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Abstract

Drawing a conclusion from recent insights in evolutionary game theory, we show that
a so-called spite e!ect implies that there is an essential di!erence between individual and
social learning. We illustrate its consequences for the choice of computational tools in
economics and social settings in general by analyzing two variants of a Genetic Algo-
rithm. ( 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

Learning and adaptive behavior are studied frequently in the social sciences
nowadays. And for various reasons not spelled out here (but see, e.g., Vriend
(1994), or Vriend (1996)), this is often done following a computational approach,
using a variety of di!erent algorithms. One dimension in which these can be
distinguished is the level at which learning is modeled. The two basic possibili-
ties are the individual and the population level. We will make these learning
processes more precise below, but the basic idea is the following. With individual
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learning an agent learns exclusively on the basis of his own experience, whereas
population or social learners base themselves on the experience of other players
as well (see, e.g., Ellison and Fudenberg, 1993). The di!erence between these two
approaches to modeling learning is often neglected, but we show that for
a general class of games or social interactions this di!erence is essential. Hence,
we will argue in this paper that the choice of the computational tools to be used
should be in#uenced by an understanding of the underlying dynamics of the
processes to be modeled.

As Blume and Easley (1993) pointed out, when there is learning in an
interactive setting, there are actually two underlying processes. On the one hand,
there will be a change in the perception of the underlying circumstances, i.e.,
learning, but on the other hand, there will also be a change in these circumstan-
ces themselves. And in general, the dynamics of learning and the dynamics of the
underlying forces as such will interact with each other. In an economic setting,
we will show that the e!ect of the economic forces as such might be that an
identical learning algorithm will lead to sharply di!erent results when applied as
a model of individual learning and when applied as a model of social learning.

The phenomenon causing this is called the &spite e+ect'. The spite e!ect occurs
when choosing an action that hurts oneself but others even more. The term
&spiteful behavior' goes back, at least, to Hamilton (1970). There are two aspects
of the spite e!ect. First, purely spiteful behavior, related to the preferences of the
agents. Some players simply like to beat other players (see, e.g., Fouraker and
Siegel (1963), or Levine (1998)). Second, spiteful behavior related to the limited
perception of the agents (related in turn to their bounded rationality, learning,
lack of information, etc.). It is this second aspect, stressed in the recent evolution-
ary game theory literature (see Rhode and Stegeman (1995), and Vega-Redondo
(1997)), on which we will focus. It goes back to the casual side-remarks of
Friedman (1953) about selection and optimizing behavior. In order to lend some
plausibility to his &as if ' argument, Friedman gave the example of top billiard
players who do not know the laws of physics, but are likely to play as if they
were optimizing using those rules, because otherwise they would not have
survived a competitive selection process. Scha!er (1988, 1989) understood the
importance of the spite e!ect in this respect. Suppose players are boundedly
rational, and do not know how to optimize. Instead they look around to see
what other players achieve, with the probability of choosing a certain strategy
observed in the population being a monotonically increasing function of the
payo! realized by that strategy. As we will see in greater detail below, the spite
e!ect in#uences such a selection process through the di!erent e!ects it has on
the payo!s of di!erent strategies.

In order to illustrate the essence of the spite e!ect, consider the bimatrix game
in Fig. 1 (see Palomino, 1995), where ¹ and B are the two possible strategies,
and a, b, c, and d are the payo!s to the row and column player, with
a'b'c'd. Clearly, (¹, ¹) is the only Nash equilibrium since no player can
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Fig. 1. Bimatrix game, with payo!s a'b'c'd.

improve by deviating from it, and this is the only combination for which this
holds. Now, consider the strategy pair (B, ¹), leading to the payo!s (b, c).
Remember that a'b'c'd. Hence, by deviating from the Nash equilibrium,
the row player hurts herself, but she hurts the column player even more. We
could also look at it from the other side. Suppose both players are currently
playing strategy B, when the column player, for one reason or another, deviates
to play strategy ¹ instead, thereby improving his payo! from d to c. But the row
player, simply sticking to her strategy B, would be &free riding' from the same
payo! of d to a payo! c that is even higher than b. The question, then, is what
e!ects these outcomes will have on what the players learn.

