

• the maximum number of supporting actions for each action.

In every experiment, the maximum path length was 7, the maximum number of

supported actions by any action was 3 and the maximum number of supporting

actions for any action was 4. The network was generated by creating a sump of

actions defined by the maximum number of branches from the action, the maximum

number of branches to the action and the maximum length of any path to the action.

For each action in the sump, each of the three parameters were chosen at random from

the interval [1,m] where m was the globally defined maximum number of supported or

supporting actions or path length, respectively.

In the test runs, conforming as much as possible to the VDT model, the number

of task cycles in which the state string digits were all converted from 0s to 1s was in

every case the minimum possible – i.e., the longest path length in the network. This

indicated that the representation of cognition implemented in the model used for this

series of simulations was efficient in the absence of any ASCM or SSCM complexity.

The equivalent of Figure 9 for the co-operative task environment is Figure 11.

While there looks to be greater variability among the results from different

configurations of the simulation runs, we observe once again that the experiments

with the longer state strings all entail a smaller proportion of the lowest event

durations than the experiment with the shorter state string. Of course, in all cases, the

durations tended to be a little longer because the shortest possible duration was the

length of the longest action path required to effect the relevant final action.

The scatters of event durations over the simulation runs are again in the pattern

observed in the independent action task environment experiments.

- 26 -

Figure 11: Distribution of event durations (co-operative actions)

n=<2
2<n=<5

5<n=<10
10<n=<30

30<n

{12; 0.05; 0.15}

{36; 0.05; 0.15}

{36; 0.05;0.3}

{36; 0.25; 0.15}

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Figure 12: Scatters of event durations over time (co-operative action)

Length=12; SSCM-conn=0.05; ASCM-conn=0.15

0

10

20

30

40

50

60

0 20 40 60 80 100 120 140 160 180 200

elapsed task cycles

du
ra

tio
n

Length=36; SSCM-conn=0.05; ASCM-conn=0.15

0

10

20

30

40

50

60

0 20 40 60 80 100 120 140 160 180 200

elapsed task cycles

du
ra

tio
n

Length=36; SSCM-conn=0.05; ASCM-conn=0.3

0

10

20

30

40

50

60

0 20 40 60 80 100 120 140 160 180 200

elapsed task cycle

du
ra

tio
n

Length=36; SSCM-conn=0.25; ASCM-conn=0.15

0

10

20

30

40

50

60

0 20 40 60 80 100 120 140 160 180 200

elapsed task cycle

du
ra

tio
n

The same pattern of results is apparent in Figure 12 as in Figure 10 insofar as

either higher SSCM connectivity or higher ASCM connectivity is associated with the

absence of extreme values of the duration of events. It is also clear from a

comparison of Figure 11 with Figure 9 that there is more variability among the

- 27 -

durations of events corresponding to the various simulation runs with 36-digit state

strings in the co-operative activity task environment than in the independent activity

task environment.

7.4 Comparison

It is important to recognise that the comparisons made here are not based on

significant amounts of experimental data. A few simulations have been run and the

reported results are typical of those runs. The purpose remains that of illustrating the

role of canonical task environments in specifying questions and establishing a

framework that substitutes for closed-discipline theory in relating models to one

another and to problem domains.

The clear difference observed here between the recognition task environment

and the action task environments is that an increase in state string length reduces the

efficiency of an organization in identifying the modal digit value while it increases the

efficiency with which agents are able to identify and act on deviations of actual from

target digit values. The latter result is found for both independent and cooperative

action task environments.

It has already been noted that the effect of connectivity or complexity either

between actions and state aspects or among different aspects of the environmental

state are associated with an absence of events of long duration whereas the absense of

such connectivity is associated with a scattering of events of extreme duration.

8 Conclusion

The results obtained in the reported simulation experiments indicate that agents

that can act on their environments are more efficient in richer environments while

agents that seek only to recognize a pattern in their environment are less efficient in

richer environments. The richer environment gives the agents more information and

the ability to act enables them to test their understanding of relationships in that

environment. The endorsement schemes used to represent the consequences of

experience for agents enabled them to construct and retain models of their

environments which were validated by the correctness of their predictions.

Consequently, the richer the environment, the finer the relationships that can be

identified and the ability to act gave the agents information about changes in the states

of their environments as well as information about the states themselves. In effect,

- 28 -

action enabled the agents to test relationships among first differences as well as levels

while in a recognition task environment they could only observe levels or an analogy

thereto.

If this account is correct, it suggests that the Carley-Svoboda and Ye-Carley

results are not general. In particular, they do not extend directly to organizations that

influence their environments. This is not to suggest that the results on the relative

efficiencies of organizational structures will not translate to other task environments

but, rather, that those results must be tested independently in simulations of those

other task environments.

This is a benefit of the canonical task environment. The differences between the

models are clear so that differences in results must be related to those clear and formal

differences in the specification of the task environments. It might well be that the

specific differences are a consequence of the representation of cognition and that

other representations would yield another set of differences in experimental results. If

so, then we have a further issue to analyse in the development of our panoply of social

simulation techniques and representations. Moreover, these further issues relate in a

clear manner to the canonical task environments just as, in closed disciplines, issues

relate in clear ways to the theoretical structures that enclose the discipline.