This simple example immediately highlights the two issues that we will
analyze in greater detail in this paper. On the one hand the interaction between
the players' actual behavior (and the outcomes thus generated), and on the other
hand their learning about actions and outcomes. As we will see, it is the way in
which these processes interact with each other that causes the essential di!er-
ence between individual learning and social learning.

The remainder of this paper is organized as follows. In Section 2 we present
a computational example illustrating this di!erence, which we will analyze in
Section 3 in relation to the spite e!ect. Section 4 draws our example into
a broader perspective by discussing some speci"c features of the example, and
Section 5 concludes.

2. A computational example

Consider a standard Cournot oligopoly game. There is a number n of "rms
producing the same homogeneous commodity, who compete all in the same
market. The only decision variable for "rm i is the quantity q

i
to be produced.

Once production has taken place, for all "rms simultaneously, the "rms bring
their output to the market, where the market price P is determined through the
confrontation of market demand and supply. Let us assume that the inverse
demand function is P(Q)"a#bQ#, where Q"Rq

i
. Making the appropriate

assumptions on the parameters a, b, and c ensures that this is a downward-
sloping curve, as sketched in Fig. 2. Hence, the more of the commodity is
supplied to the market, the lower the resulting market price P will be. We
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Fig. 2. Sketch demand function.

1The only essential point for our story is here the di!erence between individual and social
learning. For a good introduction of GAs as such see, e.g., Goldberg (1989), or Mitchell (1996).

2Hence, the output rules do not have the conditional &if2 then2' form.

3 In each of the 100 periods between this, a "rm adheres to the same output rule. This is done to
match the individual learning GA (see below), and in particular its speed, as closely as possible.

assume that the production costs are such that there are negative "xed costs K,
whereas the marginal costs are k. Imagine that some "rms happen to have found
a well where water emerges at no cost, but each bottle costs k, and each "rm gets
a lump-sum subsidy from the local town council if it operates a well. Given the
assumptions on costs, each "rm might be willing to produce any quantity at
a price greater or equal to k. But it prefers to produce that output that
maximizes its pro"ts. The parameters for the underlying economic model can be
found in Appendix A.

Assume that each individual "rm (there are 40 "rms in our implementation)
does not know what the optimal output level is, and that instead it needs to
learn which output level would be good. Let us model this with a Genetic
Algorithm (GA). Then, there are two basic ways to implement a GA.1 The "rst is
as a model of social or population learning. Each individual "rm in the popula-
tion is characterized by an output rule, which is, e.g., a binary string of "xed
length, specifying simply the "rm's production level.2 In each trading day, every
"rm produces a quantity as determined by its output rule, the market price is
determined, and the "rms' pro"ts are determined. After every 100 trading days,
the population of output rules is modi"ed by applying some reproduction,
crossover, and mutation operators.3 The underlying idea is that "rms look
around, and tend to imitate, and re-combine ideas of other "rms that appeared
to be successful. The more successful these rules were, the more likely they are to
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Fig. 3. Social learning GA.

4Hence, an alternative way to obtain the match in the speed of learning of the individual and the
social learning GA would have been to endow the individual learning GA with the capability to
reasoning about the payo! consequences for every possible output level in its set, updating all
strengths every period.

be selected for this process of imitation and re-combination, where the measure
of success is simply the pro"ts generated by each rule. Fig. 3 shows both the
Cournot market process, and the social learning process with the GA.

The second way to implement a GA is to use it as a model of individual
learning. Instead of being characterized by a single output rule, each individual
"rm now has a set of rules in mind, where each rule is again modeled as a string,
with to each rule a "tness measure of its strength or success attached i.e., the
pro"ts generated by that rule when it was activated. Each period only one of
these rules is used to determine its output level actually supplied to the market;
the rules that had been more successful recently being more likely to be chosen.
This is known as a Classi"er System (see, e.g., Holland (1986) or Holland (1992)).
The GA, then, is used every 100 periods to modify the set of rules an individual
"rm has in mind in exactly the same way as it was applied to the set of rules
present in the population of "rms above. Hence, instead of looking how well
other "rms with di!erent rules were doing, a "rm now checks how well it had
been doing in the past when it used these rules itself.4 Fig. 4 shows the
underlying economic market process, and the individual learning process. The
parameter speci"cation of the GA plus the pseudo-code can be found in
Appendix B.
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Fig. 4. Individual learning GA.

5The 5000 periods here presented combined with the GA rate of 100 imply that the GA has
generated 50 times a new generation in each run. Each single observation in a given run is the
average output level for that generation. We did all runs for at least 10,000 and some up to 250,000
periods, but this did not add new developments.

Fig. 5 presents the time series of the average output levels for each of the 25
runs of the two algorithms. As we see, they approach a di!erent level. Whereas
both series start around 1000, the social learning GA quickly &converges' to
a level of 2000, but the individual learning GA keeps moving around a level just
below 1000.5 Table 1 shows the average output level and the standard deviation
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Fig. 5. Average output levels individual learning GA and social learning GA.

Table 1
Output levels individual learning GA and social learning GA, periods 5001}10,000

Indiv. learning GA Social learning GA

Average 805.1 1991.3
Standard deviation 80.5 24.7

for the periods 5001 to 10,000 in the two variants of the GA. We want to stress
that these data are generated by exactly the same identical GA for exactly the
same identical underlying economic model.

3. Analysis

We "rst compute two equilibria of the static Cournot oligopoly game speci-
"ed above for the case in which the players have complete information. The GAs
do not use this information, but the equilibria will serve as a theoretical
benchmark that helps us understanding what is going on in the GAs. Besides the
parameters of the underlying economic model, Appendix A also presents the
formal derivation of the two equilibria.

If the "rms behave as price takers in a competitive market, they simply
produce up to the point where their marginal costs are equal to the market price
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Fig. 6. Example simple Cournot duopoly.

P. Given the speci"cation of the oligopoly model above, this implies an aggreg-
ate output level of QW"80,242.1, and in case of symmetry, an individual
Walrasian output level of QW/n "2006.1. If, instead, the "rms realize that they
in#uence the market price through their own output, still believing that their
choice of q does not directly a!ect the output choices of the other "rms, they
produce up to the point where their marginal costs are equal to their marginal
revenue. This leads to an aggregate Cournot}Nash equilibrium output of
QN"39,928.1, and with symmetry to an individual Cournot}Nash output of
QN/n"998.2.

As we see in Fig. 5, the GA with individual learning moves close to the
Cournot}Nash output level, whereas the GA with social learning &converges' to
the competitive Walrasian output level. The explanation for this is the spite
e!ect.

In order to give the intuition behind the spite e!ect in this Cournot game, let
us consider a simpli"ed version of a Cournot duopoly in which the inverse
demand function is P"a#bQ, and in which both "xed and marginal costs are
zero (see Scha!er, 1989). The Walrasian equilibrium is then QW"!a/b, as
indicated in Fig. 6. Suppose "rm i produces its equal share of the Walrasian
output: q

i
"QW/2. If "rm j would do the same, aggregate output is QW, the

market price P will be zero, and both make a zero pro"t. What happens when
"rm j produces more than QW/2? The price P will become negative, and both
"rms will make losses. But it is "rm i that makes less losses, because it has
a lower output level sold at the same market price P. What happens instead if
"rm j produces less than QW/2? The price P will be positive, and hence this will
increase "rm j's pro"ts. But again it is "rm i that makes a greater pro"t, because
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6This is not due to the speci"cs of this simple example, but it is true with great generality in
Cournot games (see Vega-Redondo, 1997; Rhode and Stegeman, 1995). In particular, it also holds
when all "rms start at the Cournot}Nash equilibrium (as long as there is some noise in the system).

it has a higher output level sold at the same market price P. In some sense, "rm
i is free riding on "rm j's production restraint. Hence, in this Cournot duopoly
the "rm that produces its equal share of QW will always have the highest pro"ts.
Note that this implies in particular the following. If "rm i produces its share of
the symmetric Walrasian output, while "rm j naively chooses the symmetric
output level to maximize its absolute pro"ts (i.e., its equal share of the Cour-
not}Nash output), it is "rm i that realizes the highest pro"ts. Moreover, even if
"rm j is aware of the fact that "rm i is producing at the Walrasian output level,
and maximizes its pro"ts taking this into account, it is "rm i that realizes the
highest pro"ts.