9 Directions for further research

The canonical task environment was implemented to support one feature that

was not used in the experiments reported here.

Since agents do not observe the SSCM, they must formulate mental models

about the relationships among state string digit values. However, there can be digits

that are not observed or observable by agents. In such cases, the columns of the

ASCM corresponding to those unobservable digits are themselves unobservable since,

otherwise, the agents would know the effects of actions on aspects of the environment

of which they are unaware. A consequence of this setup is that some actions taken by

agents will have unobservable side effects that, through the SSCM, will influence the

digits they can observe. Since these effects can be the result of the actions taken by

any agent, there is an inherent variability in pattern of changes in the state string that

is not random and yet is not readily predictable by the agents in the models. This

increases the difficulty of the mental modelling process and its effects on exiting

- 29 -

models would give further indication of the effects of complexity on the models

implemented reported here.

A second natural line of development would be to replace the ASCM and the

SSCM with more elaborate relationships among actions and states and among

different aspects of the state of the environment. For example, there are a number of

models of different aspects and grains of climate change. The FUND model [14] has a

set of equations for determining global mean temperature (GMT). The exogenous

variables of those equations are emissions of greenhouse gases (GHGs) on the basis of

which the model returns the GMT. A pilot simulation model relating agent behaviour

resulting in GHG emissions and the consequences has been cast in the canonical task

environment framework by decoding the action digit strings into rates of change of

GHG emissions and encoding the GMT as a segment of a state string. Moreover,

recognition of unknown side effects and environmental interaction is being taken into

account by augmenting the state string with unobservable digits with an ASCM and a

SSCM relating the emissions to unobservable aspects of the climate that influence the

observable aspects. This work will be reported in due course and is mentioned here

only to indicate directions in which social simulation models that support policy

analysis can be integrated into a coherent programme of modelling research without

impoverishment of environmental representations.

The limitations of digit strings as a basis for canonical task environments have

not been investigated. It is obviously possible that other representations of actions

and the environment will turn out to be more appropriate either in particular

applications domains or in general. This is an issue for further investigation.

References

[1] Axtell, R., R. Axelrod, J.M. Epstein and M.D. Cohen (1996), “Aligning
Simulation Models: A Case Study and Results”, Computational and
Mathematical Organization Theory 1(2), pp. 123-141.

[2] Binmore, K., M. Piccione and L. Samuelson (1998), “Evolutionary Stability in
Alternating-Offers Bargaining Games”, Journal of Economic Theory” 80(2),
pp.257-291.

[3] Carley, K. M. and D. Svoboda (1996), "Modeling Organizational Adaptation as
a Simulated Annealing Process," Sociological Methods and Research 25(1), pp.
138-168.

[4] Cohen, P.R. (1985), Heuristic Reasoning: An Artificial Intelligence Approach
(Boston: Pitman Advanced Publishing Program).

- 30 -

[5] Conte, Rosaria, Rainer Hegselmann and Pietro Terna (1997), Simulating Social
Phenomena (Berlin: Springer-Verlag, Lecture Notes in Economics and
Mathematical Systems)

[6] Gilbert G.N. and R. Conte (1995), Artificial Societies, (London: UCL Press).

[7] Jin, Y. and R. Levitt (1996), "The Virtual Design Team: A computational
Model of Project Organizations", Computational and Mathematical
Organization Theory, v. 2, pp. 171-195.

[8] Moss, Scott (1998). “Critical Incident Management: An Empirically Derived
Computational Model”, Journal of Artificial Societies and Social Simulation,
1(4), http://www.soc.surrey.ac.uk/JASSS/1/4/1.html

[9] Moss, Scott and Kerstin Dautenhahn (1998), “Hierarchical Organization of
Robots: A Social Simulation Study” (Manchester: Centre for Policy Modelling
Technical Report 98-36) < http://www.cpm.mmu.ac.uk/cpmrep36.html>.

[10] Moss, Scott and Esther-Mirjam Sent (1998), "Boundedly versus Procedureally
Rational Expectations" in Andrew Hughes-Hallett and Peter McAdam (eds),
Analyses in Macro Modelling (Amsterdam: Kluwer Academic Publishers), in
press.

[11] Moss, Scott , Helen Gaylard, Steve Wallis and Bruce Edmonds (1998), SDML:
A Multi-Agent Language for Organizational Modelling, Computational and
MathematicalOrganization Theory 4, (1), 43-70.

[12] Newell, A.(1990), Unified Theories of Cognition, (Cambridge MA: Harvard
University Press).

[13] Terna, 1997, “A Laboratory for Agent Based Computational Economics: The
Self-development of Consistency in Agents' Behaviour” in [5], pp. 73-88.

[14] Tol, R. S.J. (1996), A decision-analytic treatise of the enhanced greenhouse
effect, (Amsterdam: Vrije University).

[15] Ye, M. and K.E. Carley (1995), "Radar Soar: towards an artificial organization
composed of intelligent agents", Journal of Mathematical Sociology, 20, pp.
219-246.