In case we consider oligopolies with more than two "rms, matters become
slightly more complicated, but the following holds. Whenever the aggregate
output level is below Walras, i.e., on average an individual "rm produces less
than its share of the Walrasian output level, the price will be positive, and it is
the "rms with the higher output levels that generate the higher pro"ts. Notice
that in particular cases this might imply that a "rm producing well above its
share of Walras generates higher pro"ts than a "rm producing exactly its share
of Walras. Exactly the reverse holds when aggregate output exceeds the Wal-
rasian output level; the lower a "rm's output level, the higher its pro"ts will be.

How do these payo! consequences due to the spite e!ect explain the di!er-
ence in the results generated by the two GAs? As we saw above, the spite e!ect is
a feature of the underlying Cournot model, and is independent of the type of
learning applied. The question, then, is how this spite e!ect is going to in#uence
what the "rms learn. It turns out, this depends on how the "rms learn.

In the social learning GA, each "rm is characterized by its own production
rule (see Fig. 3). The higher a "rm's pro"ts, the more likely is its production rule
to be selected for reproduction. Due to the spite e!ect, whenever aggregate
output is below Walras, this happens to be those "rms that produce at the higher
output levels. And whenever aggregate output is above Walras, the "rms produ-
cing at the lowest output are most likely to be selected for reproduction. As
a result, the population of "rms tends to converge to the Walrasian output.6

In the individual learning GA, however, the production rules that compete
with each other in the learning process do not interact with each other in the
same Cournot market, because in any given period, an individual "rm actually
applies only one of its production rules (see Fig. 4). Hence, the spite e!ect, while
still present in the market, does not a!ect the learning process, since the payo!
generated by that rule is not in#uenced by the production rules that are used in
other periods. Clearly, there is a spite e!ect on the payo!s realized by the other
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Fig. 7. Average utility levels individual learning GA and social learning GA.

"rms' production rules, but those do not compete with this individual "rm's
production rules in the individual learning process. We would like to stress that
it is these learning processes that is the crucial feature here, and not the
objectives of the agents. Both the individual and the social learners only try to
improve their own absolute payo!s. The only di!erence is that their learning is
based on a di!erent set of observations.

Fig. 7 further illustrates the di!erent consequences of the spite e!ect in the
two variants of the GA by showing the average utility levels generated by the
output levels reported in Fig. 5. In the social learning GA the spite e!ect drives
down the utility levels, while the performance of the individual learning GA
improves over time. In other words, the dynamics of learning and the dynamics
of the economic forces as such interact in a di!erent way with each other in the
two variants of the GA, and this explains the very di!erent results generated by
the two GAs.

There is one additional issue to be analyzed. As we saw above in Fig. 5 and
Table 1, &convergence'with the individual learning GA is not as neat as with the
social learning GA. Some numerical analysis shows that this is not a #aw of
the individual learning GA, but related to the underlying economic model. The
formal analysis of the Cournot model shows that there is a unique symmetric
Cournot}Nash equilibrium. But in our numerical model we use a discrete
version of the model, as only integer output levels are allowed. As a result, there
turn out to be 1637 symmetric Cournot}Nash equilibria; for any average output
level of the other "rms from 1 to 1637, the best response for an individual "rm is
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to choose exactly the same level. Hence, the outcomes of the individual learning
GA are determined by the underlying economic forces, but convergence can
take place at any of these Cournot}Nash equilibrium levels. As a result, the
output levels actually observed in the individual learning GA depend in part on
chance factors such as the initial output levels, the length of the bit string, and
genetic drift. Notice that although there are multiple Cournot}Nash equilibria,
they are still distinct from the Walrasian equilibrium.

4. Discussion

Before we draw some general conclusions, let us discuss some speci"c issues in
order to put our example into a broader perspective. First, the spite e!ect we
presented occurs in "nite populations where the agents &play the "eld'. The "nite
population size allows an individual agent to exercise some power, and in#uence
the outcomes of the other players. For example, in a Cournot model, when the
population size n approaches in"nity, the Cournot}Nash output level converges
to the competitive Walrasian output. Finite populations are typically the case in
computational analyses; certainly those applying GAs. To see why the &playing
the "eld' aspect is important, suppose there are many separate markets for
di!erent commodities, such that the actions in one market do not in#uence the
outcomes in other markets, whereas "rms can learn from the actions and
outcomes in other markets. Since the spite e!ect does not cross market bound-
aries, if all "rms in one market produce at the Cournot}Nash level, they will
realize higher pro"ts than the "rms in another market producing at a Walrasian
level. &Playing the "eld' is typically the case in, e.g., economic models where the
players are "rms competing in the same market. There are also some results
concerning the spite e!ect with respect to, e.g., 2-person games in in"nite
populations, but matters become more complicated (see Palomino, 1995).

Second, individual learning and social learning are two extreme forms of
learning. One of the referees suggested that there is also an interesting intermedi-
ate &type learning' case, in which agents of several distinct types interact with
each other, but they only learn from successful agents of their own type.
Individual learning in this paper is in e!ect a special case of type learning, with
each agent type being a singleton. And, obviously, there are also other dimen-
sions to distinguish learning models from each other.

Third, although, as we have seen, the spite e!ect may in#uence the outcomes
of a coevolutionary process, one should not confuse the spite e!ect with the
phenomenon of coevolution as such. In fact, as the bimatrix game in the
introduction showed, the spite e!ect can occur in a static, one-period game, and
is intrinsically unrelated to evolutionary considerations.

Fourth, one of the referees suggested that some more basic issues concerning
evolutionary modeling are touched on here. Individual learning might be

N.J. Vriend / Journal of Economic Dynamics & Control 24 (2000) 1}19 11



7Nevertheless, our analysis immediately suggests one possibility. If players practise social learn-
ing in a Cournot model, their pro"ts will go down. Hence, even without much knowledge of their
environment, one would expect the players to resist this form of learning. Experimental evidence
(Bosch-Domènech and Vriend, 1998), suggests this is indeed the case.

8For example, reinforcement learning as in Roth and Erev (1995) takes place at the individual
level, whereas replicator dynamics (see, e.g., Weibull, 1995) are a form of social learning.

the counterpart to individual rationality, while social learning could be the
equivalent of competitive behavior or market forces. We do not attempt to
provide any explanation as to why individual players adhere to individual or to
social learning.7 Interestingly, in the Cournot model social learning leads to the
socially desirable competitive outcome. It is an open question whether this
re#ects a more general phenomenon, and whether the spite e!ect plays a funda-
mental role in this respect.

Fifth, the simple Cournot model we considered is not a typical search
problem for a GA; not even if the demand and cost functions were unknown.
The appeal of the Cournot model is not only that it is convenient for the
presentation because it is a classic discussed in every microeconomics textbook,
but the fact that we can derive formally two equilibria providing us also with
two useful benchmarks for the analysis of the outcomes generated by the
learning algorithms. Hence, the Cournot model is just a vehicle to explain the
point about the essential di!erence between individual and social learning, and
for any model, no matter how complicated, in which a spite e!ect occurs this
essential di!erence will be relevant.

Sixth, one could consider more complicated strategies than the simple output
decisions modeled here. For example, the Cournot game would allow for
collusive behavior. However, as is well-known from the experimental oligopoly
literature, dynamic strategies based on punishment and the building up of
a reputation are di$cult to play with more than two players. Moreover,
considering more sophisticated dynamic strategies would merely obscure our
point, and there exists already a large literature, for example, on GAs in Iterated
Prisoners' Dilemma (see, e.g., Axelrod (1987), Stanley et al. (1994), or Miller
(1996)).

Seventh, we are sure that the GAs we have used are too simple, and that much
better variants are possible. However, bells and whistles are not essential for our
point. The only essential aspect is the level at which the learning process is
modeled, and the e!ect this has on the convergence level.

Eighth, we would even argue that there is nothing intrinsically linked to GAs
in our story. For any learning algorithm that is based on a selection mechanism
which is monotonic in the payo!s it will make an essential di!erence whether
one applies it at the population or at the individual level.8 The main reason to
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focus on a GA in this paper is that this algorithm allows us to use exactly the
same leaning mechanism at both the individual and the social level. And indeed
both variants of GAs have been used in the literature (see, e.g., Axelrod (1987),
Marimon et al. (1990), Arifovic (1993), Stanley et al. (1994), Vriend (1995), or
Miller (1996)).

5. Conclusion

The general conclusions are twofold. The "rst one concerns the interpretation
of outcomes generated by a numerical model in which learning takes place. We
showed that the presence of the spite e!ect implies that there is an essential
di!erence between an individual learning and a social learning algorithm. In
other words, when interpreting outcomes of computational models, one needs to
check which variant is used, and one needs to check whether a spite e!ect
driving the results might be present. That is, one needs to understand both the
dynamics of learning, the dynamics of the underlying forces, and the way these
two interact with each other.

The second conclusion concerns the choice of learning variant. In the
social sciences people tend to choose the social learning variant. As a matter
of routine, the justi"cations given are a combination of the following. The
fact that it is simpler to program seems to mean that it serves the scienti"c
principle of &parsimony'. By referring to a list of other papers making the same
choice, it is argued that the social learning version is &standard' in the literature.
And this is supported by &&authority1 in the form of reference to some of the
seminal works in the "eld. The lesson to draw here is that the computational
modeling choice between individual and social learning algorithms should be
made more carefully, since there may be signi"cant implications for the out-
comes generated.

Ultimately it seems an empirical issue whether and when people tend to learn
individually or socially (see, e.g., Huck et al. (1999), O!erman et al. (1997), or
Bosch-Domènech and Vriend (1998)). But until this has been sorted out, at least
one should be aware of what processes are actually being modeled when dealing
with learning in an interactive situation.
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Table 2
Parameters Cournot oligopoly model

Inverse demand function P(Q) a#b )Q#

Demand parameter a !1]10~97

Demand parameter b ]1.5]1095

Demand parameter c !39.99999997
Fixed production costs K !4.097]10~94

Marginal production costs k 0
Number of "rms n 40
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Appendix A. The Cournot model: Parameters and analysis

Table 2 presents the parameter speci"cation of the underlying Cournot
model.

We derive two equilibria for a standard Cournot oligopoly where the inverse
demand function is P(Q)"a#bQc, and the total costs for an individual "rm are
given by ¹C(q)"K#kq. Hence, the pro"ts for an individual "rm are
P(q)"[a#bQc ]q![K#kq], where Q"+n

i/1
q
i
. We "rst determine the opti-

mal output for a "rm that believes it cannot in#uence the market price P. The
"rst-order condition is:

dP(q)

dq
"[a#bQc]!k"0.

If a "rm behaves as a price-taker in a competitive market, it simply produces up
to the point where its marginal costs are equal to the market price P. Hence, the
aggregate Walrasian equilibrium output is

QW"A
k!a

b B
1@c

,

which in case of a symmetric equilibrium implies that the individual Walrasian
output is

qW
i

"

QW

n
.

14 N.J. Vriend / Journal of Economic Dynamics & Control 24 (2000) 1}19



Table 3
Parameters Genetic Algorithm

Minimum individual output level 1
Maximum individual output level 2048
Encoding of bit string Standard binary
Length of bit string 11
Number rules individual GA 40
Number rules social GA 40 )1
GA-rate 100
Number new rules 10
Selection Tournament
Prob. selection Fitness/& "tnesses
Crossover Point
Prob. crossover 0.95
Prob. mutation 0.001

Next, we determine the optimal output for a "rm that knows its own output will
in#uence the market price P. The "rst-order condition is

dP(q)

dq
"P#

dP

dq
q!k"[a#bQc]#

d[a#bQc ]

dq
q!k"0.

If a "rm realizes that it in#uences the market price through its own output, still
taking the output of the other "rms as given, it produces up to the point where
its marginal costs are equal to its marginal revenue. Hence, the aggregate
Cournot}Nash equilibrium output is

QN"C
k!a

bA
c

n
#1BD

1@c
,

which in case of a symmetric equilibrium implies that the individual Cournot-
Nash output is qN

i
"QN/n. When a(0, b'0, c(0, and c!1'!2n, the

second-order condition will also be satis"ed.

Appendix B. The genetic algorithm

In Table 3 we give the parameter speci"cation of the GA, while Table 4
presents the pseudo-code of the Genetic Algorithm. A further explanation
follows below.
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Table 4
Pseudo-code Genetic algorithm

1 program MAIN; Minitialization firmsN
2 for each firm do for each rule do
3 begin
4 make random bit string of length 11 with standard binary encoding;
5 fitness :"1.00;
6 end; Mstart main loopN
7 for each period do
8 begin
9 for each firm do MClassifier Systems’s

actionsN
10 begin
11 active}rule :"CHOOSE}ACTION; Msee function belowN
12 output level :"action of active}rule;
13 end;
14 determine market price;
15 for each firm do MClassifier Systems’s

outcomesN
16 begin
17 profit :" (market price) ) (output level)}costs;
18 utility :"monotonic transformation of profit;
19 with active}rule do fitness :"utility;
20 end;
21 if period is multiple of 100 then Mapplication Genetic

AlgorithmN
22 begin
23 if individual learning GA then for each firm do
24 GENERATE}NEW}RULES Msee procedure belowN
25 else if social learning GA then
26 begin
27 create set of 40 rules taking the 1 rule from each firm;
28 GENERATE}NEW}RULES; Msee procedure belowN
29 re-assign 1 rule to each of the 40 firms
30 end;
31 end;
32 end;

33 function CHOOSE}ACTION;
34 begin
35 for each rule do
36 begin
37 linearly rescale the firm’s actual fitnesses to [0,1];
38 bid :"rescaled}fitness#e; Mwith e+N(0, 0.075)N
39 with probability :"0.025 the bid is ignored;
40 end;
41 determine highest}bid;
42 end;
43 choose}action :"highest}bid;
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Table 4 (Continued)

44 procedure GENERATE}NEW}RULES;
45 linearly rescale the actual fitnesses to [0,1];
46 repeat;
47 choose two mating parent rules from 30 fittest rules by roulette wheel

selection;
48 (each rule with

probability :"rescaled}fitness/sum}rescaled}fitnesses)
49 with probability :"0.95 do
50 begin
51 place the two binary strings side by side and choose random crossing

point;
52 swap bits before crossing point;
53 choose one of the two offspring at random as new}rule;
54 end;
55 with new}rule do
56 begin
57 fitness :"average fitnesses of the two mating parent strings;
58 for each bit do with prob. :"0.001 do mutate bit from 1 to 0 or other

way round;
59 end;
60 if new}rule is not duplicate of existing rule
61 then replace one of weakest 10 existing rule with new}rule else throw

away;
62 until 10 new rules created;

1}32 The main program.
2}6 Initialization of the "rms.
2 In the individual learning GA there are 40 rules per "rm, in the social learning variant there is

only 1 rule per "rm.
4 The initial rules are randomly drawn from a uniform distribution.
5 The initial "tness of all rules is 1.00.
7}32 The main loop of the program.
9}13 The "rms actions are decided by a Classi"er System.
11 The active rule is decided in the CHOOSE}ACTION procedure.
12 The "rm's supply to the market is determined by the active rule.
14 The market price is determined through the inverse demand curve.
15}20 The market outcomes are reported to the Classi"er System.
19 The "tness of the active rule is made equal to the utility just generated by that rule.
21}31 Every 100 periods the GA generates 10 new rules.
23}24 With the individual learning GA, the procedure GENERATE}NEW}RULES is applied to

the set of rules for each "rm separately.
25}30 With the social learning GA, the procedure GENERATE}NEW}RULES is applied to the

set of rules for all "rms combined, with each "rm contributing just one rule.
33}43 The active rule is chosen by a stochastic auction in the Classi"er System. Clearly, in the social

learning variant this is trivial, as there is only one rule to choose from.
39 Through a &trembling hand' some experimentation is added.
43 The rule making the highest bid will be the active one in this period.
44}62 The Genetic Algorithm as such.
47}48 Only the 30 "ttest rules can be selected for reproduction.
49}54 The crossover operator.
58 The mutation operator.
60 To prevent complete convergence of the rules, no duplicate rules are allowed.
61 The 10 weakest rules are replaced by the newly created rules.
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